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Direct access to benzofuro[2,3-b]quinoline and
6H-chromeno[3,4-b]quinoline cores through
gold-catalyzed annulation of anthranils with
arenoxyethynes and aryl propargyl ethers†

Manoj D. Patil and Rai-Shung Liu *

This work reports a facile annulation of anthranils with aryloxy-

ethynes or aryl propargyl ethers to construct useful benzofuro-

[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline frameworks,

respectively; these heterocycles are not readily available from

literature methods despite their biological significance. This high

atom- and step-economy strategy is highlighted by a broad

substrate scope. The reaction mechanism is proposed to proceed

through sequential cyclizations among the oxyaryl group, gold

carbene and benzaldehyde of the α-imino gold carbene

intermediates.

Gold-catalyzed annulations of alkynes with isoxazoles or
anthranils have received intensive attention because of their
facile access to five- and six-membered azacycles in one-pot
operations.1–4 Hashmi and coworkers recently reported the
gold-catalyzed [3 + 2]-annulations of anthranils with ynamides
to form α-iminogold carbenes I, further yielding 2-amino-7-for-
mylindole products II 3a (eqn (1)). Recently, we elaborated the
sequential cyclizations of these α-imino gold carbenes I via an
initial attack of gold carbenes by an N-aryl group, followed by a
Friedel–Crafts cyclization with the benzaldehyde, yielding 6H-
indolo[2,3-b]quinoline derivatives efficiently (eqn (2)). To high-
light the utility of such three-component annulations, this
work reports the gold-catalyzed annulations of anthranils with
aryloxyethynes and aryl propargyl ethers to construct benzo-
furo[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline cores,
respectively (eqn (3)).

Fig. 1 depicts selected furoquinoline alkaloids5 that occur
mainly in the Rutaceae family. For dictamnine I, evolitrine II,
γ-fagarine III, skimmianine IV, kokusaginine V, masculine VI
and flindersiamine VII, these natural alkaloids exhibit
pharmacological activities such as antiviral,6a antiplatelet

aggregation,6b cytotoxic7 and anti-acetylcholinesterase8 activity.
The alkaloids VIII and IX show antifungal9 and anti-TB10

activity with low toxicity. Despite their biological importance,
very few synthetic procedures were reported for these furoqui-
noline alkaloids. The reported synthesis of furoquinolines
involves multiple (3 or 4) steps, resulting in small yields of pro-
ducts; furthermore, the starting materials are uncommon and
not readily available.11

ð1Þ

ð2Þ

ð3Þ

Table 1 summarizes the catalytic annulations of phenoxy-
ethyne 1a with anthranil 2a over commonly used gold cata-
lysts. We tested this reaction mixture in hot DCE (80 °C, 16 h)

Fig. 1 Selective bioactive natural alkaloids.
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using 10 mol% P(t-Bu)2(o-biphenyl)/AgNTf2, affording the
annulation product 3a and the uncyclized benzofuran product
3a-H in 55% and 25% yields, respectively (entry 1). We
attempted to improve the yields of the desired 3a with LAuCl/
AgNTf2 (L = PPh3, P(OPh)3, IPr and t-BuXPhos, entries 2–5),
giving species 3a in 50–43% yields, together with benzofuran
3a-H in large amounts (29–48% yields). We thus switched to
gold catalysts with different silver salts as in P(t-Bu)2-(o-biphe-
nyl)AuCl/AgX (X = SbF6 and OTf); only AgSbF6 was able to yield
furoquinoline 3a in 68% yield (entries 6–7). AgSbF6 alone gave
a complicated mixture of products in hot DCE (80 °C, 20 h,
entry 8). For P(t-Bu)2(o-biphenyl)AuCl/AgSbF6, its reactions in
other solvents gave the following results (entries 9–11): toluene
(3a, 60%), THF (3a, 61%), DCM (3a-H 25%). Compound 3a was
characterized using X-ray diffraction to confirm its benzofuro
[2,3-b]quinoline framework.12

With these optimized conditions, we examined the general-
ity of these new annulations with various aryloxyethynes 1 and
benzisoxazole 2a; the results are summarized in Table 2. For
4-substituted phenoxyalkynes 1b–1e bearing electron-donating
and -withdrawing groups X = Me, OMe, Cl and F, their result-
ing products 3b–3e were obtained in 42%–72% yields (entries
1–4). Electron-rich aryl derivatives (X = Me, OMe) are expected
to be more efficient because of their superior nucleophilicity
toward gold carbenes. 3,5-Dimethylphenoxyalkyne 1f yielded
the desired benzofuro[2,3-b]quinoline 3f in 79% yield (entry 5).
The reaction was operable also with ortho-substituted phenoxy
species 1g and 1h, delivering compound 3g and 3h with 61%
and 48% yield, respectively (entries 6–7). The 3,4-disubstituted
substrate 1i produced two inseparable regioisomers 3i′ and 3i″,
in a 3 : 1 ratio; the combined yield was 68% (entry 8). Notably,
the major regioisomer 3i′ arose from the electrophilic addition

at the more hindered C–H aryl carbon. The reaction was exten-
sible to 1-naphthoxyethyne 1j to deliver compound 3j in 67%
yield (entry 9).

We assessed also the scope of these annulations with
various anthranils (2a–2i), as shown in Table 3. For species 2a–
2e bearing various 5-phenyl substituents (X = Me, OMe, Cl, Br
and OCO2Me), their annulations with phenoxyethyne 1a
afforded new 6H-chromeno[3,4-b]quinoline derivatives 4a–4e
with reasonable yields (59–76%, entries 1–5). In the case of the
anthranils 2f, 2g and 2h bearing a C(6)-substituent, X = Me, Cl
and Br, their corresponding products 4f, 4g and 4h were
obtained in reasonable yields (56–59%, entries 6–8). We exam-
ined the reaction on 3-substituted anthranil 2i (R′ = Me), that
afforded the desired product 4i in 67% yield (entry 9).

Table 1 Catalytic annulations with various gold catalysts

Entry Catalyst (10 mol%) Solvent
Time
(h)

Temp
(°C)

Yieldsa

3a 3a-H

1 LAuCl/AgNTf2
b DCE 16 80 55 25

2 PPh3AuCl/AgNTf2 DCE 09 80 43 29
3 (PhO3)PAuCl/AgNTf2 DCE 12 80 33 40
4 IPrAuCl/AgNTf2

c DCE 16 80 32 48
5 t-BuXPhosAuCl/AgNTf2 DCE 10 80 50 30
6 LAuCl/AgSbF6 DCE 08 80 68 —
7 LAuCl/AgOTf DCE 12 80 54 18
8 AgSbF6 DCE 20 80 — 10
9 LAuCl/AgSbF6 Toluene 05 110 60 18
10 LAuCl/AgSbF6 THF 15 60 61 11
11 LAuCl/AgSbF6 DCM 20 40 — 25
12 LAuCl/AgSbF6

d DCE 06 80 74 —

1a (0.2 M, 1.0 equiv.). a Product yields are obtained after purification
from a silica column. b L = P(t-Bu)2(o-biphenyl).

c IPr = 1,3-bis(diiso-
propylphenyl)imidazol-2-ylidene. d Zn(OTf)2 (20 mol%) was added with
a gold catalyst in entry 12.

Table 2 Catalytic annulations with various phenoxyethynes

1 (0.2 M, 1.0 equiv.). a Product yields are obtained after purification
from a silica column. b L = P(t-Bu)2(o-biphenyl).

Table 3 Catalytic annulations with various benzoisoxazoles

1a (0.2 M, 1.0 equiv.). a Product yields are obtained after purification
from a silica column. b L = P(t-Bu)2(o-biphenyl).
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We sought new heterocycles using phenyl propargyl ether
5a, anthranil 2a (1.5 equiv.) and P(t-Bu)2(o-biphenyl)AuCl/
AgSbF6 in hot DCE (eqn (4)). Under standard operation,
this mixture gave 6H-chromeno[3,4-b]quinoline 6a and an un-
cyclized oxacycle 6a-H in 1 : 1 molar ratio; the combined yields
were 65%. When this system was added with Zn(OTf)2
(20 mol%) after the gold reactions, the desired compound 6a
was produced exclusively with 67% yield; Zn(II) likely coordi-
nates with the aldehyde to increase its electrophilicity to
accelerate the final enamine/carbonyl cyclization. If the two
reactants were treated with P(t-Bu)2(o-biphenyl)AuCl/AgSbF6
(10 mol%) and Zn(OTf)2 (20 mol%) initially in hot DCE, a by-
product 5a′ was obtained in 45% yield together with com-
pounds 6a and 6a-H (eqn (5)). Zn(OTf)2 showed no catalytic
activity toward this reactant mixture (eqn (6)). In eqn (4), we
replaced Zn(OTf)2 with Sc(OTf)3, GaCl3 and Cu(OTf)2, each at
20 mol% loading, in this two-step reaction, but compound
6a-H still remained uncyclized in 30–35% yields.

We assessed the scope of this 6H-chromeno[3,4-b]quinoline
synthesis with various propargyl ethers 5 and anthranils 2 with
a relay Au(I)/Zn(II) catalysis;13 the results appear in Table 4. For
ethers 5b–5e bearing para-phenoxy groups (X = Me, OMe, Cl
and Br), their annulations delivered the desired heterocycles
6b–6e in 56–66% yields (entries 1–5). The regioselectivity with
meta-substituted phenoxy compound 5f was tested to give two
isolable regioisomers 6f′ and 6f″ in 3 : 1 ratio; the major
isomer 6f′ occurred from an addition at the less-hindered
carbon of the phenyl group. Notably, this annulation works
well on C(3)-alkyl-substituted propargyl ethers (R2 = Me and
t-Bu), yielding the desired products 6g and 6h in 51 and 59%
yields, respectively. Such new heterocycles were compatible
with C(5)-substituted anthranils (R3 = Me and Br, entries
9–10), forming the desired heterocycles 6i and 6j in 72–81%
yields. For C(6)-substituted anthranils (R4 = OMe and Cl), their
resulting compounds 6k and 6l were produced satisfactorily
with 76–84% yields (entries 11–12). We tested the reactions on
C(3)-phenyl anthranil (R5 = Ph), yielding the desired com-
pound 6m in 57% yield (entry 13).

ð7Þ

ð8Þ

We also prepared internal alkyne substrates 7a–c to
examine their catalytic activity. As shown in eqn (7), the gold-
catalyzed annulation of an alkynoate derivative 7a yielded com-
pound 8a in 47% yield (eqn (7)). For phenyl- and n-butyl-sub-
stituted alkynes 7b–c, their reactions led to a complicated
mixture of products (eqn (8)). For the six-membered oxacycle
6k, its methylene group was readily oxidized with PCC to yield
the lactone product 9k, representing a distinct class of hetero-
cycles (eqn (9)).

ð9Þ

Scheme 1 shows a proposed mechanism of this gold-cata-
lyzed annulation. An initial N-attack of anthranil 2a at the
π-alkyne complexes 1a generated the alkenylgold species A,
further producing the α-imino gold carbene B via cleavage of
the N–O bond. This path is typical for the addition of isoxa-
zoles or anthranils at Au-π-alkynes. A further arylation at the
gold carbenes is expected to yield an oxacyclic intermediate C
that was isolated in our catalytic system. A further carbonyl-
enamine reaction generates an alcohol D that undergoes aro-
matization to give the observed products.

Table 4 Annulations of aryl propargyl ethers with anthranils

5 (0.19 M), 2 (1.5 equiv.). a Product yields are obtained after purifi-
cation from a silica column. b L = P(t-Bu)2(o-biphenyl).

Communication Organic & Biomolecular Chemistry

4454 | Org. Biomol. Chem., 2019, 17, 4452–4455 This journal is © The Royal Society of Chemistry 2019

Pu
bl

is
he

d 
on

 0
9 

ab
ri

l 2
01

9.
 D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/0

5/
20

25
 8

:2
4:

42
 a

.m
.. 

View Article Online

https://doi.org/10.1039/c9ob00468h


Conclusions

This work reports the gold-catalyzed annulations of anthranils
with aryloxyethynes or aryl propargyl ethers to yield useful ben-
zofuro[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline
derivatives, respectively; the former has exhibited potent bio-
logical activity but the reported synthetic procedures are long
and inefficient. Our new synthesis employs readily available
aryloxyethynes or aryl propargyl ethers and anthranils in a one
pot operation. The mechanism of the reaction involves sequen-
tial cyclizations of an aryl group, a gold carbene and a benz-
aldehyde. The utility of this new synthetic strategy is high-
lighted by a broad substrate scope.
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