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This work reports a facile annulation of anthranils with aryloxy-
ethynes or aryl propargyl ethers to construct useful benzofuro-
[2,3-blquinoline and 6H-chromeno[3,4-b]quinoline frameworks,
respectively; these heterocycles are not readily available from
literature methods despite their biological significance. This high
atom- and step-economy strategy is highlighted by a broad
substrate scope. The reaction mechanism is proposed to proceed
through sequential cyclizations among the oxyaryl group, gold
carbene and benzaldehyde of the «-imino gold carbene
intermediates.

Gold-catalyzed annulations of alkynes with isoxazoles or
anthranils have received intensive attention because of their
facile access to five- and six-membered azacycles in one-pot
operations.™ Hashmi and coworkers recently reported the
gold-catalyzed [3 + 2]-annulations of anthranils with ynamides
to form a-iminogold carbenes I, further yielding 2-amino-7-for-
mylindole products I1*“ (eqn (1)). Recently, we elaborated the
sequential cyclizations of these a-imino gold carbenes I via an
initial attack of gold carbenes by an N-aryl group, followed by a
Friedel-Crafts cyclization with the benzaldehyde, yielding 6H-
indolo[2,3-b]quinoline derivatives efficiently (eqn (2)). To high-
light the utility of such three-component annulations, this
work reports the gold-catalyzed annulations of anthranils with
aryloxyethynes and aryl propargyl ethers to construct benzo-
furo[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline cores,
respectively (eqn (3)).

Fig. 1 depicts selected furoquinoline alkaloids® that occur
mainly in the Rutaceae family. For dictamnine I, evolitrine II,
y-fagarine III, skimmianine IV, kokusaginine V, masculine VI
and flindersiamine VII, these natural alkaloids exhibit
pharmacological activities such as antiviral,®® antiplatelet
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gold-catalyzed annulation of anthranils with
arenoxyethynes and aryl propargyl ethers+}

aggregation,®” cytotoxic” and anti-acetylcholinesterase® activity.
The alkaloids VII and IX show antifungal® and anti-TB'°
activity with low toxicity. Despite their biological importance,
very few synthetic procedures were reported for these furoqui-
noline alkaloids. The reported synthesis of furoquinolines
involves multiple (3 or 4) steps, resulting in small yields of pro-
ducts; furthermore, the starting materials are uncommon and
not readily available.”
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Table 1 summarizes the catalytic annulations of phenoxy-
ethyne 1a with anthranil 2a over commonly used gold cata-
lysts. We tested this reaction mixture in hot DCE (80 °C, 16 h)
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Fig. 1 Selective bioactive natural alkaloids.
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Table 1 Catalytic annulations with various gold catalysts
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Table 2 Catalytic annulations with various phenoxyethynes

A

.
o/ ,O
catalyst /)
& on e oY oo
=N solvent, time, temp o o

MS4A
3a 3a-H

Time Temp

Entry Catalyst (10 mol%) Solvent  (h) (°C) 3a 3a-H

1 LAuCl/AgNszb DCE 16 80 55 25
2 PPh;AuCl/AgNTf, DCE 09 80 43 29
3 (PhO;)PAuUCI/AgNTf, DCE 12 80 33 40
4 IPrAuCl/AgNTf," DCE 16 80 32 48
5 t-BuXPhosAuCl/AgNTf, DCE 10 80 50 30
6 LAuCl/AgSbF DCE 08 80 68 —
7 LAuCl/AgOTf DCE 12 80 54 18
8 AgSbF, DCE 20 80 — 10
9 LAuCl/AgSbFg Toluene 05 110 60 18
10 LAuCl/AgSbF THF 15 60 61 11
11 LAuCl/AngF5 DCM 20 40 — 25
12 LAuCI/AngFG DCE 06 80 74 —

1a (0.2 M, 1.0 equiv.). Product yields are obtalned after purification
from a silica column. ?L = P(¢- Bu) (o-biphenyl). “IPr = 1,3-bis(diiso-
propylphenyl)imidazol-2-ylidene. ¢ Zn(OTf), (20 mol%) was added with
a gold catalyst in entry 12.

using 10 mol% P(t-Bu),(o-biphenyl)/AgNTf,, affording the
annulation product 3a and the uncyclized benzofuran product
3a-H in 55% and 25% yields, respectively (entry 1). We
attempted to improve the yields of the desired 3a with LAuCl/
AgNTf, (L = PPh;, P(OPh);, IPr and ¢-BuXPhos, entries 2-5),
giving species 3a in 50-43% yields, together with benzofuran
3a-H in large amounts (29-48% yields). We thus switched to
gold catalysts with different silver salts as in P(t-Bu),-(o-biphe-
nyl)AuCl/AgX (X = SbFs and OTf); only AgSbF, was able to yield
furoquinoline 3a in 68% yield (entries 6-7). AgSbF, alone gave
a complicated mixture of products in hot DCE (80 °C, 20 h,
entry 8). For P(¢-Bu),(o-biphenyl)AuCl/AgSbF, its reactions in
other solvents gave the following results (entries 9-11): toluene
(3a, 60%), THF (3a, 61%), DCM (3a-H 25%). Compound 3a was
characterized using X-ray diffraction to confirm its benzofuro
[2,3-b]quinoline framework."

With these optimized conditions, we examined the general-
ity of these new annulations with various aryloxyethynes 1 and
benzisoxazole 2a; the results are summarized in Table 2. For
4-substituted phenoxyalkynes 1b-1e bearing electron-donating
and -withdrawing groups X = Me, OMe, Cl and F, their result-
ing products 3b-3e were obtained in 42%-72% yields (entries

-4). Electron-rich aryl derivatives (X = Me, OMe) are expected
to be more efficient because of their superior nucleophilicity
toward gold carbenes. 3,5-Dimethylphenoxyalkyne 1f yielded
the desired benzofuro[2,3-b]quinoline 3f in 79% yield (entry 5).
The reaction was operable also with ortho-substituted phenoxy
species 1g and 1h, delivering compound 3g and 3h with 61%
and 48% yield, respectively (entries 6-7). The 3,4-disubstituted
substrate 1i produced two inseparable regioisomers 3i’ and 3i”,
in a 3:1 ratio; the combined yield was 68% (entry 8). Notably,
the major regioisomer 3i’ arose from the electrophilic addition

This journal is © The Royal Society of Chemistry 2019

10 mol% —
LAuCIb/AngFe N\
(L
DCE 80°C, time o
MS 4 A R

(6) 39 (X = Me, 8 h, 61%)
(7) 3h (X = CI, 8 h, 48%)

(8) 3i (3 h, 68%, 3i'3ii' = 3:1) (9) 3j (5 h, 66%)

1 (0.2 M, 1.0 equlv) “Product yields are obtained after purification
from a silica column. ? L = P(t-Bu),(o-biphenyl).

at the more hindered C-H aryl carbon. The reaction was exten-
sible to 1-naphthoxyethyne 1j to deliver compound 3j in 67%
yield (entry 9).

We assessed also the scope of these annulations with
various anthranils (2a-2i), as shown in Table 3. For species 2a—-
2e bearing various 5-phenyl substituents (X = Me, OMe, Cl, Br
and OCO,Me), their annulations with phenoxyethyne 1a
afforded new 6H-chromeno[3,4-b|quinoline derivatives 4a-4e
with reasonable yields (59-76%, entries 1-5). In the case of the
anthranils 2f, 2g and 2h bearing a C(6)-substituent, X = Me, Cl
and Br, their corresponding products 4f, 4g and 4h were
obtained in reasonable yields (56-59%, entries 6-8). We exam-
ined the reaction on 3-substituted anthranil 2i (R’ = Me), that
afforded the desired product 4i in 67% yield (entry 9).

Table 3 Catalytic annulations with various benzoisoxazoles

Z
) ., R 10 mol%
5 = LAUCIP/AgSbFg
+ ~1 ,O —ab
R N DCE, 80°C, time
MS 4 A
1a 2 42

o o ooy
o] o]
o]

(1) 4a (X = Me, 12 h, 59%)

(2) 4b (X = OMe, 10 h, 71%)

(3) 4¢ (X = CI, 9 h, 61%)

(4) 4d (X = Br, 9 h, 63%)

(5) 4e (X = OCO,Me, 10 h, 76%)

(6) 4F (X =Me, 12 h, 56%)  (9) 4i (12 h, 67%)
(7) 4g (X = Cl, 7 h, 59%)
(8) 4h (X = Br, 14 h, 57%)

1a (0.2 M, 1.0 equw) “Product yields are obtained after purification
from a sﬂlca column. ? L = P(¢-Bu),(o-biphenyl).
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We sought new heterocycles using phenyl propargyl ether
5a, anthranil 2a (1.5 equiv.) and P(¢-Bu),(o-biphenyl)AuCl/
AgSbFe in hot DCE (eqn (4)). Under standard operation,
this mixture gave 6H-chromeno[3,4-b]quinoline 6a and an un-
cyclized oxacycle 6a-H in 1:1 molar ratio; the combined yields
were 65%. When this system was added with Zn(OTf),
(20 mol%) after the gold reactions, the desired compound 6a
was produced exclusively with 67% yield; Zn(u) likely coordi-
nates with the aldehyde to increase its electrophilicity to
accelerate the final enamine/carbonyl cyclization. If the two
reactants were treated with P(¢-Bu),(o-biphenyl)AuCl/AgSbF,
(10 mol%) and Zn(OTf), (20 mol%) initially in hot DCE, a by-
product 5a’ was obtained in 45% yield together with com-
pounds 6a and 6a-H (eqn (5)). Zn(OTf), showed no catalytic
activity toward this reactant mixture (eqn (6)). In eqn (4), we
replaced Zn(OTf), with Sc(OTf);, GaCl; and Cu(OTf),, each at
20 mol% loading, in this two-step reaction, but compound
6a-H still remained uncyclized in 30-35% yields.

J‘ p
(1) 10 mol%
Ga H

LAuC[b/Agsts
’ DCE 80 C 38h
2) M (n mol"/)
(. 5equ|v) : M= Z"(OTf)Z
n =0, 6a/6a-H = 1:1, 65%
10 mol% n=20,6a(3h, 67%)

20 mol% Zn(OTf), |_LAUCP/AgSbFs
DCE, 80°C, 40 h

6a (22%)
20mol% Zn(OT, | gaH (30%) ®)
MS 4A DCE, 80°C, 48 h
5a (45%)

5a (60%)
2a (45%) ®)

We assessed the scope of this 6H-chromeno[3,4-b]quinoline
synthesis with various propargyl ethers 5 and anthranils 2 with
a relay Au(1)/Zn(u) catalysis;'® the results appear in Table 4. For
ethers 5b-5e bearing para-phenoxy groups (X = Me, OMe, Cl
and Br), their annulations delivered the desired heterocycles
6b-6e in 56-66% yields (entries 1-5). The regioselectivity with
meta-substituted phenoxy compound 5f was tested to give two
isolable regioisomers 6f and 6f” in 3:1 ratio; the major
isomer 6f occurred from an addition at the less-hindered
carbon of the phenyl group. Notably, this annulation works
well on C(3)-alkyl-substituted propargyl ethers (R> = Me and
t-Bu), yielding the desired products 6g and 6h in 51 and 59%
yields, respectively. Such new heterocycles were compatible
with C(5)-substituted anthranils (R® = Me and Br, entries
9-10), forming the desired heterocycles 6i and 6j in 72-81%
yields. For C(6)-substituted anthranils (R* = OMe and Cl), their
resulting compounds 6k and 6] were produced satisfactorily
with 76-84% yields (entries 11-12). We tested the reactions on
C(3)-phenyl anthranil (R® = Ph), yielding the desired com-
pound 6m in 57% yield (entry 13).

o
o /
10 mol% 0
LAuCI’AngFs
NnH cho  (7)
SN 0 DCE 80°C, 25h o]
MS 4 A
8a (47 %)

. 2 equw)
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Table 4 Annulations of aryl propargyl ethers with anthranils

| | (1) 10 mol % R*
R® LAUCI°/AgSbF t 5
o R2 R3 . R =
= (2) 20 mol% Zn(OTf), 3 h i
0O ——————>
N N4 DCE, 80°C RSN
Y MS 4 A L
o R?
R' (1.5 equlv)

(1) 6a (X =H,35 h, 64%) | (6) 6F (32h, 46%) 6F 18% (7)6g (X = Me, 33 h, 59%)
(2) 8b (X =Me, 37 h,86%) ~~"7TTTTTTTTTTTIToTimsemememmenenene (8)6h (X = Bu, 37 h51%)
(3) 6c (X = OMe, 35 h, 58%)

(4) 6d (X = Cl, 43 h, 56 %)

(5) 6e (X = Br, 27 h, 63%)

G o %

(9) 6i (X =Me, 29 h, 81%) (13) 6m (37 h, 57%)

(10)6j (X = Br, 31 h, 72%)

(11) 6k (X = OMe, 35 h, 84%)
(12) 61 (X = CI, 35 h, 76%)

5 (0.19 M), 2 (1.5 equiv.). Product yields are obtained after purifi-
cation from a silica column. ? L = P(t-Bu),(o-biphenyl).

R

10 mol%
LAUCI'AgSbFg

—_—
@ () e
MS 4 A

R = Ph (7b)
n-butyl (7¢)

complicated
mixtures ( 8)

We also prepared internal alkyne substrates 7a-c¢ to
examine their catalytic activity. As shown in eqn (7), the gold-
catalyzed annulation of an alkynoate derivative 7a yielded com-
pound 8a in 47% yield (eqn (7)). For phenyl- and n-butyl-sub-
stituted alkynes 7b-c, their reactions led to a complicated
mixture of products (eqn (8)). For the six-membered oxacycle
6k, its methylene group was readily oxidized with PCC to yield
the lactone product 9k, representing a distinct class of hetero-

cycles (eqn (9)).
OMe OMe
i )

SN PCC N (9)

—_— >

O DCM, 40°C, 34 h O

(o) 0~ "0
6k 9k (90%)

Scheme 1 shows a proposed mechanism of this gold-cata-
lyzed annulation. An initial N-attack of anthranil 2a at the
n-alkyne complexes 1a generated the alkenylgold species A,
further producing the a-imino gold carbene B via cleavage of
the N-O bond. This path is typical for the addition of isoxa-
zoles or anthranils at Au-m-alkynes. A further arylation at the
gold carbenes is expected to yield an oxacyclic intermediate C
that was isolated in our catalytic system. A further carbonyl-
enamine reaction generates an alcohol D that undergoes aro-
matization to give the observed products.

This journal is © The Royal Society of Chemistry 2019
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Scheme 1 A plausible mechanism.

Conclusions

This work reports the gold-catalyzed annulations of anthranils
with aryloxyethynes or aryl propargyl ethers to yield useful ben-
zofuro[2,3-b]quinoline  and  6H-chromeno|3,4-b]quinoline
derivatives, respectively; the former has exhibited potent bio-
logical activity but the reported synthetic procedures are long
and inefficient. Our new synthesis employs readily available
aryloxyethynes or aryl propargyl ethers and anthranils in a one
pot operation. The mechanism of the reaction involves sequen-
tial cyclizations of an aryl group, a gold carbene and a benz-
aldehyde. The utility of this new synthetic strategy is high-
lighted by a broad substrate scope.
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