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Artificial intelligence: the silver bullet for
sustainable materials development†
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Gyorgy Szekely *a

Materials discovery is rapidly revolutionizing all aspects of our lives. However, the design and fabrication

of materials are often unsustainable and resource-intensive. Hence, we need a paradigm shift towards

designing sustainable materials in silico. Machine learning, a subfield of artificial intelligence (AI), is emer-

ging within the sustainability agenda because it promises to benefit science and engineering through

improved quality, performance, and predictive power. Here we present a new methodology to extend the

application of AI to develop materials in an environmentally friendly way. We demonstrate successful

materials development by combining design of experiments with a new machine learning module that

comprises a support vector machine, an evolutionary algorithm, and a desirability function. We use our

AI-based method to realize the sustainable electrochemical synthesis of a ZIF-8 metal–organic frame-

work and explore the hyperdimensional relationship between the synthesis parameters, product qualities,

and process sustainability. The presented AI-based methodology paves the way for solving the challenge

of the materials fabrication-sustainability nexus, and facilitates the paradigm shift from the wet lab to the

wired lab.

Introduction

The United Nations’ Sustainable Development Goals outline a
blueprint to provide a prosperous and more sustainable future
for society. The sustainable design and development of
advanced materials and chemicals is a crucial element of this
blueprint.1 Both the planned design and serendipitous discov-
ery of advanced materials are revolutionizing many domestic
and industrial sectors such as energy, computing, water, medi-
cine, environment, and agriculture, among many others. To
reduce the environmental burden, time, labor, and cost of the
discovery-to-deployment process of advanced materials, we
need a paradigm shift in how we approach the materials fabri-
cation-sustainability nexus. Fundamentally, this paradigm
shift requires a widespread cultural change and a shift in
emphasis from the conventional wet chemistry lab to wired
labs enabled by artificial intelligence (AI).

Conventional materials discovery is performed by varying
one factor at a time, which has multiple limitations and draw-
backs. For instance, experimental datapoints are inherently
limited, possible factor interactions are not revealed, and the
optimum is rarely achieved, among other limitations. The
design of experiments (DoE) is an alternative systematic
approach that achieves a good balance between a reduced
number of experiments and efficiency. DoE allows the factors
to be varied and investigated simultaneously, thus accelerating
the process of discovery and optimization, while conserving
precious resources, labor, time, and ultimately resulting in a
more sustainable approach.2–4 Since DoE utilizes a minimum
number of experimental data, there is a need to develop and
validate methodologies that can expand the limited experi-
mental results into much larger virtual datasets. We hypoth-
esize that machine learning (ML), a growing area of AI, will not
only allow us to generate datasets with higher dimensional
interactions but also help to predict the outcome of otherwise
unrealized experiments (Fig. 1).

ML utilizes different statistical methods to learn from
various data types via a set of algorithms.5 ML methods first
learn the patterns and rules that underlie a dataset by evaluat-
ing a portion of that data and then build a model to make pre-
dictions.6 In fact, ML has already been used to discover and
predict the performance of new materials and to optimize pro-
cesses in the field of molecular and materials science.6,7 The
use of ML to address environmental issues is also a rapidly
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growing area of research.8,9 For instance, Cao et al.2 fabricated
photovoltaic devices using consecutive experimental design
and ML. Support vector regression and random forest have
been used to screen and identify the properties of metal–
organic frameworks (MOFs) from structure databases.10

Furthermore, a combination of high-throughput molecular
simulations with an artificial neural network algorithm has
been implemented to predict the mechanical properties of
MOFs.11

In this work, we describe a new ML module that synergisti-
cally combines DoE, a support vector machine, an evolutionary
algorithm and a desirability function to sustainably obtain
MOFs. Unlike multivariate optimization that often results in
multiple solutions, this new strategy can propose a single solu-
tion, which is useful for effective decision-making. To demon-
strate the new AI approach, we develop a sustainable electro-
chemical synthesis of MOFs.

MOFs are a class of porous materials built from metal
cations bridged together by organic linkers to form a frame-
work.12 The broad range of possible organic and inorganic
components enables the design of MOFs with almost limit-
less structures. The interesting properties of MOFs, such as
their flexible porous structure, high surface area, or high reac-
tivity, make them of great interest for many potential appli-
cations such as gas storage, separation, water harvesting, cat-
alysis, shock absorber, drug delivery, among many
others.13,14 As they are considered the next chemistry power-

house, there is a growing interest in the sustainable fabrica-
tion of MOFs.15–18

ZIF-8 is a type of MOFs that has received much attention
because it has high thermal and chemical stability, a high
surface area, unique properties such as gate opening due to
linker twisting, and can undergo phase transformation.19–21

ZIF-8 is constructed from zinc atoms connected with 2-methyl-
imidazole linkers, forming a porous structure with pore aper-
ture and cavity size of 3.4 and 11.6 Å, respectively. In this
work, ZIF-8 was selected because it is one of the most studied
MOFs with various applications, however the developed AI
methodology can be applicable to other MOFs.

Owing to the renewed interest in electroorganic chemistry
to perform rapid, environmentally friendly, and cleaner
synthesis,22,23 we decided to investigate the potential of elec-
troorganic chemistry to synthesize ZIF-8. A plethora of para-
meters govern the electrochemical synthesis of MOFs such as
voltage, current, and reaction time, as well as concentrations
and ratios of the precursors and electrolytes.24,25 Another para-
meter that can be controlled in the synthesis of MOFs is
solvent selection, which can be quantified using the Hansen
solubility parameters, polarity, and dielectric constant among
others.

Herein, we propose that AI is a silver bullet for sustainable
materials development, demonstrated through the electro-
chemical synthesis of ZIF-8, to produce a high-quality product
and a sustainable process (Fig. 1).

Fig. 1 Strategy for AI-based sustainable materials development in a hyperdimensional system. (a) General steps and process parameters to evaluate
product quality and process sustainability in electroorganic synthesis of ZIF-8. (b) Simplified flow chart of the applied AI modules and machine
learning.

Paper Green Chemistry

7522 | Green Chem., 2020, 22, 7521–7528 This journal is © The Royal Society of Chemistry 2020

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
oc

tu
br

e 
20

20
. D

ow
nl

oa
de

d 
on

 1
/1

1/
20

25
 1

1:
13

:5
6 

p.
m

.. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0gc02956d


Results and discussion
Data generation and factor contribution

We performed face-centered central composite design with 27
runs to obtain the initial experimental dataset. The highest
quality product (entry 15, Table S4†) exhibited sharp XRD
peaks and was well matched with the calculated XRD pattern
(Fig. 2a), as well as having a well-constructed rhombic dodeca-
hedron crystal shape with approx. 500 nm size (Fig. 2b), thus
suggesting good crystallinity. Refer to section 2.1 in the ESI†
for a detailed description of the DoE.

The higher a parameter contribution to the observed
responses, the higher the variance in the output responses. The
linker concentration had the most significant effect, governing
both the crystallinity and purity (Fig. 2c). The low linker concen-
tration led to the formation of amorphous materials
(Table S4†). On the contrary, all parameters were almost equally
significant in controlling the yield of the synthesized product.
The factor contributions to the process sustainability are illus-
trated in Fig. 2d. The applied voltage contributed the most to
the total energy consumption during the electrochemical syn-

thesis of ZIF-8, while the reaction time produced the highest
variance in the E-factor and carbon footprint responses.

This phenomenon can be explained by the longer reaction
time, which allowed enough time for the nucleation and
growth of the products, that in turn, resulted in higher yields.
Consequently, the reaction time significantly influenced both
the E-factor and carbon footprint, which were inversely pro-
portional to the yield. A detailed description of the factor con-
tribution determination is available in section 2.2 in the ESI.†

Interactions of the variables

We assessed the individual correlations by observing the var-
iance of the response at the lowest and the highest value of the
parameter (see section 2.3 in the ESI†). The most significant
correlation is indicated by the steepest slope between the para-
meter and the response, as shown in Fig. 2e. For instance, the
strongest correlation was found for the electrolyte concen-
tration and crystallinity, whereby an increase in the electrolyte
concentration decreased the crystallinity and increased the
environmental impact (E-factor, energy consumption, and
carbon footprint). The observed decrease in crystallinity was a

Fig. 2 Factor contribution and interactions. (a) XRD pattern, and (b) SEM image of ZIF-8 synthesized from entry 15 (Table S2†) in the experimental
design. Factor contributions of each parameter to each response under the category of (c) product quality, and (d) process sustainability. Each axis
and color represent a different factor contribution and response, respectively. Subscript n indicates normalized value. Ce is electrolyte concentration,
V is applied voltage, t is reaction time, Cl is linker concentration. (e) Individual parameter-response interactions on product quality and process sus-
tainability. (f ) Two-parameters-response interaction on crystallinity. (g) Complexity of the multivariable interaction in the studied system, where the
solid and dashed lines indicate direct and indirect (through intermediate) parameter-response interactions, respectively.
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result of excessive addition of the electrolyte that induced a
salting-out process, causing water molecules to be attracted by
the salt ions, and subsequently reducing the solubility of both
zinc cations and organic linkers, thus inhibiting MOFs for-
mation.26 The observed increase in the environmental impact
can be explained by the fact that the increase in electrolyte
concentration generated more waste because it was not con-
verted into the product. Applying a higher voltage resulted in
more crystalline MOFs with higher purity and yield, albeit with
higher energy consumption. However, counterintuitively, the
higher energy consumption did not increase the carbon foot-
print due to the higher product yield. A similar compromise
was evident for the increase in reaction time, which mitigated
the environmental impact due to the higher product yield. The
linker provided a substantial improvement in product quality
while reducing energy consumption.

Nevertheless, the individual parameter-response inter-
actions did not consider the possible interaction between the
parameters themselves. Thus, we evaluated the two-para-
meters-response interactions (see section 2.4 in ESI†). In con-
trast to the individual correlation (Fig. 2e), the effect of electro-
lyte concentration on crystallinity was dependent on other
parameters (Fig. 2f). For instance, with a short reaction time
and low applied voltage, the increase in electrolyte concen-
tration led to an increase in crystallinity. In contrast, with a
longer reaction time and higher applied voltage, an increase in
electrolyte concentration resulted in a decrease in crystallinity.
This phenomenon was caused by the low amount of metal
cations generated from the cathode with a short reaction time
and low applied voltage, which could be easily overcome at
higher conductivity by increasing the electrolyte concentration,
which favors the formation of crystalline material. However,
with a longer reaction time and higher applied voltage, an
abundance of metal cations were generated from the cathode.
In this case, increasing the electrolyte concentration was not
effective in facilitating ionic transfer processes due to oversa-
turation, which resulted in higher concentrations of both the
zinc cations and the electrolyte.

Beyond the two-parameters interactions effects, the complex-
ity of using the multivariable system for materials fabrication is
illustrated in Fig. 2g. The process parameters influenced
different responses either directly or through intermediate pro-
cesses, such as salting-out, metal ions generation, driving force
effect, and the formation of other undesired materials. With the
aid of ML algorithms, we generated predictive virtual datasets
through the grid-search method, which enabled us to construct
the overlaying contour plots to visualize the multidimensional
interactions. In the next section, we discuss the implementation
of ML to investigate the multidimensional correlation between
parameters and observed responses, in terms of product quality
and process sustainability.

Machine learning for product quality and sustainability
assessments

In this section, we applied ML to enable us to assess the inter-
action of multi-parameters and also predict the outcomes

from virtual datasets. To build the surrogate function, we
initially tested two ML algorithms. The validation of the
support vector machine (SVM) and random forest (RF) algor-
ithms revealed that SVM was more appropriate than RF, as
demonstrated by R2 and MSE values (see section 2.12 in the
ESI†). AI Module 1 (Fig. 1b) used the experimental data from
the DoE as input for the SVM algorithm, followed by the grid-
search method, to generate an extensive virtual dataset with
456,976 data points. The subset of this dataset is presented in
the response surface plots for the product qualities (Fig. 3a–c)
and process sustainability (Fig. 3d–f ). Refer to the ESI† section
3 for the comprehensive 4D plots.

Fig. 3a–c shows that the highest product quality was
achieved at high voltage, longer reaction time, low electrolyte
concentration, and high linker concentration. This condition
also revealed the best process sustainability, which is indicated
by the low value for the E-factor, energy consumption and
carbon footprint (Fig. 3d–f ). Taken together, it can be inter-
preted that high voltage produces more zinc cations as the
source of metal node to form MOFs. The longer reaction time
allowed enough time for nucleation and crystal growth to
occur. The high linker concentration ensured that there was
enough linker to form a framework with the metal cations.
Meanwhile, the low electrolyte concentration increased the
system conductivity while avoiding salting out.

Thus, the broader view provided by multidimensional ana-
lysis is evidently helpful to critically assess the interaction of
the variables. Multiparameter interactions can be more easily
visualized, and their correlation with each response can be
carefully investigated. However, the response surface plots
appear to be limited to correlate multiparameter with only one
response. As shown in Fig. S28 and S29,† a total of 18 panels
of 4D plots with 54 layers were obtained by corelating four
parameters with six responses. This combination generated
486 ways to interpret the plots. Hence, using the correlation of
ten variables is still not very practical to propose a single
optimum condition. In our case, visualizing all the inter-
actions in one figure is not practically possible and not inter-
pretable, as such visualization requires a ten-dimensional
image. Below, we discuss an ML-based strategy to evaluate the
optimum conditions for a hyperdimensional system that can
propose a single solution.

In AI Module 2, we used the experimental data from DoE as
the input for the SVM algorithm, followed by 50 random
virtual data generations as the initial population for the evol-
utionary algorithm (Fig. 1b). This process was then followed by
the implementation of the desirability function for the last
optimization step (see Fig. S1† for the detailed flow-chart). The
evolutionary algorithm was based on the evolution of the
initial data population through cross-over and mutation,
which was inspired by genetic evolution.27 In particular, in
this study, we implemented a nondominated sorting genetic
algorithm (NSGA-II).28

From a practical perspective, we considered two optimiz-
ation objectives for decision-making (Fig. 4a). The first objec-
tive aimed to maximize the product quality only, while the
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Fig. 3 Machine learning generated a 4D response surface for product quality and sustainability. Response surface plots from the SVM fits of the
parameters on (a–c) product quality and (d–f ) product sustainability. The electrolyte concentration was set at 0.01 M, while the applied voltage (V),
reaction time (t ), and linker concentration (Cl) were varied. The sampling points generated from the DoE are placed as the dots in each surface plot.
The virtual dataset consists of 456 976 data points in total. Refer to the ESI† for the comprehensive 4D plots.

Fig. 4 Hyperdimensional optimization strategy. Expanding objectives for optimizations (a). Time cost for the DoE and AI modules as part of the
whole system (b). Inverted generational distance (IGD) test over the number of generations in genetic algorithm for objectives 1 (c) and 2 (d). Global
desirability for the overall input parameters for objectives 1 (e) and 2 (f) using three methodologies: DoE, AI Modules 1 and 2. Response values for AI
Module 2 (g).
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second objective targeted both product quality and process
sustainability. During the implementation of the evolutionary
algorithm, the different objectives were met for the different
generations, which was measured by the inverted generational
distance (IGD) values (Fig. 4c and d). The solution converged
at the larger generation as the number of optimized variables
increased.

The global desirability graphs show the data points for DoE
and AI Modules 1 and 2 for the normalized input parameters
(Fig. 4e and f). The limited number of DoE results were insuffi-
cient to identify the optimal point, while AI Module 1 created
an unnecessarily large dataset. Although the accuracy was
good, the computational cost increased (Fig. 4b). The incorpor-
ation of the evolutionary algorithm in AI Module 2 made it
possible to screen only the best data population. Therefore, AI
Module 2 did not require too many data points, which signifi-
cantly increased the computational speed from 0.01 s−1 to 9.09
s−1 to find the optimum solution. Owing to the small number
of datapoints, the computational speed of DoE was the highest
(28.57 s−1).

The single solutions for the optimum condition for each
objective with different methodologies are compared in
Table S12† and visualized in Fig. S30.† The solutions from
both AI modules were better than the DoE results. Objective 2
accomplished with AI Module 2 required the least compu-
tational power and maintained a high-quality product while
minimizing the environmental impact (Fig. 4g). Overall, the
best performance achieved 86% crystallinity, 100% purity, and
88% yield using 0.07 M electrolyte, 1.86 M linker concen-
trations, and 18.5 V with a 0.9 h reaction time. Under these
conditions, the E-factor and carbon footprint were found to be
11 and 27 kg kg−1, respectively, and the corresponding energy
consumption was 7 kW h kg−1.

Conclusions

In this work, we have successfully demonstrated the power of
artificial intelligence (AI) to reveal the complex hyperdimen-
sional relationships often encountered in materials design and
development. We developed a sustainable electrochemical syn-
thesis of ZIF-8 metal–organic framework and designed a
single-solution AI module that created virtual datasets, which
mapped the design space of both the product quality and the
process sustainability. The incorporation of an evolutionary
algorithm (NSGA-II) enabled a rapid and accurate methodology
to obtain ZIF-8 with 100% purity, 88% yield, and 86% crystalli-
nity. The E factor, energy consumption and carbon footprint
were minimized to 11 kg kg−1, 7 kW h kg−1 and 27 kg kg−1,
respectively. This example for the electrochemical synthesis of
ZIF-8 reveals the potential for other possible applications to
apply AI approaches in much broader fields of materials fabri-
cations and engineering, particularly to study product quality
and process sustainability. Working towards the United
Nations’ Sustainable Development Goals, the proposed meth-
odology enables the precise molecular engineering of

materials, while partially shifting from resource-intensive wet
labs to more sustainable virtual labs.

Experimental
Synthesis of ZIF-8

To achieve better control over the electrolyte conductivity, de-
ionized water (18.2 MΩ at 23 °C, Milli-Q) was used. The electro-
lyte conductivity was governed by the addition of KCl salt (ACS
reagent 99%, Sigma Aldrich). The concentration of electrolyte
(KCl) and 2-methylimidazole (99%, Sigma Aldrich), as well as
the reaction time and applied voltage were adjusted according
to the face-centered central composite design model
(Table S4†). The independent parameters with their three-factor
levels were Ce = 0.01 M, 0.155 M, 0.3 M; V = 2 V, 11 V, 20 V; t =
0.2 h, 0.6 h, 1 h; Cl = 0.5 M, 0.125 M, 2 M. Electrochemical syn-
thesis was performed at room temperature using a zinc elec-
trode 0.7 in an IKA Electrasyn 2.0 instrument. Deionized water
(15 mL) was used as the solvent. The product precipitated as a
white powder and was further separated by using centrifuge at
5000 rpm for 10 minutes, followed by washing with deionized
water for three times. The final precipitate was filtered and
placed in a preheated oven at 120 °C for 24 h.

Powder X-Ray diffraction (XRD)

The powder XRD data were collected using a Cu Kα Bruker D8
Advance diffractometer in the angular range containing the
peaks of interest, 2θ 5–40° with a 0.02° increment and scan-
ning speed of 10° min−1. Prior to data collection, the samples
were placed on the zero-background XRD sample holder and
flattened using a glass plate. The data were analyzed, and the
profile fitting was carried out using Origin. Origin was also
used to determine the integral breadth (the ratio of the area
under the peak to the peak height) of the most intense diffrac-
tion peak at 2θ approx. 7.5°.

Scanning electron microscopy (SEM)

A Magellan scanning electron microscope was used to record
electron images of selected samples, using a working distance
of 4.3 mm, 5 keV voltage, and 50 pA current at 100K × magnifi-
cation under a TLD detector. The samples were placed on the
aluminum sample holder prior to measurement using conduc-
tive carbon tape. The prepared samples were then coated with
4 nm thick iridium using a sputter coating machine Quorum
Q150T.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was carried out using a
TGA-Q500 (TA Instruments) with a temperature ramp rate of
10 °C min−1 from 25 °C to 700 °C under a nitrogen
atmosphere.

Surface area measurement (BET)

Nitrogen sorption measurement was performed with an ASAP
2020 instrument with nitrogen gas at 77 K. The sample was
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evacuated in a dynamic vacuum (p = 10−3 mbar) at 120 °C for
24 h prior to the measurement. Microactive software was used
to evaluate the BET surface area.

Product quality assessment

The percentage of relative crystallinity was calculated based on
established methods,29–31 namely the comparison of the inte-
gral-breadth of the most intense XRD peak (2θ ≈ 7.5°). The
purity indicates the ratio of the desired product to the undesired
side-product. The percentage purity was determined through
XRD measurement by dividing the area under the peaks corres-
ponding to the XRD pattern of ZIF-8 with the whole integral of
the XRD pattern. The yield was calculated by dividing the
obtained mass of the product with the calculated theoretical
product mass (assuming 100% yield) and considering zinc as
the limiting reactant. The XRD patterns of the synthesized pro-
ducts (accompanied by corresponding SEM images) and
example of the relative crystallinity and purity calculations are
provided in the ESI† (section 2.5–2.6, and Fig. S31–S49†).

Process sustainability assessment

E-factor is defined as the ratio of the mass of waste to the
mass of product.32 Energy consumption during electro-
chemical synthesis was derived from the reaction time, the
applied voltage, and the number of charges involved. The
carbon footprint, which is considered a standardized indicator
of greenhouse gas emissions,33,34 was calculated to estimate
the equivalent CO2 generated for the production of ZIF-8.
Further detail on the calculations of the sustainability assess-
ments is provided in the ESI† (section 2.8–2.10).

Machine learning

A support vector machine (SVM) was employed to predict the
characteristics of the reaction products. The input data were
obtained from the experimental results obtained through DoE
(section 2.1 in the ESI†). The codes for the ML algorithms are
provided in section 2.14 of the ESI.† All codes used in this
paper were implemented by Python, and the code is available
online to download free of charge. The Pandas5 package was
used to import all the original data and export all the gener-
ated data. The SVM model was created and fitted by the Scikit-
learn6 package. All visualization work was accomplished using
the Matplotlib7 package. The radial basis function kernel was
used on the SVM model due to its fitting flexibility for high-
dimension data.

The parameter of the SVM model, such as ‘gamma’, is
crucial for its performance. A gamma value that is too small
leads to low accuracy, while a high value of gamma could
cause an overfitting problem. To choose the best parameters
for the SVM model such as ‘gamma’ and ‘C’, we applied cross-
validation method. After cross-validation, the gamma was set
to 1, and C was set to 10. The min-max normalization method
was used to scale all the input and output variables to a
certain range (0–1). The step value of 0.04 was used to generate
a 4-dimension grid (for 4-input variables in this experiment).
For each dimension there are 1/0.04 + 1 = 26 steps; thus, the

total number of generated points was 26 × 26 × 26 × 26 =
456 976. The model was validated by comparing the fitting of
two ML algorithms; the SVM and the RF. The model validation
is provided in section 2.12 in the ESI.†

After designing and training the ML model, evolutionary
algorithm was used to perform optimization based on that sur-
rogate model. Non-dominated Sorting Genetic Algorithm
(NSGA-II) was used to achieve the best solutions. Our genetic
algorithm started from a randomly initialized population with
a sample size of 50, which was the potential solution set of the
problem. After the initialization of the first-generation popu-
lation, the generation evolved by crossover and mutation to
produce increasingly better approximate solutions. In each
generation, the best individuals were selected according to the
fitness of the objective function. To show the progress of evol-
ution, we used IGD (Inverted Generational Distance) as the
evaluation metric.
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