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Abstract.

One of the challenges facing biology is to understand metabolic events at a single cellular level. 

While approaches to examine dynamics of protein distribution or report on spatiotemporal location 

of signalling molecules are well-established, tools for the dissection of metabolism in single living 

cells are less common. Advances in Raman spectroscopy, such as stimulated Raman scattering 

(SRS), are beginning to offer new insights into metabolic events in a range of experimental systems, 

including model organisms and clinical samples, and across a range of disciplines. Despite the 

power of Raman imaging, it remains a relatively under-used technique to approach biological 

problems, in part because of the specialised nature of the analysis. To raise the profile of this method, 

here we consider some key studies which illustrate how Raman spectroscopy has revealed new 

insights into fatty acid and lipid metabolism across a range of cellular systems. The powerful and 

non-invasive nature of this approach offers a new suite of tools for biomolecular scientists to address 

how metabolic events within cells informs on or underpins biological function. We illustrate potential 

biological applications, discuss some recent advances, and offer a direction of travel for metabolic 

research in this area.
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Abbreviations:

ALS Alternative least squares

A-PoD Adaptive moment estimation optimization-based pointillism deconvolution

BMAds Bone marrow-derived adipocytes

CARS Coherent anti-Stokes Raman scattering

cisR Cisplatin resistant (cells)

CRS Coherent Raman scattering 

hSRS Hyperspectral-SRS

h2SRS High content, hyperspectral SRS

KCMA K-means cluster analysis

LASSO Least absolute shrinkage and selection operator 

LD Lipid droplet

MS Mass Spectrometry

ODYA 17-octadecynoic acid 

PCA Principal component analysis

SILAC Stable isotope labelling by amino acids in cell culture

SRG Stimulated Raman gain

SRL Stimulated Raman loss

SRS Stimulated Raman scattering
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1. Introduction.

No two cells are the same. Driven initially by the application of single cell sequencing technologies, 

cellular heterogeneity is now a widely accepted feature of almost all cell types [1-5]. The study of 

multicellular tissue dynamics has reached a new frontier as it is recognised that individual cells 

possess unique characteristics indicative of distinct functional roles, and that this cellular variation 

has profound implications for understanding cell/tissue function and for disease development [2, 5-

7]. Using stains, antibodies, or specific labels for (a) protein(s) of interest, fluorescence microscopy 

has provided a step-change in knowledge and understanding of biological complexity even within a 

tissue composed of supposedly similar cells. By contrast, our understanding of the metabolic 

processes localised to specific cells within a tissue remains ill-defined. This is largely because of 

difficulties in identifying specific chemical moieties in living cells by means other than using specific 

engineered reporter molecules (e.g. such as those described for NAD+ and ATP [8, 9]), and the 

limitation of population averaging effects in heterogeneous cell populations. Hence, key details of 

metabolic profiles within cells remain obscure. The ability to use Raman imaging, with or without 

non-invasive probes generating signals in the Raman spectrum, offers a way forward to resolve 

these issues. This has been a particularly fruitful avenue of research for those interested in fatty acid 

and lipid metabolism. Here we will consider how Raman has advanced this area and speculate on 

future developments (Figure 1). 

Lipid and fatty acid metabolism. The storage, release and breakdown of fatty acids play key roles 

across many facets of physiology. Adipocytes represent the best understood and most extensively 

studied cell type involved in such regulation, accumulating, esterifying, and storing excess fatty acids 

and lipids as triacylglycerides in lipid droplets [10, 11]. Distinctions between adipose tissue subtypes 

(e.g. white and brown adipocytes) are well established, but recent work has revealed considerable 

heterogeneity even within a single adipose depot [2, 12-14]. These differences appear to be 

developmentally programmed and are associated with differential susceptibility to diseases, including 

obesity and diabetes (for recent reviews, see [11, 15, 16]). In addition to these depot-specific variations, 

adipocytes can respond to signals to prioritize lipid synthesis (lipogenic) or lipid breakdown (lipolytic) 

depending on the prevailing hormonal milieu [10, 11]. 

In addition to adipose tissue, other cell types can both utilise fatty acids for energy and exhibit the 

accumulation of excess lipid in the form of cytosolic lipid droplets [17-21]. The liver plays a major role in 

lipid metabolism and is known to carefully integrate the distribution of fatty acids to other tissues and 

balance fatty acid utilisation. Non-alcoholic fatty liver disease arises because of lipid accumulation in 

hepatocytes exceeding fatty acid oxidation or export, resulting in the formation of lipid droplets within 

hepatocytes and impaired metabolic control [20, 21]. Like the liver, skeletal muscle uses fatty acids for 

energy, but in obesity increased circulating fatty acid levels result in the accumulation of toxic lipid 

intermediates which drive oxidative stress. This is thought to underpin insulin resistance in muscle, an 
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early stage in the development of type-2 diabetes [22-25]. Such toxic accumulation of lipid droplets/lipid 

intermediates is also observed in the pancreatic beta cells of people with type-2 diabetes, resulting in 

aberrant insulin biosynthesis and release [17]. Changes in lipid metabolism are also proposed to 

underlie changes in cancer cell function and may in turn modulate cell biology via changes in the plasma 

membrane lipidome [26, 27]. Hence, there is a need to quantify lipid/fatty acid metabolism in 

adipocytes and other cells, to understand how their metabolism changes in disease, and to develop 

approaches to allow the analysis of metabolic changes, ideally in real-time. Raman-based imaging 

has provided insight into adipose tissue structure and function, details of lipid composition, and has 

been shown to offer potential for either in vivo or intra-operative analysis (for recent reviews see [26, 

28, 29]). 

Arguably, the most important aspect of Raman analysis is the ability to non-destructively image cells 

and study cellular events without the need for labels, genetic reporters or antibodies, hence the 

challenge is to integrate this with enhanced resolution and specificity of analysis.  In the sections which 

follow, we provide a bird’s-eye view of Raman imaging, then delve into specific examples where Raman-

based approaches have provided new insight into fatty acid and/or lipid metabolism, illustrating these 

with a range of biological systems from human cells, flies, worms, fungi and bacteria chosen from the 

past two to three years to reflect the breadth of approaches and molecular insight which Raman can 

provide. We end with a speculative look to the future of the technique, highlighting some recent 

advances which offer great potential. We believe these approaches will be of wide general interest to 

the cell biology community, as the approaches discussed here are applicable across metabolism and 

in all kingdoms of biology.  

2. What is Raman and SRS imaging?

As an aide to understanding a glossary of key terms is provided in Table 1. Readers familiar with 

Raman and SRS can skip ahead to section 3. 

2.1 A brief overview of Raman. Raman scattering is an optical technique that investigates the 

vibrational modes of molecules through inelastic scattering of the incident light source. As such, most 

Raman scattering experiments make use of a confocal Raman microscope coupled to a 

monochromatic light source, typically a laser at 405, 532, 633, 785 or 1064 nm. An objective lens is 

used to focus the laser onto the sample such that both elastic (referred to as Rayleigh scattering) 

and inelastic scattered photons (referred to as Raman scattering) are produced following the 

interaction with the molecules at the sample focus. Raman systems use objective lens focuses the 

laser onto the sample and collect the scattered (both Rayleigh and Raman scattered) photons. By 

employing a spectrograph, the Stokes Raman scattered photons can be separated based on 

wavelength. By determining the wavelength shift in nm, which is usually expressed as a Raman shift, 

(ν, wavenumber cm-1), the resulting Raman spectrum can be used to identify molecular vibrations 
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for molecular characterisation. As such, a Raman spectrum plots the wavelength shift (cm-1, x-axis) 

against the relative number of photon counts (usually counts/s, or equivalent, y-axis). 

Raman imaging of lipids is an active area of research in part due to the numerous spectroscopic 

features for label-free characterisation of lipid type and composition. Perhaps the most characteristic 

Raman mode for lipid samples is the abundant CH2 stretches including the 2851 cm-1 (CH2 symmetric 

stretch) and 2881 cm-1 (CH2 asymmetric stretch), together with scissoring modes detected in the 

fingerprint region of the Raman spectrum (1440 cm-1) [30]. Fatty acid esterification can be readily 

detected in the Raman spectrum through C=O stretching at 1740 cm-1 [31], whilst unsaturation of 

the alkyl chain is observed through C=C-H stretching at 3010 cm-1, C=C stretching at 1655 cm-1 and 

1262 cm-1 (C=C-H deformation). An important area of development is the use of ratiometric Raman 

spectroscopy for molecular characterisation. As the Raman spectrum typically contains a high 

density of peaks for lipid species, it is possible to take the ratio of several peaks in order to 

characterise the lipid content in cellular lipid droplets, for example [32]. Jamieson et al. demonstrated 

an increasing linear relationship between the intensity ratio 1262 cm-1/1440 cm-1 across a series of 

C18 fatty acids [33].  Alternative lipid classes are readily detectable in the Raman spectrum including 

cholesterols, triacylglycerols and phospholipids.

2.2 CARS and SRS. CARS and SRS. In practice, Raman scattering is an intrinsically weak 

process, with approximately 1 in every 108 incident photons undergoing inelastic scattering [34]. 

Therefore, the integration time per spectrum is usually slow (seconds) such that Raman imaging 

over an extended sample area is experimentally slow (mins to hours). In addition, it can be 

challenging to separate the unique molecular signature of the Raman scattering from the 

overwhelming Rayleigh scattered light or background fluorescence. Coherent Raman scattering 

(CRS) techniques aim to improve the scattering efficiency, and therefore detection sensitivity and/or 

imaging speed, through coherent excitation of the sample. The two most widely used CRS processes 

for microscopy are coherent anti-Stokes Raman scattering (CARS) [35] and stimulated Raman 

scattering (SRS), although coherent Stokes Raman scattering (CSRS ) [36] has recently been 

reported for microscopy applications. A comparison of the three techniques discussed here is 

provided in Table 2.

Coherent Raman scattering techniques require the use of two incident laser beams, termed the 

pump and Stokes laser. In most cases, the pump laser is a tuneable laser across the range 700 - 

990 nm generated by an optical parametric oscillator, whilst the Stokes beam is a fixed wavelength 

laser, usually 1031, 1040 or 1064 nm. The two beams are spatially and temporally overlapped and 

focussed onto the sample. When the frequency difference between the two lasers is tuned to match 

a vibrational mode within the sample, coherent Raman scattering processes can occur. 

CARS was first described in 1965 [37] and generates an anti-Stokes scattering signal through four-

wave mixing of the incident pump and Stokes lasers (Figure 1a). When the difference in the 
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frequencies of the pump and Stokes beams matches a molecular vibrational frequency (Ωvib) in the 

sample, a non-linear interaction between the incident photons causes vibrational resonance of the 

chemical bond in the sample. The excited vibrational chemical bond further interacts with an 

additional pump photon, resulting in the coherent generation of an anti-Stokes photon (ωas).  The 

CARS signal is technically simple to detect using a photomultiplier tube because the signal is blue-

shifted relative to the incident laser wavelengths, with the use of bandpass filters enabling the 

detection of the CARS signal. However, non-resonant background and resultant spectral distortions 

can occur during image acquisition. The nonlinear electronic response of the molecules at laser 

focus can generate a non-resonant background signal in the absence of a vibrational resonance. 

The interference between non-resonant background and resonant vibrational signal can distort the 

CARS image and CARS spectrum thereby limiting the detection sensitivity and specificity. 

SRS was first reported in 1962 [38] although it was not until 2008 that the first demonstration of SRS 

microscopy for biological samples was realised [39]. When the frequency difference between the 

pump and Stokes photons is matched to a vibrational frequency in the sample, stimulated Raman 

loss (SRL) is observed in the pump beam whilst stimulated Raman gain (SRG) is detected in the 

Stokes beam (Figure 1b). The detection of SRS is achieved by detecting the SRL signal or SRG 

signal which is typically small (of the order 10-7 – 10-4) in the pump or Stokes beam [40]respectively 

using a modulation transfer scheme via lock-in amplifier. Thus, when the frequency difference 

between the pump and Stokes beam does not match a vibrational frequency in the sample, there is 

no energy transfer and hence, SRL and SRG cannot occur. As such, SRS is free from non-resonant 

background and SRS spectra are free from spectral distortion unlike CARS, which makes SRS an 

attractive method for hyperspectral imaging applications for material characterisation (Figure 1c).

Whilst SRL and SRG signals are bond-specific, these signals are weak and potentially lower than 

the fluctuation of laser noise, which posed a significant challenge for the implementation of SRS 

microscopy. As laser noise primarily occurs at low frequencies (generally <1 MHz), SRS microscopy 

is typically detected using high frequency modulation (>2 MHz). In most SRS systems, the Stokes 

beam is modulated at a frequency greater than 2 MHz and the pump beam remains unmodulated. 

Upon interaction with the target chemical bond in the sample, the SRL SRG signals occur at the 

same frequency of modulation as the Stokes beam. Thus, it is possible to detect the SRL signal at 

the modulation frequency of the Stokes beam which is de-modulated via lock-in amplifier (Figure 
1b). Given that the Stokes beam is usually a fixed wavelength laser, in most cases, the SRL signal 

in the pump beam is detected, as the Stokes beam can be easily removed using a filter. An important 

advantage of SRS is that the SRL signal is directly proportional to the concentration of the target 

molecule in the sample enabling straightforward quantification. In addition, the SRS spectrum 

matches the Raman spectrum directly to enable direct sample characterisation. The detection 

sensitivity of SRS microscopy is ~10 mM for endogenous biomolecules including C-H vibrations 

indicative of protein and lipid species [41].  The development of bio-orthogonal Raman tagging has 
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pushed the detection sensitivity by employing chemical groups like alkynes and nitriles which have 

a large Raman scattering cross section. Alternatively, the use of plasmonic materials including gold 

nanoarchitectures to enhance the SRS signal have been reported [42], together with the use of 

organic dyes to improve the detection sensitivity via electronic pre-resonance enhancement [43]. 

2.3 Unmixing the data. Raman imaging methods typically acquire a full or partial Raman 

spectrum at pixel locations from a pre-defined sample area of interest. In doing so, the result is a 

three-dimensional dataset with coordinates of x and y for the spatial area and the spectral information 

contained in the Z axis. The creation of a Raman image from the intensity of a Raman band or ratio 

of multiple bands is easy to do. Alternatively, a wide variety of chemometric analysis techniques 

have been reported that have the capability to cluster Raman spectra or classify pixels within the 

image based on their spectral profile.  Notable examples include principal component analysis 

(PCA), k-means cluster analysis (KMCA) and hierarchical cluster analysis amongst others. For a 

review of different spectral processing methods for vibrational spectroscopy, see [44]. 

In the case of coherent Raman scattering techniques, vibrational spectroscopic information can be 

acquired to provide molecular compositional information on the sample. Typically, images are 

acquired across a portion of the spectrum by re-tuning the pump laser in between image frames. 

The resulting series of images can be stacked together, and each pixel location will contain a pseudo-

Raman spectrum that can be used for molecular characterisation. This is referred to as hyperspectral 

imaging and is a popular method for SRS microscopy of biological samples. As with Raman 

scattering, several multivariate analysis methods have been reported to unmix hyperspectral SRS 

datasets mainly because the C-H stretching region is highly overlapping and many biomolecules 

have similar Raman spectra. Spectral unmixing using spectral phasor analysis, PCA, multivariate 

curve resolution, and least absolute shrinkage and selection operator (LASSO) are popular methods 

for unmixing hyperspectral SRS imaging datasets to enable the detection of discrete features within 

a sample. 

Spectral phasor analysis uses the Fourier transform to project every pixel from a 3D hyperspectral 

SRS dataset onto the 2D phasor plane. Spectral phasor is a convenient method because it requires 

no prior knowledge of the sample, and clustering of the phasors based on spectral similarity can be 

used to identify regions in the sample which have similar, or the same, Raman spectral profile. The 

first example of spectral phasor analysis applied to hyperspectral SRS imaging data was reported in 

2014 for label-free detection of cellular organelles [45], and since then it has been applied widely to 

study cellular and tissue composition [46-50], bioorthogonal Raman  probes [51, 52] and protein 

aggregates [53].

PCA has been applied to SRS imaging datasets for dimensionality reduction by creating lower-

dimensional orthogonal projections that display maximum data variance. PCA was selected for 

component identification in hyperspectral flow cytometry using SRS microscopy. 
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K-means cluster analysis (KMCA) is a method that groups spectra based on similarity. Initially, the 

operator selects the number of clusters into which the spectra will be assigned, whereupon each 

spectrum is assigned based on their spectral similarity to the seed locations. Each spectrum in the 

Raman or SRS hyperspectral stack is assigned to the cluster with the closest match to the mean 

spectrum of the cluster. KMCA is routinely used to identify cellular organelles using Raman 

spectroscopy [54, 55]  and with SRS imaging for the localisation of cellular lipid droplets [27].

Multivariate curve resolution is an alternative method which can decompose a measured spectral 

dataset into concentration maps and spectral profiles of the principal components. It is often coupled 

to alternative least squares (ALS) to unmix hyperspectral SRS imaging, including for cellular 

segmentation and the analysis of lipid-rich regions, see section 4.5 below which describes this 

approach in the model organism C. elegans [56]. 

LASSO regression is a powerful technique in predictive analytics that introduces a penalisation factor 

to reduce overfitting by selectively shrinking some spectral coefficients to zero. In doing so, it can 

enhance the interpretation of large and complex hyperspectral datasets and has been successfully 

applied to studying cholesterol and unsaturated fatty acids in living cancer cells using hyperspectral 

SRS imaging (see 5.2 below and [57, 58]).

3. What does SRS/Raman tell us that other approaches do not? 

As an optical technique, Raman microscopy is ideally suited for live-cell imaging. The use of near 

infrared laser sources can help to minimise sample damage and improve tissue penetration depth 

for imaging in complex sample types. A key advantage of Raman and SRS microscopy for cellular 

imaging applications is the fact that the detection of cellular biomolecules including proteins, lipids 

and DNA can be achieved based on the intrinsic Raman spectrum and without any additional 

labelling. As such, this is a major advantage to other optical imaging techniques based on 

fluorescence microscopy which require the use of reporters, stains or fluorescently labelled proteins 

to generate image contrast. Additionally, the linewidth of Raman peaks is much narrower than 

fluorescent counterparts (~20 cm-1 vs. ~1500 cm-1) which enables a much greater multiplexing 

capability for cellular imaging [59]. Recently, using engineered polyynes as Raman reporters in the 

cell-silent region (see figure 1) of the Raman spectrum (1800-2800 cm-1), the detection of 26 discrete 

species was achieved in a super-multiplex imaging experiment using SRS microscopy [60]. Given 

the broad and featureless nature of fluorescence emission, there exists a colour barrier beyond 

which the multiplexing of more than 5 spectral colours poses a significant challenge. A particularly 

attractive feature of Raman reporters is that they can be extremely small by design (down to a single 

chemical bond) which invokes a greatly reduced perturbation on the parent molecule. This has 

opened up opportunities for imaging drugs and small molecules using miniaturised Raman reporters 

based on alkynes and nitriles in a way that is not achievable using other optical imaging techniques 
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[61]. Furthermore, because the Raman stretching frequency is defined by the atoms which make up 

the molecular bond, the use of isotopic editing strategies for labelling and metabolic probing has 

been extremely fruitful. For example, the use of deuterium as a natural isotope of hydrogen results 

in a red shifting of the C-D stretching (2000-2300 cm-1) compared to C-H stretching (2800-3100 cm-

1). As such, extremely minor modification of low-molecular weight metabolic precursors and drugs 

enables their visualisation in the cell-silent region of the Raman spectrum using deuterium labelling 

(e.g. see 4.2 and 4.4 below). Further expansion of the isotopic colour palette for Raman microscopy 

has demonstrated the impact of 13C labelling of alkynes and 15N probing of nitrile groups to increase 

the spectral colours available for imaging [62]. When compared to SILAC labelling for Mass 

Spectrometry (MS) and proteomics experiments, Raman imaging offers the spatial resolution for 

probing metabolism at the subcellular scale in a way that is unachievable using these techniques. In 

that way, coupling Raman microscopy with metabolomics studies can offer a unique insight into 

probing cellular metabolism in a complementary fashion. 

Historically, the detection of Raman images was too slow to be competitive with fluorescence 

imaging modalities, although advances in SRS microscopy have enabled rapid acquisition and high-

content imaging for biomolecular characterisation which is beginning to have a translational impact 

in biological and medical research. With the advent of commercially available SRS imaging systems, 

the potential for further integration of coherent Raman imaging in biological and medical imaging is 

anticipated. Some new advances in methodology and analysis are outlined in Section 5 below.

4. Raman-led insights into lipid and fatty acid metabolism. 

In this section, we present some studies of interest which reveal how Raman-based imaging can be 

employed to gain insight into aspects of fatty acid or lipid metabolism. We recognise this is neither 

an exhaustive list, nor is it entirely systematic. Our approach is to present a few very recent studies 

to reveal the kinds of questions that Raman can answer, and to illustrate these using different 

biological systems. More exhaustive reviews of both lipid metabolism [25, 63], adipocyte biology [10, 

11] and Raman [64-67] can be identified. 

4.1 Studying lipid biology in adipocytes using Raman imaging. Molecularly specific 
information on lipid metabolism can reveal novel cell phenotypes in health and disease. Lipid 

droplets are now recognised as highly dynamic organelles which play a major role in cellular and 

systemic homeostasis, and which contribute to disease aetiology, for example ectopic accumulation 

of lipid droplets in cells such as the liver or pancreatic beta cells are thought to be early drivers of 

insulin resistance [17, 19, 21]. Lipid droplets are usually studied or identified using fluorescent lipid-

soluble dyes which accumulate in droplets and can thus be quantified. While useful, these studies 

cannot offer insight into droplet chemical composition and thus potential heterogeneity and may 

provide a flawed index of droplet size because of the need for the fluorescent dye to partition unfirmly 
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throughout the droplet. The former has been to some extent overcome using MS, but these 

undoubtedly powerful molecular approaches lack capacity for high throughput, cannot inform on 

spatial heterogeneity, are destructive and importantly are almost impossible to use for real-time 

dynamics (see [2] for a recent review). 

The application of Raman to droplet biology exemplifies the power of Raman-based imaging. The 

number and area of lipid droplets formed during differentiation in human adipocytes has been 

quantified and mapped using label-free SRS imaging [68]. This is of interest because larger 

(hypertrophic) adipocytes are associated with metabolic disease risk [69, 70] and may even act as 

a reservoir for SARS-CoV2 [71], perhaps explaining the strong link between disease outcome and 

obesity during the pandemic. Consistent with this notion, a recent study considered the structural 

and functional changes in adipose tissue in rodent models of obesity and type-1 diabetes [72]. This 

study analysed Raman spectra using direct band analysis, ratiometric analysis and chemometric 

methods to identify significant spectral differences between adipocytes from control and Type-1 

diabetes rodent models, and changes in unsaturation of lipid levels associated with obesity in 

different fat depots [72]. These non-invasive methods provide a framework for future biological 

experiments to understand how changing lipid droplet biology relates to function and/or disease risk 

and begin to show how molecularly specific information can be gleaned from living cells. 

This approach has been further advanced by Tratwal et al., who employed Raman micro-

spectroscopy to examine the subtleties of bone marrow-derived adipocyte biology [73]. Bone marrow 

adipocytes (BMAds) are classically observed to be comprised of two distinct subtypes (constitutive 

cBMAds and regulated rBMAds) which differ in the content of saturated fatty acids, the number and 

size of lipid droplets and biological function [74, 75]. These different populations are notoriously 

difficult to isolate and cell culture models hard to validate. Using lipid profiling at the cell population 

level and Raman micro-spectroscopy on single cells, Tratwal and co-workers validated the 

adipogenic potential of a bone marrow-derived stromal cell line, OP9 cells [73]. Previous studies 

based on population analysis has suggested that the 16:1/16:0 fatty acid unsaturation ratio is a 

discriminating index for c- and rBMAds. Raman micro-spectroscopy revealed a predominance of  

unsaturated spectra after adipocyte induction; importantly, using the power of SRS they were able 

to analyse the heterogeneity of single lipid droplets within a single cell and show that the lipid droplets 

accumulated were not composed of uniformly saturated or unsaturated lipids, but rather were 

characterised by different mixtures [73]. Using unguided hierarchical cluster analysis of the SRS 

signal from 100s of individual lipid within so-called induced OP9 cells (i.e. cells exposed to 

adipogenic induction media; iOP9) compared to spontaneously differentiating OP9 cells (sOP9), they 

found that iOP9 adipocytes not only contained larger lipid droplets but that these contained a greater 

frequency of unsaturated lipids than sOP9 adipocytes (Figure 2). Based on previous studies this 

suggests that iOP9 adipocytes are similar in characteristics to rBMAds, and thus have opened the 

way to the analysis of the cell biology and role of these different populations. 
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These kinds of non-invasive approaches to study lipid or fatty acid metabolism are now gaining 

considerable traction in adipocyte biology as scientists appreciate the molecularly specific insight 

these approaches can deliver [26, 68, 72, 73, 76-78]. 

4.2 Single cell SRS provides a new insight into lipid metabolism associated with 
phenotypic changes in a subset of tumour cells. It has long been appreciated that cancer cells 

exhibit distinct metabolic profiles to their non-transformed counterparts [79, 80]. Therapeutic 

resistance is a major challenge to oncology treatment. Studies have suggested that the transition 

from a drug-sensitive to a drug-resistant state is accompanied by changes in cellular metabolism, 

but this has proven difficult to study as typically within a given population of cells only a small fraction 

become drug-resistant [81, 82]. A good deal of recent work has focussed on understanding the 

change from glycolytic to fatty acid uptake and oxidation and how this relates to cancer cell function 

[79, 83-85].

A recent paper has adapted stimulated Raman scattering and spectral phasor analysis to provide 

single cell insight into metabolic reprogramming observed in cancer cells [7]. In a striking example 

of the power of SRS, Tan et al. employed high throughput, large-area hyperspectral SRS imaging to 

resolve changes in the metabolism of single cells within a population [7]. This approach involved 

capture of a stack of large-area hyperspectral images (200-500 cells), extraction of the SRS 

spectrum at each pixel and segmentation to generate maps of intracellular compartments. 

CellProfiler® was then used to generate maps of the cell boundaries, allowing the lipid map of 

individual cells to be identified. This in turn facilitated quantitation of the lipid metabolic signature on 

a per-cell basis. Married to the use of specific glucose or fatty acid non-invasive Raman probes, this 

approach allowed the authors to show that tumour cell drug-resistance (in this case to cisplatin) was 

accompanied by a molecular switch – a shift from glucose/glycolysis-dependent metabolism to fatty 

acid oxidation as a key indicator of a shift in drug-resistant cancer cells (Figure 3) [7]. As well as 

providing new molecular understanding, this approach hints at a potential diagnostic strategy for 

identifying and treating cisplatin-resistant tumours. It also powerfully illustrates the insight that 

individual cell imaging within a population can provide and exemplifies the power of SRS since 

images from dozens of cells can be acquired quickly and are data rich. Notably, this group also used 

imaging approaches to quantify reactive oxidative species on a per cell basis [7]. The potential to 

marry this with SRS analysis in the same experiment is worthy of further exploration. Such studies 

signpost the power of SRS to study specific metabolic changes in a non-invasive system, allowing 

the subsequent multiplexing of analysis with other signals, or indeed with other techniques such as 

single cell metabolomics [86], lipidomics [87] or other MS-based methods [2].

4.3 Spectral resolution of specific metabolites in lipid droplets in melanoma. Metastatic 

melanoma is a deadly form of skin cancer, many of which contain a mutation in BRAF kinase [88]. 

A remarkable application of Raman imaging to understand cancer cell biology involved a series of 
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melanoma cell lines, each encoding different BRAF mutations, corresponding to a different level of 

cancer cell differentiation and accompanied by differential susceptibility to inhibitors and 

immunotherapeutic interventions [6], each with a well annotated transcriptome [89].  Based on 

spontaneous Raman spectra, it was found that the lipid/protein (CH2/CH3) ratio decreases with the 

progression of de-differentiation. Based on this observation, SRS imaging in real-time was employed 

to quantify single cells and thus capture cellular heterogeneity [6]. Targeting the lipid peak (2845cm-

1, CH2 vibrations) and the protein peak (2940cm-1, CH3 vibrations), the ratiometric mages clearly 

showed a decrease in lipid signals from melanocytic to mesenchymal cells, indicating that the more 

differentiated cells are enriched in lipids. This observation strikingly correlated with transcriptomic 

data, and therefore gives confidence that single-cell Raman imaging correlates with transcriptional 

profiles. Using glucose-d7, the same group quantified de novo lipogenesis in the different cell lines 

and observed that de novo fatty acid synthesis is most active in differentiated cell lines; thus, single-

cell Raman imaging has uncovered ‘phenotype-specific druggable susceptibilities in cancer cells’ 

[6].

Not content with this remarkable set of observations, Du et al. hypothesised that the maintenance of 

specific cancer cell characteristics could require specific examples of lipid biochemistry that could 

offer insight for new therapies. By way of a proof of concept, they showed that analysis of individual 

lipid droplets in one of the cell lines exhibiting a mesenchymal phenotype contained metabolic 

activities associated with lipid unsaturation (Figure 4). They propose that lipid droplets in these cells 

act as a reservoir of unsaturated fatty acids; depletion of this pool eventually drives apoptosis [6]. 

The data itself is exciting and provocative, but arguably just as important is their observation that 

‘the mechanism and applicability underlying reported susceptibilities in our work are distinctly 

different from previous reports that relied on bulk analysis. This demonstration thus emphasises the 

unique value of subcellular pharmaco-metabolomics as a revelatory tool for uncovering new cell 

biology’ [6].  We believe that Raman-based metabolomics is set to revolutionise biology as new tools 

and image processing algorithms are developed.

4.4 New insight into metabolic ageing in Drosophila. Drosophila are a favoured model to 

study the biology of ageing due to their conserved signalling pathways and short life span coupled 

to excellent genetic tools, high throughput and low cost [90-92] thereby providing insight into how 

lipid metabolism directly impacts the ageing process [93, 94].  Metabolism in ageing fruit flies has 

been a point of interest due to the metabolic differences reported in ageing humans and how 

differences in diet impact progression in ageing. Recent studies using Raman have added credence 

to changes in lipid metabolism underscoring effects of ageing. 

Comparison of the SRS signals of fat bodies from 7 and 35 day old flies revealed a significant 

increase in retinoid presence (similar retinoid level increases have also been observed in C. elegans 

[95]) and a decrease in unsaturated fatty acid levels in 35 day old flies compared to their younger 
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counterparts [96]. While important, these observations are limited to a snapshot of levels at a given 

time. Shi and colleagues therefore developed an approach to quantify changes in lipid turnover by 

incorporating heavy water (D2O) into the diet, allowing de novo lipogenesis to be measured (a 

technique they christened DO-SRS) [96, 97]. As deuterium (D) incorporates into the newly 

synthesized lipids, the SRS silent region can be utilized to quantify C-D bond formation. Alongside 

reduced lipid droplet size, older (day 35) flies showed reduced lipogenesis across all diets when 

subjected to ratio metric imaging of existing lipids (2850 cm-1) and deuterated lipids (2140 cm-1) in 

comparison to younger flies (Figure 5). These data suggest that larger lipid droplets are more active 

and may indicate that large and small lipid droplets play different roles in metabolism. This has 

provided further impetus to the drive to study metabolic changes on single cells, rather than 

populations, and clearly illustrates that all lipid droplets are not the same [96, 98]. 

The ability to ‘track’ deuterated molecules is a highly favourable aspect of SRS by allowing 

visualisation of individual lipid droplet metabolic activity and appreciation of the heterogeneity of fat 

depots [96, 97]. This has been strikingly applied to studies of how diet composition, caloric restriction, 

and metabolic activity impact aging [96, 99] where a combination of Raman and SRS have provided 

a wealth of insight allowing quantification of lipid droplet size and distribution. The new studies 

alluded to above now extended this toolkit to allow quantification of metabolic activity at the level of 

single cells and even single lipid droplets. These advances will likely open-up further insights when 

applied across other metabolic and compartmentalised processes.

Two further studies along similar lines are worthy of highlight. In the first, harnessing the power of 

Drosophila genetics and DO-SRS with deuterated probe molecules, in this case deuterated glucose 

and deuterated acetate, Li et al. observed that caloric restriction and down-regulation of the insulin 

signalling pathway was accompanied by a shift in brain metabolism to use acetate as a major carbon 

source for lipid synthesis, and provided an elegant analysis of lipid turnover at the level of single lipid 

droplets [100]. These studies will no doubt pave the way for more detailed metabolic studies across 

a range of tissues and organisms by exemplifying the novelty and detail that Raman can provide. In 

a second study, also in flies, Spratt and colleagues used deuterated methionine to study regional 

and cellular specific uptake and incorporation of a specific amino acid during fly development [101]. 

This study is worthy of comment for two reasons. First, the weaker vibrational resonance of D2O can 

limit the potential signal, meaning that for studies of less abundant species, it may not be an ideal 

choice as levels of incorporation may be too low for reliable quantification (this is often not the case 

for lipids, as they accumulate in lipid droplets, concentrating the lipids into a defined location allowing 

ready identification). Secondly, this group married SRS and fluorescence in an integrated 

microscope, allowing the investigation of specific cells within a complex mixture that could be 

identified using other labels [101]. This highlights a further potential advance in this rapidly moving 

field.
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4.5 Understanding drug resistance in Candida albicans. Antifungal resistance is a significant 

threat; fungal infections cause major diseases such as cryptococcosis and aspergillosis, chronic 

conditions such as allergic bronchopulmonary aspergillosis and a range of less-threatening 

conditions such as vaginitis or candidiasis [102, 103]. Candida albicans – a fungal pathogen – is a 

contributing factor in hospital acquired infections and continued use of a first-line therapy 

Fluconazole (the prototypical azole drug) has resulted in antifungal resistance within this strain [102]. 

Fluconazole disrupts the ergosterol biosynthesis pathway and results in accumulation of sterol 

14,24-dimethylcholesta-8,24(28)-dien-3β,6α-diol which is toxic to the fungus [104]. C. albicans can 

form biofilms, a surface associated fungal community, which presents significant clinical issues in 

hospitals, e.g. in catheters etc [105].

SRS has provided insights into this antifungal resistance by identifying that lipid droplets are formed 

via de novo lipogenesis within these biofilms during the stationary phase [104]. Zhang et al. describe 

a novel approach to understanding the composition of these lipid droplets using pixel-wise least 

absolute shrinkage and selection operator (LASSO; see section 2.2) regression of the hyperspectral 

SRS image stack to ‘decompose’ this into specific chemical ‘maps’ [95]. Comparison of these 

chemical maps revealed differences between azole-sensitive and resistant strains of C. albicans, 

specifically upregulated levels of ergosteryl ester was detected in fluconazole resistant C. albicans 

strains. This was reflected in the sterol C=C peak (1603 cm-1) and acyl C=C peaks (1655 cm-1), 

absent in wild type strains. These were confirmed by referencing the spectra from pure ergosterol 

and glycerol trioleate and studying these chemical maps under conditions such as disruption of 

glycolysis. These data indicate that the accumulation of esterified ergosterol was a consequence of 

de novo lipogeneis [95], and suggests the hypothesis that inhibition of ergosterol esterification could 

be a viable therapeutic option. In an elegant set of experiments, Zhang et al. showed that treatment 

with oleic acid reduced the accumulation of ergosteryl ester in resistant Candida strains which in turn 

re-sensitised Candida to Fluconazole identifying a novel therapeutic strategy to deal with resistance 

[95]. The molecularly specific insight that Raman can provide underscores these exciting 

developments.

4.6 Fatty acid production in biotechnology. While many of us are familiar with the concept of 

using bacteria as a source of chemicals and drugs in biotech, what is seldom well-appreciated by 

those not directly in the field is the difficulty faced by companies because of both cell-to-cell and 

genetic variation that can occur during the fermentation processes that underpin these methods. 

Hence, a crucial requirement for the biotech field is an ability to quantify this variability, ideally in 

real-time. A recent study has shown that hyperspectral SRS offers a powerful technique for 

monitoring the fermentation process [106]. This is challenging in bacteria due to their small size 

which this shortens the axial signal integration length and so results in weaker SRS signals than are 

typically observed for larger cells. At the heart of the method developed by Tague et al., 

hyperspectral SRS (section 2.2) was coupled to a novel computational analysis technique that can 
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generate predictions of chain length and saturation. After validating this using MS, they were able to 

optimise imaging to capture information from living cells, and by marrying SRS and time-lapse phase 

contrast imaging with automated image segmentation approaches, demonstrated a correlation 

between fatty acid production and growth, revealing metabolic and temporal heterogeneity in actively 

growing cultures [106]. Importantly this was achieved by recoding from the same cell over a period 

of many hours. This work is sure to gain attention across fermentation biology-driven systems.

5. Examples of new Raman method developments in the metabolic toolkit.

The approaches outlined above are characterised by the application of increasingly sophisticated 

Raman-based approaches in different biological systems, chosen here to illustrate how these kinds 

of approaches can be leveraged to gain new biological insight. Now, we turn our attention to one or 

two novel examples of Raman technology development which we believe new advances offer the 

scope for a paradigm shift, either in imaging, the biology it illuminates, or both. 

5.1 Identification of specific lipid species in the absence of chemical labelling by pushing 
the spectral resolution limit. Hyperspectral stimulated Raman scattering (SRS) microscopy has 

the potential to provide comprehensive lipid characterization, including carbon chain length 

quantification. However, the current spectral resolution of SRS microscopy is limited to about 10 cm-

1, which is not sufficient to resolve the subtle Raman shifts corresponding to chain lengths, e.g. 

between specific fatty acid species.  This is important because population-level studies suggest that 

the degree of unsaturation and chain length differ in cancer cells, but how these relate to specific 

subsets of cells is unclear, largely because of an inability to identify chain lengths on a microscopic 

scale. Huang et al. have pushed the spectral resolution limit of hyperspectral SRS microscopy to 5.4 

cm-1 by employing a highly efficient spectral compressor, which enabled them to differentiate eight 

types of saturated lipids with carbon chain lengths from C8:0 to C22:0 [107]. Future applications of 

this approach would involve application to living cells where it has the potential to reveal the role of 

specific lipid/fatty acid molecules across a range of experimental systems.

5.2 Single cell metabolism in cancer cells by high-content hyperspectral SRS-imaging. As 

noted above and elsewhere, hyperspectral SRS (hSRS) can resolve multiple spectral metabolites. 

This has been reported at sub-second imaging speeds and with spectral coverage of >200 cm-1 and 

a spectral resolution of less than 10 cm-1 (see 5.1). Together with  downstream spectral analysis 

methods, such as least-squares fitting and phasor segmentation, hSRS has revealed many new 

facets of biology, some of which were discussed above. However, many metabolites remain 

challenging to study, either because their signals are too weak or because their characteristic signals 

are either difficult to resolve or dominated by other biomolecules with strong Raman signatures. 

Recognising this limitation, a new approach has been developed and applied to cancer cells – high 

content, hyperspectral SRS (h2SRS)[57].

Page 15 of 38 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
se

pt
ie

m
br

e 
20

24
. D

ow
nl

oa
de

d 
on

 7
/9

/2
02

4 
20

:2
7:

45
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4AN00846D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an00846d


16
Greig et al

Low sensitivity issues can be overcome in SRS approaches by focussing on the C-H high wave 

number bands. However, this presents a problem, as all major metabolic species (proteins, lipids, 

nucleic acids, glucose etc.) exhibit substantially overlapping peaks within this region which cannot 

be resolved using existing hyperspectral data analytics approaches. This arises because of the 

crosstalk between the C-H vibrations in the chemical maps. Tan et al. [57] reasoned that only a few 

metabolic species make dominant contributions at any given point, a condition that can be 

incorporated into the analysis of these signals as a sparsity constraint, a mathematical device in 

which a model is deigned to use only a small finite number of significant features at a time, 

disregarding less relevant ones (this approach is gaining traction across many facets of biological 

imaging [108-110]).

Using h2SRS, Tan et al. were able to identify metabolic alterations in cancer cells in response to 

chemotherapy in single living cells. Specifically, increased intracellular fatty acid and carbohydrate 

levels in brain cancer cells after cisplatin treatment and in the pancreatic cell model MIA PaCa-2 

after gemcitabine treatment. This extraordinary study offers the potential to unravel many novel 

facets of cellular metabolism on a single cell scale using non-destructive approaches. As they note, 

because ‘the unmixing algorithm is a supervised approach that requires prior knowledge of the 

chemical composition, more detailed prior information (metabolite composition and abundance) 

obtained through MS can effectively guide the selection and scaling of input references beyond the 

current [five] components.’ This powerful marriage of MS with live cell imaging using chemical 

probes, coupled to high-throughput and single cell resolution, hints at a future in which multiple 

metabolites can be studied non-invasively and with increased specificity in living cells, providing a 

step-forward in our understanding of single-cell metabolism.

5.3 Super-resolution meets SRS? A further example of the power of SRS is provided by the 

development of a novel deconvolution algorithm: adaptive moment estimation (Adam) optimization-

based pointillism deconvolution (A-PoD ) which is illustrated conceptually in Figure 6 [111]. 

Deconvolution is a computational approach, widely used in light microscopy, that can improve the 

contrast and resolution of digital images by removing or minimising distortion present within the 

images.  Several deconvolution approaches are widely applied within fluorescence imaging, but 

these approaches cannot be applied to single-frame images in low-sensitivity detectors, such as is 

the case for SRS microscopy images. Building on previous attempts to overcome this issue for SRS 

[112], Jang et al. developed a mathematical model to allow deconvolution and applied this to 

mammalian cells in culture and to Drosophila brain. This approach provided molecularly specific 

information at a spatial resolution of less than 59 nm on a single lipid droplet, allowing comparison 

of nanoscopic distribution of lipids and proteins in cells and subcellular organelles which can be 

applied to in situ samples; this approach also represents a step-change in processing time [111]. 

The potential application of this approach to wider aspects of biology offers a further driver for new 

insight.

Page 16 of 38Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
se

pt
ie

m
br

e 
20

24
. D

ow
nl

oa
de

d 
on

 7
/9

/2
02

4 
20

:2
7:

45
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4AN00846D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an00846d


17
Greig et al

5.4 New methods for in situ analysis of fatty acids. Using deuterium isotopes in metabolic 

studies has offered substantial insight through the history of metabolic studies because the 

deuterium is eliminated slower than hydrogen: the kinetic isotope effect [113]. This has been 

elegantly exploited to reveal a tumour-selective cytotoxicity of -linoleic acid in VA-13 tumour cells 

[114]; coupled to the use of an alkyne reporter this offers the potential for distinguishing between 

lipids with very similar structures (see [65] for a recent review). 

A further study coupled Raman microscopy with a novel spectral unmixing software (ImageCUBE) 

capable of separating overlapping spectra from the mixed measured spectrum within individual 

pixels [115]. Applied initially to an analysis of five labelled fatty acids (palmitic acid-Br, oleic acid-

alkyne, α-linolenic  acid-d14, arachidonic acid-d8, and eicosapentaenoic acid-d5), these authors were 

able to show that fatty acids with higher degrees of unsaturation behaved differently and were 

concentrated in lipid droplets. While the biological mechanism underpinning this behaviour presently 

is not defined, the identification of this phenomenon suggests that further work on lipid droplet biology 

should focus on the substrate preferences of the enzymes involved in their biogenesis and 

hydrolysis. Uematsu et al  raise the interesting speculation that because polyunsaturated fatty acids 

are readily oxidized, their presence within lipid droplets may protect from this [115]. Given the 

importance of fatty acid metabolism in tumour cell biology (see 4.2 and 5.2 above for illustrative 

examples), this could yet turn out to have far-reaching consequences. 

5.5 New tags for multiplex imaging. The challenge facing those wishing to study complex 

metabolic events, such as those underpinning lipogenesis/fatty acid metabolism, involves unpicking 

the overlapping spectra and poor signal-to-noise ratio of some of the commonly used chemical 

reporters. One approach is to use bioorthogonal Raman groups, chemically functionalised to exhibit 

discrete functional vibration. Presently, these probes lie within the 2000-2300 cm-1 range of the 

Raman spectrum. A notable recent advance has come from work which uses the B-H stretch of 

metallacarboranes, detected at 2570 cm-1. The potential to marry these novel probes was evaluated 

using a metallacarborane B-H stretch in a triplex detection of a bis-alkyne and a deuterated fatty 

acid, all of which lie within the cell silent region of the Raman spectrum [116]. Murphy and colleagues 

used this approach coupled to imaging in the high wavenumber region of the cellular Raman 

spectrum and spectral unmixing of the hSRS dataset to enable 9-colour detection. This offers a 

remarkable step forward in live cellular imaging studies.

6. Conclusions and outlook.

It must be emphasised that many of the advances outlined here are relevant across many fields of 

biology. Molecularly specific insight obtained from living cells, organoids and intact tissues offers the 

potential for unrivalled insight into basic biological control mechanisms. The ability to use the 

approaches outlined here in model organisms offers huge potential for developmental biology to be 
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coupled firmly to metabolic changes in key defined cells, even within populations. This can offer new 

understanding of the triggers for developmental events such as cellularisation in flies [117], or be 

coupled to optogenetic controls in the study of embryogenesis [118]. The marriage of powerful 

molecular tools to these real-time non-invasive techniques could drive considerable new insight.

The capacity to understand how metabolism is sub-compartmentalised within cells [119, 120], and 

how this changes in diseases such as obesity, diabetes and cancer, could offer new therapeutic 

horizons. Driving the limit of SRS to even smaller scales is beginning to offer this kind of advance.

Using real-time read-outs the impact of (for example) environmental factors or toxins on metabolic 

events can reveal new understanding of cellular behaviour, particularly if married to high specificity 

moleculomic analysis.  The US National Research Council is driving toxicology screening away from 

animal studies into cell systems, using metabolomics as a key platform. The potential to couple such 

work to specific changes in key molecular signatures in real time in living cells offers one exciting 

way in which SRS-metabolic studies could reveal new understanding. 

Advances in hyperspectral SRS imaging have also enabled a detailed molecular characterisation of 

lipid species based on the Raman spectral signature, and when coupled to chemometric analysis 

techniques, the potential to identify drug-induced effects and molecular features of disease has been 

realised. Future development of the technique particularly in improving the spectral resolution (cm-1 

range) will help to advance studies in this direction. 

In the context of cellular imaging, SRS has the advantage over conventional Raman imaging speed 

which is comparable to fluorescence imaging modalities. This feature has greatly facilitated SRS as 

a modality for biological microscopy. However, Raman scattering has the clear advantage of 

collecting a partial of full Raman spectrum at each pixel within an image. Given the favourable 

spectral resolution associated with Raman spectroscopy, this feat enables the detection of subtle 

changes that can be used to report on cellular metabolism or subtle biochemical changes that occur 

within a cellular population. SRS imaging has yet to reach the spectral resolution of conventional 

Raman microscopy, and this is anticipated to be an area under active investigation. Some early 

progress towards this aim has been realised through the development of broadband SRS imaging 

systems employing fast tuneable fibre lasers to enable rapid hyperspectral imaging. 

Many studies have demonstrated the live-cell imaging capability of SRS microscopy, however, very 

few studies have demonstrated the long-term analysis of cellular metabolism during longitudinal live 

cell imaging. The development of CARS and SRS imaging towards this aim would represent a 

significant breakthrough for temporal monitoring of drug-cell interactions and cellular metabolism 

during disease onset and progression. We recently showed it was possible to visualise drug uptake 

over several hours in the same cellular population using bespoke perfusion chambers to do so [121]. 

As most SRS systems are inverted microscope set ups relying on the detection of transmitted light, 
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the design of robust chambers that can enable favourable culture conditions of temperature, pH and 

media exchange over hours-days would be a significant advantage. 

Several research groups are beginning to demonstrate the potential of super-resolution SRS 

microscopy for live cell, label-free imaging at the sub-100 nm scale. Current approaches based on 

expansion microscopy, deconvolution image analysis, photo-switchable Raman reporters and 

optical engineering strategies have been developed over the course of the past 5 years. The 

implementation of artificial intelligence and machine learning methodology to improve the spatial 

resolution of SRS imaging will likely open new opportunities for studying intracellular lipid biology. 

Finally, the integration of SRS microscopy with other analytical techniques including photothermal 

imaging [52] and mass spectrometry [122] offer the potential for studying biological samples with 

unprecedented detail and with a complimentary read out.

In sum, we believe that Raman spectroscopy offers an increasingly powerful toolkit for biologists, 

providing molecularly specific insight at a single cell, and increasing sub-cellular level. Illustrated 

here by considering aspects of fatty acid metabolism, we contend that these approaches are 

beginning to rival the advances made by fluorescence microscopy and super-resolution imaging. As 

increasingly novel probes are developed, together with data processing algorithms, we expect the 

next decade to provide major advances in single cell metabolic analysis with Raman in the vanguard. 
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10. Figures and Tables.

Figure 1. Energy level diagrams for Rayleigh scattering, Raman scattering, CARS and 
SRS. 

a Rayleigh scattering is an elastic process whereby photons are scattered with the same energy as the 
incident photons. Raman scattering is an inelastic process where photons are scattered with a lower energy 
(Stokes scattering) or higher energy (anti-Stokes scattering) relative to the incident photons. In CARS, two 
incident photons at the pump (ωp) and Stokes (ωS) frequencies simultaneously interact with the chemical 
bond which has a vibrational frequency that is equal to the difference frequency of the two beams. In doing 
so, the chemical bond is stimulated to a vibrational excited state. Upon interaction of the coherently excited 
chemical bond with a second pump photon results in the generation of an anti-Stokes photon (ωaS) which is 
blue shifted (higher energy than the incident photons). In SRS, two photons interact with a chemical bond 
such that the frequency difference between the pump and Stokes beams matches the energy of the 
chemical bond. In doing so, the energy of the pump photon is transferred to the chemical bond resulting in 
the generation of a Stokes photon with a lower energy. b Modulation transfer detection scheme. The Stokes 
beam is modulated at a high frequency which results in a SRL signal that is modulated in the pump beam 
and a SRG signal that is detected at the modulation frequency in the Stokes beam. The SRL signal is usually 
extracted from the laser noise using a lock-in amplifier. c A comparison of SRS and CARS imaging of mouse  
skin. The CH2 vibration of skin lipids is detected at 2845 cm-1, whilst the off-resonance image at 2780 cm-1 is 
free from signal in SRS imaging, non-resonant background is detected in the CARS image. Image adapted 
and reproduced from Ref. 39 with permission the American Association for the Advancement of Science 
(2008). 

Page 21 of 38 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
se

pt
ie

m
br

e 
20

24
. D

ow
nl

oa
de

d 
on

 7
/9

/2
02

4 
20

:2
7:

45
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4AN00846D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an00846d


22
Greig et al

Figure 2 SRS provides insight into individual lipid droplet composition.

Tratwal et al. examined the composition of individual lipid droplets in bone marrow adipocytes derived from 
OP9 bone marrow stromal cells, allowed to either differentiate spontaneously or in response to a defined 
induction cocktail (for details see [73]).  a,b present the unsaturation ratio as a function of the diameter of the 
LDs for the two populations of cells. The circles in dark blue corresponds to LDs identified as unsaturated 
rich. The circles in dark red correspond to LDs identified as saturated-rich. The circles in yellow and light blue 
correspond to LDs identified as mixture. This Unsaturation Ratio was calculated from Raman micro-
spectroscopy, defining the peak area assigned to unsaturated (C=C bonds) divided by the area of saturated 
bonds (CH2), identified using unguided hierarchical cluster analysis. c separates LDs as a function of 
diameter  showing that the LDs mean diameter of sOP9-adipocytes is significantly lower compared to iOP9-
adipocytes. The power of this Raman based approach is revealed in d,e which shows that when separated 
according to LD type, a trend toward larger unsaturated lipid droplets in the induced condition is observed.  f 
shows that the unsaturation ratios of sOP9 versus iOP9 at LD level. LDs from iOP9 adipocytes have a higher 
mean unsaturation ratio compared to LDs from sOP9 adipocytes. g illustrates the power of single droplet 
resolution: larger droplets (>10 µm) have a higher unsaturation ratio as compared to smaller lipid droplets, 
while smaller droplets (<10 µm) in induced OP9-adipocytes (n = 1973) have a higher unsaturation ratio than 
those of spontaneous OP9-adipocytes (n = 2579). Highest unsaturation ratio overall is seen in large droplets 
from spontaneous OP9-adipocytes (n = 41). Image from [73] via http://creativecommons.org/licenses/by/4.0/.
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Figure 3 Metabolic phenotypic changes quantified by SRS.

The ability to study distinct aspects of cellular metabolism in living cells distinguished by different Raman 
probes is exemplified from studies of the consequences of cisplatin resistance in cancer cells. Shown here 
are data from OVCAR5 cells, a model of ovarian cancer. These cells are used to model metabolic changes, 
such as those which accompany resistance to cisplatin therapies. Cells from control or cisplatin resistant 
(cisR in the figure) cells were incubated with glucose-d7 or 17-octadecynoic acid (ODYA), a fatty acid 
analogue with an endogenous alkyne allowing simultaneous analysis of glucose and fatty acid metabolism.  
Shown are representative bright field images, raw SRS images, and processed SRS images of ODYA and 
glucose-d7 in OVCAR5 and -cisR cells.  This clearly reveals a shift from glycolytic to fatty acid metabolism in 
the cisplatin resistant cells. By quantifying the metabolic index of C ≡ C/(C ≡ C + C-D) to IC50s of cisplatin in 
various ovarian cancer cell line pairs (COV362, PEO1 and 4 and OVCAR5), the authors show a shift from 
glycolytic to fatty acid metabolism which is correlated with the IC50 of cisplatin in the cell type.  Figure 
reproduced from [7] with permission http://creativecommons.org/licenses/by/4.0/.
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Figure 4 Changes in the biochemistry in individual lipid droplets is associated with disease.

Du et al. hypothesised that the maintenance of specific cancer cell characteristics would likely be 
underpinned by changes in lipid biochemistry, and that hSRS could test this [6]. By way of a proof of 
concept, they showed that analysis of individual lipid droplets in a melanoma cell line which exhibits a 
pronounced mesenchymal phenotype contained metabolic activities associated with lipid unsaturation, and 
some of their data is reproduced here. a shows a representative SRS image of M381 cells imaged in the 
CH2 (2845 cm−1) channel, the LD signal can thus be clearly identified (arrows). A zoomed-in image highlights 
a single LD. The authors acquired Raman spectra on LDs from a range of melanoma cells with high spectral 
resolution (b) and extracted key data from these spectra using surprisal analysis.  Panel B shows the hSRS 
spectrum of the zoomed-in LD indicated in panel A at the C–H stretch region (2800–3050 cm−1). c shows a 
heatmap for scores of the top two constraints (λ0–λ1) by surprisal analysis of hSRS spectra on LDs across 
five cell lines (M numbers refer to different melanoma lines – see [6]. Each column represents an individual 
LD and each row represents the constraint scores, with the average score of λ1 across five cell lines shown 
in d. Molecularly specific information can be obtained from the Raman peak assignments for constraint 1 (λ1) 
(e). The pink shadowed range from 2957 to 2997 cm−1 is assigned to cholesteryl esters (CE), and the 
3022 cm−1 peak (violet arrow) is assigned to unsaturated lipids (=C–H, UL). hSRS spectra (normalized at 
2908 cm−1, the zero point revealed in e) of LDs across each cell line is shown in f, and then used to compare 
across multiple cell lines (g), which shows quantification of relative CE (2974 cm−1/2908 cm−1, top panel) and 
UL (3022 cm−1/2908 cm−1, bottom panel) enrichment in LDs across different melanoma cell lines. Marrying 
this insight with transcriptomics data provides powerful new insight. Figure reproduced from [6] with 
permission http://creativecommons.org/licenses/by/4.0/.
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Figure 5 D2O-probed SRS to study metabolic adaption in organs from model 
organisms.

Understanding how metabolism changes with age has far-reaching implications for human health. Marrying 
SRS with the power of model organisms led to the development of new approaches to define metabolic 
changes by incorporating heavy water (D2O) into the diet [97, 98]. Shown here an example of the kind of 
insight this approach can provide. a, averaged Raman spectra were collected from flies of different ages 
labelled by 20% D2O and then imaged.  Quantification of the C–D turnover by dividing the intensity of 2143 
cm−1 (CD signal) to the peak at 2850 cm−1 (lipid stretch) is shown in b. Unmixing of the C–D spectra into 
protein and lipid spectra is shown in c. The peak at 2141 cm−1 corresponds to the newly synthesized D-
labelled lipids, and the peak at 2180 cm−1 is newly synthesized D-labelled protein. This allows quantification 
of lipids and protein turnover rates by comparing 2141 cm−1 to 2850 cm−1 and 2180 cm−1 to 2929 cm−1, 
respectively [98]. This methodology can then facilitate a direct comparison of metabolic activities in 7-day 
(young) and 35-day-old flies (representative SRS are shown in e). Old (35-day) flies showed reduced lipid 
metabolism compared with young flies. SRS imaging could visualize the lipids turnover inside single LDs at 
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the subcellular scale and subdivide this insight into small and large LDs (F-H). For further experimental 
details, see [98]. Figure reproduced from [98] with permission http://creativecommons.org/licenses/by/4.0/.

Figure 6 Deconvolving SRS images using A-POD.

Deconvolution has played a key role in resolving light microscopy images. Jang et al. developed a 
mathematical model, A-POD (see 5.3), to allow deconvolution and applied this to mammalian cells in culture 
and to Drosophila brain. This approach provided molecularly specific information at a spatial resolution of 
less than 59 nm on a single lipid droplet, allowing comparison of nanoscopic distribution of lipids and 
proteins in cells and subcellular organelles which can be applied to in situ samples; this approach also 
represents a step-change in processing time [111]. The process is illustrated schematically, taken from Jang 
et al. [111] which shows the conversion of SRS images into super-resolution images (a). First, a specific 
number of virtual emitters proportional to the overall brightness of the image are placed on an image (X), and 
a blurred image (S) is created through convolution of X and the PSF. When the position of each virtual 
emitter is adjusted such that the difference between the blurred image S and the measured image (Y) is 
minimized, X becomes the image with the most optimal distribution of virtual emitters. They used a modified 
Adam solver for the optimization in A-PoD. In b, a three-dimensional deconvolution result of LDs 
(2,850 cm−1) in a live cell is shown. Following deconvolution, the membrane of an individual LD was clearly 
visualized in the intensity profile in the lower panel. AU, arbitrary units. Three-dimensional-rendering results 
of the SRS image before (left) and after (right) deconvolution are shown in c. After deconvolution, the shapes 
of ~1-µm-sized LDs were clearly visible. Data reproduced from [111] with permission 
http://creativecommons.org/licenses/by/4.0/.
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Table 1. Glossary of key terms.
Rayleigh scattering Light scattering from a sample at the same frequency, and hence energy, 

as the incident radiation. 
Raman scattering Light scattered from a sample at a different frequency, and hence energy, 

as the incident radiation.
Stokes and Anti-
Stokes Raman 
scattering

Inelastic scattering can result in radiation that is either scattered with a 
higher wavelength (lower frequency) and is referred to as Stokes Raman 
scattering, or radiation scattered with a lower wavelength (higher 
frequency) which is referred to anti-Stokes Raman scattering. 

Raman shift Raman spectra are reported as a shift in frequency of the scattered 
radiation with respect to the incident radiation. The incident radiation is 
typically a laser which would have a Ramn shift of 0 (i.e. elastic 
scattering). 

Wavenumber Wavenumber is a value proportional to the inverse of the wavelength in a 
harmonic wave. It is measured as the number of waves per unit length 
(centimetre), or cm-1.

Spectral resolution The ability to resolve two peaks in a spectrum which is defined by the 
minimum wavenumber difference that can be distinguished.

Spatial resolution The smallest physical distance between two measured positions within 
the sample.

Chemometrics The application of mathematics or statistics to chemical data.
Simulated Raman 
scattering (SRS)

A nonlinear Raman scattering technique that uses a pump (ωp) and 
Stokes (ωs) laser which are tuned to a defined frequency representative 
of a specific molecular vibration (ωp−ωS). When this occurs, ωp observes a 
stimulated Raman loss in energy, and ωS observes a stimulated Raman 
gain. The pump beam is retuned to enable a different molecular vibration 
to be visualised.

Coherent anti-Stokes 
Raman scattering 
(CARS)

A nonlinear Raman scattering technique that uses two lasers, a pump 
(ωp) and Stokes (ωS) beam, such that the frequency difference between 
the two lasers is matched to a vibrational frequency in the target sample 
generating a strong anti-Stokes Raman signal (ωas = 2ωp-ωS). 

Hyperspectral 
imaging

A three-dimensional dataset formed of x,y,λ coordinates. In hyperspectral 
imaging each pixel contains a spectral profile that can be used for 
molecular characterisation.

Spectral phasor 
analysis

A Fourier transform-based technique that represents a 3D hyperspectral 
image stack, as a 2D density plot in which each point – or phasor- 
represents a single spectrum in the original 3D dataset. 

Deconvolution 
(image) analysis

Image processing technique used to improve the contrast and resolution 
of images captured using an optical microscope. Blurring is a common 
type of image distortion that can be overcome using deconvolution 
analysis.

Multivariate analysis A branch of mathematics that deals with data that change
in multiple ways with respect to a single dependent variable (a reference 
analyte value).

Adam-based 
pointillism 
deconvolution (A-
POD)

This approach mimics the concept of pointillism painting (small, distinctive 
dots of colour are applied in patterns) and describes images with multiple 
discontinuous spots (virtual emitters). The virtual emitters have the same 
unit intensity, and the total number of emitters is fixed across the image. 
This characteristic allows for suppressing of imaging artefacts and 
describes the real emitters’ distribution.  Therefore, from low-resolution 
images of high-density emitters, super-resolution images can be restored.
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Table 2 A comparison of spontaneous Raman scattering, CARS and SRS microscopy

Spontaneous 
Raman scattering

CARS SRS

Quantitative Yes Semi-quantitative Yes 

Image acquisition 
rate

s/pixel μs/pixel μs/pixel

In vivo analysis 
and/or live cell 
imaging

Yes Yes Yes

Spatial resolution 
(nm)

~500 ~300 ~300

Spectral resolution 
(cm-1)

<1 ~10 ~10 

Advantages Label-free, high 

spectral resolution, 

full or partial Raman 

spectrum at each 

pixel.

Label-free, high spatial 

resolution, fast, 

hyperspectral imaging 

is feasible

Label-free, high spatial 

resolution, fast, 

hyperspectral imaging 

is feasible, SRS 

spectrum matches 

Raman spectrum.

Disadvantages Relatively slow 

imaging rate

Non-resonant 

background, indirect 

quantification, complex 

spectral retrieval 

Some parasitic signals 

e.g. cross phase 

modulation can 

complicate imaging 
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