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Human skin oil is rich in ozone-reactive compounds, including squalene and unsaturated acyl groups of
free fatty acids, glycerols, and wax esters. Squalene and unsaturated acyl groups are each responsible for
about half of the double bonds in skin oil. When there are no indoor sources, ozone concentrations are
smaller indoors than outdoors, chiefly because ozone reacts with indoor surfaces. Ozone reacts rapidly
with skin oils on occupants’ exposed skin, hair, and clothing. Also, skin oil and its unsaturated oxidation
products are transferred to indoor surfaces. A recent study of an occupied residence inferred that the
average surface density of skin oil double bonds on inanimate indoor surfaces was approximately 5 pmol
m™2. Estimates suggest that about 15% of outdoor ozone transported into residences is removed by skin
oil or its byproducts. This percentage increases with occupant density indoors. In classrooms, the
proportion of ozone removal attributable to skin oil may be in the range 35-55%. Further measurements
of skin oil on off-body surfaces in a variety of indoor environments are needed to improve such
estimates. In occupied indoor environments, the amount of ozone and ozone-derived products that

occupants inhale is materially affected by the extent to which ozone reacts with skin-oil constituents.
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Accepted 22nd February 2023 Toxicities of the products of ozone reactions with skin oil warrant further attention. The relative

contribution of other fugitive sources (e.g., cooking oils, paints, and pesticides), as well as constituents
inherent to building materials and furnishings, to ozone-reactive compounds on indoor surfaces remains
unknown and also merits attention.
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Environmental significance

Ozone-reactive compounds reduce indoor ozone concentrations while generating both transient and stable oxidized species. Human skin oil is a source of
ozone-reactive chemicals. Skin oil is present on occupant surfaces, including skin, hair, and clothing. Skin oil constituents also redistribute to non-
occupant surfaces via desquamation, partitioning, and contact transfer. Available evidence indicates that skin oil is a major ozone reactant in occupied
environments. Humans inhale, ingest, and dermally absorb products resulting from ozone reactions with skin oil. Better defining the occurrence of ozone
chemistry with skin oil on occupant and nonoccupant surfaces furthers our understanding of the ways in which occupant emissions influence human
chemical exposures indoors.

are introduced, old sources dissipate, and activities wax and
wane. Typically, substantially more ozone is removed from
indoor air by reactions on surfaces than by reactions in air,
a finding supported by both experiments and modelling."™*

1 Introduction

Ozone is commonly present at lower concentrations indoors
than outdoors, largely because of ozone-reactive compounds

found indoors. Unsaturated organic compounds tend to
dominate these ozone sinks. Their indoor sources include
building materials, furnishings, cleaning products, personal
care products, cooking, and the occupants themselves. Ozone-
reactive compounds and their abundances vary among indoor
environments and may also change with time as new sources
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In addition to reacting with unsaturated organic compounds,
ozone can react rapidly with nitric oxide. Unvented combustion
appliances, such as gas cooktops, are common. Nitric oxide can
be a meaningful ozone sink whenever unvented combustion
occurs. However, nitric oxide reactions generally comprise
a small part of the time-averaged loss rate of indoor ozone.*
Ozone can also be deliberately removed from indoor air through
use of air-cleaning technologies, such as activated carbon filters.?
However, the use of such control measures is relatively
uncommon. In the interest of simplicity, in this paper, we focus
on the most prominent aspect of ozone loss indoors: removal via
reactions with unsaturated organic molecules on indoor
surfaces.
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Although not widely recognized, a potentially important
source of ozone-reactive compounds in regularly occupied
spaces is human skin oil, both on occupants and on non-
occupant surfaces.®® A prior review examined the many ways in
which human occupants influence indoor chemistry.” The
present paper probes deeply into one important aspect of this
influence. We compile and analyse evidence from the literature,
much of it published since the earlier review, to investigate the
extent to which human skin oil constituents contribute to ozone
removal in regularly occupied indoor environments.

2 Background
2.1 Skin surface lipids

Skin oils consist of a mix of compounds from sebum and from
the epidermis, with sebum making the larger contribution.
Sebum comprises squalene, triglycerides, free fatty acids, wax
and sterol esters, and free sterols. Cholesterol is the major skin
oil constituent contributed by the epidermis. Bacteria on the
skin promote the hydrolysis of tri-, di- and monoglycerides to
free fatty acids. As reported by Nicolaides," human skin oil
consists of squalene (10% by mass), free fatty acids (25%), tri-
acyl glycerols (25%), di- and monoacyl glycerols (10%), wax
esters (22%), sterols/sterol esters (4%), and assorted other
species (4%). Downing and Strauss,'* summarizing surface lipid
constituents from five different studies, report similar
percentages. The most abundant unsaturated fatty acids are cis-
hexadec-6-enoic acid (sapienic acid; 5-6% of skin oil) and cis-
octadec-8-enoic acid (2%). Oleic acid, which has many other
indoor sources including cooking, is present at about 0.5% in
human skin oil.

Squalene (Fig. 1) is responsible for about half of the double
bonds in skin oil. Unsaturated bonds in the acyl groups of free
fatty acids, glycerols, and wax esters comprise the remainder.
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Fig. 1 Squalene (CsgHso) is a triterpene with six —C=C- bonds.
Ozone can react at any of the double bond sites.

Pandrangi and Morrison'* estimated that skin oil contains an
average of 0.92 unsaturated -C=C- bonds per molecule.

Adults typically excrete sebum at a rate of ~33 pg cm™
h~'.%*15 This mass flux corresponds to ~1000 pmol of ~-C=C-
bonds per m* per h, assuming an average molecular weight of
280 g mol " and an average of 0.9 double bonds per molecule
for sebum. Sebum mass excretion rates from dry skin are about
half the baseline value and are as much as four times larger
than baseline in people with seborrhoea.*

2

2.2 Desquamation

The stratum corneum is the outer layer of the epidermis and is
“sloughed off continually as new cells take its place, but this
shedding process slows down with age. Complete cell turnover
occurs every 28 to 30 days in young adults, while the same
process takes 45 to 50 days in elderly adults.” (https://
training.seer.cancer.gov/melanoma/anatomy/layers.html). The
skin cells that are shed are called squames and the shedding
of skin cells is referred to as desquamation. The
desquamation rate for adult humans is roughly 1000 cells
em > h™' or 10 to 30 mg h™'.%** When first shed, squames
contain about 1% squalene by weight.”® Squalene's molecular
weight is 411 ¢ mol™", so humans shed roughly 0.2 to 0.7
umol of squalene per hour through desquamation. Given that
squalene contains six double bonds and that, on a molar
basis, total double bonds in skin oil are about twice those in
squalene, humans shed double bonds at a rate of 3 to 9 umol
of -C=C- bonds per hour. In a single-occupancy room with
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10 m?® of upward-facing horizontal surface, the expected upper
bound at which desquamation from a single occupant
contributes -C=C- bonds to these surfaces would be 0.3 to 0.9
umol m~> h™*. Although clothing is expected to capture a frac-
tion of the squames that a human sheds, the friction between
clothing and skin also promotes desquamation.**> The net
balance between these competing processes remains to be
determined.

It is instructive to compare the above estimate for the flux of
occupant-derived double bonds (0.3 to 0.9 pmol m > h™") to the
flux of ozone to surfaces. Assuming a typical indoor ozone
concentration of 5 ppb and a deposition velocity of ozone to
upward facing horizontal surfaces of 1.4 m h™", then the ozone
flux would be 0.3 pmol m~2 h™*. Hence, the estimate for the flux
of human-derived -C=C- bonds to upward-facing horizontal
surfaces is comparable to the flux of ozone to those surfaces at
an ozone level of 5 ppb. These estimates illustrate the potential
of human-derived double bonds to contribute to off-body ozone
loss in indoor environments.

2.3 Reactions of ozone with double bonds on indoor
surfaces

The reaction of ozone on an indoor surface can be viewed as
occurring in two steps: transport to the surface and chemical
interaction at the surface. The flux of ozone to a surface is
influenced by airflow adjacent to the surface and by the
concentrations of ozone-reactive compounds on the surface.
Transport rates vary with indoor air movement and with surface
orientation, surface topography, and location of the surface in
the indoor environment.”*?® Depending on circumstances,
either transport or kinetic reaction steps may be the slower
process and therefore rate-determining. When ozone arrives at
an indoor surface, it reacts with chemicals that are intrinsically
part of the surface or with chemicals that have accumulated on
(soiled) the surface.

The abundance of double bonds in organic molecules on
a surface (quantified in units of pmol m™~?) can be used to
characterize the surface's ozone reactivity. This abundance is
dynamically influenced by the balance between the rate at
which double bonds arrive at the surface and the rate at which
they are lost, e.g., by reacting with ozone. The balance is
influenced by both the net flux of double bonds to the surface
from indoor sources and the indoor concentration of ozone.
When evaluating the contribution of skin oil on off-body
surfaces to net ozone removal indoors, one must consider
the occupant-driven flux of double bonds to indoor surfaces
compared to the co-occurring flux of double bonds from non-
occupant sources. An upper bound estimate can be made for
the former (see Section 2.2); however, we currently have little
information regarding the magnitude of the flux of double
bonds from nonoccupant sources. Migration of double bonds
to surfaces from within certain materials appears to
contribute to the abundance of double bonds on surfaces.
Evidence is seen in the regeneration of the ozone-scavenging
potential of common indoor surfaces that are first exposed
and then isolated from ozone exposure.””** With regard to
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reactivity attenuation, the residual level of -C=C- bonds on
a surface should depend inversely on the rate of ozone reac-
tion on a surface, which would scale with indoor ozone
concentration.

Deming and Ziemann®* measured extractable double-bond
density using surface wipes of vertical glass and painted
surfaces sampled in offices, classrooms, and other buildings on
a university campus. On vertically oriented glass and painted
surfaces, the respective mean values were 1.4 + 1.0 and 0.9 £+ 0.7
pumol m™2. Furthermore, the researchers found that the lifetime
of double bonds owing to their reaction with ozone was on the
order of an hour “indicating the highly dynamic” nature of
ozone reactivity on these surfaces.

The average concentration of double bonds on upward-
facing horizontal surfaces is expected to be larger than those
on vertical surfaces, influenced by the preferential deposition
via settling of coarse particles (including squames) onto
upward-facing surfaces.®® At present, there are no published
measurements of double bond density for upward-facing
indoor surfaces sampled using surface wipes. Gall and Rim**
measured the ozone reactivity of initially clean glass plates that
were horizontally exposed for varying time intervals in
a mechanically ventilated office and in a naturally ventilated
residence in Singapore. After 56 days, the net accumulated mass
density on the glass plates was 0.52 g m 2 in the office and
0.78 g m? in the residence. Using ozone reactivities for
multiple substrates exposed over different time intervals,
a linear correlation was found between the moles of ozone
removed by a glass plate and the mass of material accumulated
on that plate (office: 2.4 pmol g~ '; residence: 4.3 pmol g~ ). The
product of these terms — accreted mass density (g m~?) times
the ozone removal intensity (umol g ') indicates the double
bond surface density (umol m~?) as determined at the end of
the sampling period, assuming moles of O; consumed during
the subsequent exposures corresponds to moles of double
bonds present. Hence, after 56 days, the soiled substrates from
the office and the residence had double bond densities of 1.2
and 3.4 umol m™2, respectively. As was the case for the double
bonds on vertical surfaces in university buildings, the lifetime
of the double bonds in the material accumulated on the Gall
and Rim substrates would be relatively short — on the order of
hours at typical indoor ozone concentrations. Consequently,
these results should be indicative of the final net abundance of
reactive bonds on the collection surfaces, rather than the rate at
which such bonds are deposited.

2.4 Products of ozone reacting with unsaturated skin surface
lipids
When ozone reacts with skin oil, prominent products include
acetone, 6-methyl-5-hepten-2-one (6-MHO), decanal, geranyl
acetone (GA), 4-oxopentanal (4-OPA), and 1,4-butanedial.®*>?53-°
The stable volatile and condensed-phase products that result
from ozone reacting specifically with the skin oil constituent
squalene are summarized in Coffaro and Weisel.*’

Recent studies have contributed valuable new knowledge
about the products of ozone reactions with human surfaces,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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emphasizing the role of skin oils. The gas-phase products of
ozone reacting with skin oil constituents from twenty volunteers
were measured using a PTR-ToF-MS and a flow reactor affixed to
the volunteers' skin.** The average yields of the various prod-
ucts, relative to ozone loss, were reported. Major primary
products of ozone reacting with skin oil included 6-MHO, ger-
anyl acetone, and decanal; the average yield of 6-MHO (0.22
moles of product per mole of ozone consumed) was somewhat
larger than that of geranyl acetone (0.16). The total net yield of
gas-phase products ranged from 0.33 to 0.93, with substantial
differences among volunteers. Using a similar instrument,
emissions of volatile organic compounds (VOCs) from four
volunteers were measured in a chamber during exposures to air
without and with ozone.”” Experiments were conducted at
different temperatures and relative humidity levels and with the
volunteers wearing either long or short clothes. Altogether, five
different groups of volunteers took part in these chamber
experiments. The whole-body emission rate of VOCs more than
doubled in the presence of ozone - from 2180 & 620 pg h™" per
person (no O3) to 4600 + 500 pg h™" per person (with 37 ppb O3).
When more skin was covered by clothing, the emission rate of
ozone/skin-oil-derived products was somewhat lower. The
emission rate increased with relative humidity. Lakey et al.*®
applied a kinetic model that incorporates a new mechanism for
O; reactions with -C=C- bonds to further explore the influence
of relative humidity on gas-phase squalene ozonolysis products.
Other measurements of whole-body VOC emission rates are
discussed in S1 of the ESL.}

A novel analytical approach, secondary electrospray ioniza-
tion high-resolution mass spectrometry, was used to identify
products formed when ozone reacts with skin oil on the hands
of three volunteers.** The ions that were detected suggest
reaction pathways leading to various primary and secondary
ozonides that in turn may react with ammonia emitted from
human skin. As summarized in Coffaro and Weisel,** consid-
erable progress has been made recently in identifying the
condensed phase products of the chemical interactions of
ozone with skin o0il.**"*

2.5 Surface chemistry vs. gas-phase chemistry

Substantially more ozone is removed by reactions on indoor
surfaces than by reactions in air."* Gas-phase reactions with
organic compounds typically contribute less than 10% to ozone
loss. For example, Price et al.*® estimated a total ozone gas-
phase reactivity of 3 x 107> s (0.1 h™") in an average resi-
dence, whereas the total ozone reactivity on indoor surfaces
(excluding occupants) is much higher, about 6 x 107* s7* (2
h™").* This feature also applies for ozone loss to skin oil and its
unsaturated derivatives. The initial reactions of ozone with
squalene and the unsaturated acyl groups in skin oil occur
almost exclusively on surfaces. Only three of the more abundant
unsaturated acyl groups in skin oil contain two double bonds
(C1s:2deltas,s) Cisiadeltas, 120 AN Cao:ndeita7,10), and the secondary
reactions of ozone with their products also occur chiefly on
surfaces. Hence, the primary and secondary reactions of ozone
with unsaturated acyl groups, which constitute about half of the
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double bonds in skin oil on a molar basis, are almost all surface
reactions.

In the case of squalene, six primary ozonides are formed via
surface reactions with ozone. These primary ozonides decay to
twelve carbonyls and their respective Criegee intermediates.
Ten of these carbonyls contain double bonds and participate in
secondary reactions with ozone. Noteworthy among these are
4,8,13,17,21-tetramethyl-octadeca-4,8,12,16,20-pentaenal (TOP;
five double bonds), 4,9,13,17-tetramethyl-octadeca-4,8,12,16-
tetraenal (TOT; four double bonds), and 5,9,13-trimethyl-
tetradeca-4,8,12-trienal (TTT; three double bonds). Of the
initial products of primary chemistry, only 6-MHO reacts chiefly
in the gas phase. The other nine carbonyls react with ozone
chiefly on surfaces. In summary, six primary reactions of ozone
with squalene occur on surfaces and 28 out of 30 secondary
reactions of ozone with carbonyl products occur on surfaces.
(This analysis ignores both the products formed by decay of
Criegee intermediates and possible differences in the rates at
which the various primary and secondary reactions occur.)

A recent study by Zhang et al.** supports the inference that
surface reactions dominate over gas-phase reactions when
considering the interaction of ozone with human skin oils. The
researchers simulated off-body reactions of ozone with squa-
lene and its initial products in an indoor environment. They
estimated that the first-order rate constant for the net loss of
ozone via primary and secondary reactions with squalene and
its derivatives on off-body surfaces was 0.18 h™', whereas the
first-order rate constant for the net loss of ozone via gas-phase
reaction with 6-MHO and GA was an order of magnitude
smaller, 0.017 h™'.

3 Contribution of skin oil on
occupant surfaces to ozone removal
indoors

3.1 Ozone removal by the human envelope

Concern about ozone exposures indoors dates back a half-
century, as represented by the influential work of Shair and
Heitner." At that time, ozone loss indoors was thought to occur
primarily by reaction on inanimate surfaces.”® Two decades
later, Liu et al.>® were the first to identify the existence of an
ozone concentration gradient in the vicinity of human occu-
pants indoors. However, that work did not make clear the
specific connection between skin oil and ozone depletion. We
now know that ozone reacts rapidly on the hair, skin, and
clothing of building occupants, and, to a lesser extent, with
unsaturated gaseous products of skin oil ozonolysis.

Starting about two decades ago, the role of humans as ozone
sinks and skin oil as the specific source of important ozone-
reactive chemicals in occupied indoor environments was
documented in chamber and laboratory
studies. *® These investigations began with an interest
in the fate of ozone in the passenger cabins of aircraft, moti-
vated by a concern about ozone being naturally present along
the flight path and introduced into the cabin with ventilation
air.” The first reports of skin oil ozonolysis products in indoor

several
6,12,28,36,37,57,
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environments came from experiments in which previously worn
t-shirts were exposed to ozone in a simulated aircraft cabin.®***
Subsequently, human volunteers were exposed to ozone in the
same simulated aircraft. In a typical experiment, when 16
passengers entered the cabin (volume = 28.5 m?®), the ozone
concentration decreased from 130 ppb to 80 ppb.*” In this
densely occupied chamber, measurements indicated that about
55% of ozone loss was directly attributable to reactions on the
human occupants. Coleman et al.*® identified skin oil oxidation
products emitted by soiled fabrics exposed to ozone. Pandrangi
and Morrison' quantified the products emitted by unwashed
and washed hair exposed to ozone. Using sorbent sampling and
GC-MS analysis, Weisel et al.®® measured selected products of
ozone/skin oil chemistry in actual aircraft cabins during fifty-
two flights. Decanal and 6-MHO were detected at sub- to low-
ppb levels, and the 6-MHO concentration roughly varied with
the percentage of seats occupied.

Even in much less densely occupied office environments,
loss to human surfaces can substantially affect indoor ozone
levels. Wisthaler and Weschler® reported that when two people
entered a 30 m® simulated office ventilated at an air-change rate
of 1 h™*, the ozone concentration decreased from 33 ppb to 17
ppb. The occupants removed ozone with an effective volumetric
air cleaning rate of 25-30 m®> h™' per person. The authors
estimated that a single occupant, in a 30 m* room would “...
contribute between 10 and 25% to the overall ozone removal
(i.e., the sum of the first-order rate constants for removal by air
exchange, room surfaces, gas phase chemistry, and a single
occupant ...).” Considering only the chemical sinks for ozone in
such a room, a single occupant would remove about a third of
the ozone while the inanimate indoor surfaces would account
for the other two-thirds.

Destaillats et al.®* passed ozone through ventilation-system
filters collected from buildings at two San Francisco locations
and monitored the downstream air using a PTR-MS. They
identified oxidation products that appeared to come from
occupants’ skin flakes and/or skin oil present in the filter cakes.
In experiments in a school, Fischer et al.** examined ozone
removal by a teacher and 24 pupils (age 11 years) in a classroom
(volume = 182 m?®). They found the classroom concentration of
ozone to be anticorrelated with carbon dioxide, as would be
expected with occupants being a source of CO, and a sink for
ozone. After occupants entered at the start of a class period, the
ozone concentration quickly decreased while the CO, concen-
tration increased. The opposite occurred when the occupants
left at the end of a teaching period. In that study, the mainly
juvenile occupants removed ozone with an effective volumetric
rate of 16 &= 4 m®> h™" per person.

Additional evidence has emerged during the past decade,
showing clearly that ozone reactions with occupants affect the
composition of nearby air. Veres et al.®® used a PTR-MS to
measure human emissions before, during, and after a soccer
game in an open-air arena attended by ~31 000 fans. When fans
began to enter the stadium, the level of ozone decreased while
that of CO,, 6-MHO, and decanal increased. When fans exited at
the end of the game, ozone levels increased and the levels of
CO,, 6-MHO, and decanal decreased. In separate studies at two
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universities, Liu et al.** and Tang et al.* measured a decrease in
ozone concentration and an increase in products derived from
ozone reactions with skin oil when students entered a class-
room. Identified ozone/skin oil products included 6-MHO and
4-OPA, with lesser amounts of geranyl acetone, hydroxy acetone,
and 1,4-butanedial. Avery et al.®® found a linear correlation
between the ozone removal rate constant and the change in
carbon dioxide concentration in a classroom. They also
measured higher aerosol mass with occupancy and, using mass
spectral analysis, identified fragment ions consistent with
products of ozone/squalene chemistry “indicative of the
secondary nature of the aerosol mass.” Finewax et al.®” made
real-time measurements of airborne organic compounds at
a university athletic centre and observed a correlation between
the per-person 6-MHO emission factor (ug h™") and the per-
person CO, emission factor (g h™'). They also observed
a correlation between the per-person 6-MHO emission factor
(ug h™") and the per-person ozone consumption rate (ug h™").
Using space- and time-resolved measurements of volatile
organic compounds in an Oakland, CA, home, Liu et al®
examined ozone chemistry that occurred in that home during
eight weeks of sampling. Also interpreting sampling data from
that study, Zhang et al.®® estimated that, when occupied, the
occupants themselves removed ozone with a first-order rate
constant of 0.09 h™". Given that one or two occupants were
commonly present in the 350 m® home, this loss rate is equiv-
alent to an effective volumetric removal rate for ozone of 16-32
m® h™' per person, roughly consistent with prior studies in
other types of indoor settings. Additional results and implica-
tions from this study are presented in Section 4.2. Deng et al.*
made real-time measurements of naturally occurring nitrous
acid, nitrogen oxides, ozone, and organics in an apartment
room in Guangzhou, China. In this study, researchers used
scripted activities (e.g, opening/closing windows, and
mopping) and deliberately varied the number of occupants in
the room. Ozone levels were affected by occupancy. Numerous
ions with mass-to-charge ratios indicative of compounds
derived from ozone reactions with skin oils (e.g., 6-MHO, and
geranyl acetone) were higher during periods of occupancy.
The flux of ozone to a surface normalized by the freestream
ozone concentration is referred to as ozone's deposition
velocity, vy,, with units of m h™".7° In the present paper, in
addition to considering ozone's deposition velocity to the
human body, we will use “volumetric ozone removal rate per
person,” Qy, which is analogous to the “clean air delivery rate”
(m® h™') used to evaluate the efficacy of stand-alone air
cleaners. These two parameters are linked by the apparent
surface area of the human envelope, 4y, such that Q, = A4y, X vy,.
A typical value for an adult is 4;, = 1.8 m>.”* Table 1 summarizes
reported values for the “effective” deposition velocity (v;,) and
volumetric ozone removal rate per person (Qy,), as measured in
different indoor environments. Reported deposition velocities
range from 7.2 to 8.3 m h™" per person in a simulated aircraft
cabin® to 18.5 & 0.5 m h™' per person in a chamber.”” The
corresponding values of Qy are 13-15 m® h™' in the aircraft
cabin study and 33.3 + 0.9 m® h™" in the chamber study. In the
aircraft cabin study, the occupant density was high, the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table1 The effective ozone deposition velocity (v,) to human occupants and the corresponding volumetric ozone removal rate per person (Qy),

as reported in different studies

Location Conditions vg(mh™) Qn(m*h™h Reference
Simulated aircraft cabin Four experiments, each with 16 occupants 7.2-8.3 13-15 58
Simulated office Two experiments, each with two occupants 14, 18 25,32 6
Simulated office Six experiments, each with 18-20 occupants 18+ 4 32+7 73
Classroom Teacher and 24 pupils” 16 +£4 16 + 4 62
Classroom 15-64 occupants on the day of measurement 9° 16” 74
Bedrooms 52 measurements in 5 bedrooms with 1-3 15+ 10 27 +£18 75
occupants

Chamber 11 experiments, 4 occupants each — long clothes® 16.8 + 1.7 30+3 72
Chamber 5 experiments, 4 occupants each — short clothes® 18.5 £ 0.5 33+£0.9 72
Occupied home Two occupants, eight weeks of sampling 9-18 16-32 68

“ Surface area of 1 m” per pupil used to calculate deposition velocity to children. b Nine-hour average. © T = 27-28 °C.

occupants were in aircraft seats the entire time, and air flow
around the body differed from the other studies summarized in
Table 1. Such features may influence the net reaction rate of
ozone on occupants.

The chamber study by Beko et al.”” included 11 experiments
in which the 4 occupants wore long shirts, pants, and socks (v
=16.8 £ 1.7 m h™ ") and 5 experiments in which they wore t-
shirts, shorts, and short socks (v, = 18.5 & 0.5 m h™'). The
difference in deposition velocities between these conditions was
small but statistically significant (p = 0.0003). The statistical
significance disappears (p = 0.3) if the comparison is restricted
to studies that used the same volunteers (4 experiments with
long clothing (v, = 18.0 + 0.8 m h™") and 4 experiments with
short clothing (v, = 18.5 £ 0.5 m h™%)). This evidence suggests
that the amount of exposed skin has little influence on the
ozone deposition velocity averaged over the human envelope.
Temperature and relative humidity were also varied during
these chamber studies. The largest deposition velocity (v, =
23.3 m h™") was measured at 32.5 °C and 62% RH as compared
to 17.3 m h™' at 28 °C and ~25% RH. Taken together, the
studies listed in Table 1 suggest ozone deposition velocities to
the human envelope indoors are in the range v, = 10-20 m h ™,
corresponding to volumetric ozone removal rates per person of
Qn = 18-36 m® h™". Approximate central tendency values are vy,
=15m h ™" per person or Q, = 25 m*® h™* per person, numbers
that we'll utilize in illustrative calculations later in this paper.

The deposition velocities of ozone to human surfaces listed
in Table 1 are remarkably large when compared to the deposi-
tion velocity of ozone to inanimate indoor surfaces (~1 mh™").*
A key reason for this difference is the abundance of -C=C-
bonds in skin oils on the human body envelope, including on
hair and clothing.

The measured ozone deposition velocities to a human
surface are larger than those calculated by some (~8-10 m
h™),7°78 but not all (~22 m h™')” computational fluid dynamic
simulations. Airflow conditions would influence the effective
deposition velocity of ozone to humans. Seemingly large values
may reflect the generally higher airflows associated with the
personal convective boundary layer.** The buoyancy-induced
volumetric air flow above a standing person may be as high as
60 L s~ ".** Furthermore, the airflow around a human body in

© 2023 The Author(s). Published by the Royal Society of Chemistry

carefully controlled chamber experiments and in numerical
simulations may differ from that in actual indoor environ-
ments. Contributions to the large deposition velocity values to
humans may also derive from ozone reacting with skin flakes
shed from human surfaces,®** either on the inanimate surfaces
adjacent to an occupant or in the envelope of air that surrounds
an occupant. Although representing relatively small sinks based
on measured emission rates,*”> ozone would also react with
gaseous 6-MHO and other unsaturated products emitted by
ozone/skin surface chemistry on humans. Perhaps it is
a combination of such factors, in addition to the direct reaction
of ozone with skin and clothing surfaces, that contribute to the
large “effective” deposition velocities (and correspondingly
large volumetric removal rates) associated with indoor
occupants.

A first-order loss-rate coefficient for ozone because of its
reaction with the human envelope (k,) in an indoor environ-
ment can be estimated as the quotient of ozone's volumetric
removal rate per person (Qp) and the volume of the occupied
space (V):

kn = OV (1)

For example, if the volumetric removal rate due to a single
occupant (Qy) is 25 m® h™" and the volume of the occupied
space (V) is 30 m?®, then the occupant removes ozone with
arate constant of 0.85 h™*, a value similar to that measured by
Wisthaler and Weschler.® One should expect the removal of
ozone by human occupants to vary with occupant density. For
the conditions just outlined, two adults in a 30 m® room
would remove ozone with a rate constant of 1.7 h™" while one
adult in a 60 m® room would remove ozone with a rate
constant of 0.4 h™*.

Further relevant evidence is available from studies of the
influence of ozone exposure on skin-oil composition. Using
glass capillaries touched by human fingers, Zhou et al.>* have
demonstrated a significant chemical change in the composition
of skin oil over timescales of hours at typical indoor and
outdoor ozone concentrations. In vivo, ozone exposure is known
to alter the relative level of skin-oil constituents. For example, in
the elevated ozone environment of Mexico City, the average
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squalene/cholesterol ratio in skin wipes of 96 volunteers was
smaller (7.6 pg pg~ ") than in skin wipes from 93 volunteers in
the less polluted environment of Cuernavaca (11.7 pg pg~').* In
a related study, squalene averaged 12% of total lipids for skin
wipes from 79 volunteers in the more polluted air of the Xu Jia
Hui district of Shanghai as compared to 16% of lipids in wipes
from 80 volunteers in the cleaner air of Chong Ming.** In recent
chamber experiments in which four volunteers were exposed to
35 ppb ozone for approximately three hours, the ratio of squa-
lene to cholesterol in skin wipes taken after the exposure
decreased by about 35% relative to the pre-exposure ratio.*®

At some point, do the ozone-reactive compounds present on
an occupant's skin, hair, and clothing become depleted? When
considering this question, it is informative to compare the
secretion rate of double bonds found in sebum with ozone flux to
the human envelope.'” As estimated in Section 2.1, adults excrete
double bonds in sebum at a rate of approximately 1000 pmol of -
C=C- bonds per m” per h. At a typical indoor ozone concen-
tration of 5 ppb and a deposition velocity of 15 m h™" to the
human envelope, the flux of ozone to an occupant's surface
would be 3 pmol m > h™". In chamber experiments,* the ozone
flux to humans was 20 pmol m~2 h™, while outdoors in Mexico
City and Shanghai, ozone flux likely was somewhat larger than 60
umol m~> h™'. Hence, whereas squalene depletion has been
observed in skin wipes of individuals exposed to elevated ozone
levels, the rate at which the sebaceous glands secrete double
bonds is much larger than the rate at which ozone is anticipated
to consume double bonds in skin surface lipids. One may infer
from this evidence that occupants would continue to be impor-
tant ozone sinks throughout extended periods of exposure.

3.2 Influence of clothing

The human body is commonly clothed. Ozone reacts irreversibly
on clothing. Some portion of the reactivity may be attributable to
the clothing fabrics themselves.”** However, ozone also reacts
with skin oils that accumulate on clothing during wear. This
feature was first revealed when previously worn t-shirts were
placed over seat backs in a simulated aircraft cabin and organic
emissions were measured with and without ozone added to
ventilation air.*® Products derived from the oxidation of human
skin lipids were observed when ozone was present. Ozone reac-
tivity is much higher on previously worn clothing than on freshly
laundered fabrics. Through contact transfer, clothing acquires
skin oil relatively quickly. Cotton t-shirts* as well as cotton, wool,
and polyester fabrics®® that had been in contact with skin over-
night were found to be strong emitters of skin-oil oxidation
products when exposed to ozone. In chamber experiments, Rai
et al.* observed that a t-shirt worn for a few hours consumed
more ozone and generated more VOCs than did a freshly laun-
dered t-shirt. The first-order rate constant for ozone removal in
a chamber increased from 0.4 to 1.2 h™" when a freshly laundered
t-shirt was introduced to a previously empty chamber. The rate
increased to 1.3 h™! when a t-shirt worn for 2 hours was intro-
duced and to 1.9 h™" when a t-shirt worn for 6 hours was intro-
duced. There was no further increase in the ozone removal rate
constant for a shirt that had been worn for 12 h.
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Laundered clothing impedes ozone/skin oil chemistry. In
experiments in which four volunteers entered a chamber with
freshly laundered long-sleeve shirts, long pants, and calf socks
and were exposed to ozone 3.5 hours later, the emission rate of
products characteristic of skin oil was ~2400 ug h™" per
person. In an analogous experiment, when the volunteers wore
shorts, t-shirts, and ankle socks the emission rate was ~3500
ug h™" per person.*? Notably, overall ozone consumption by the
four volunteers was similar whether wearing short clothing
(with more exposed skin) or long clothing. Although the
emission rates of skin oil-derived products decreased with long
clothing, those of certain products were higher, suggesting
a contribution from reactions between ozone and clothing-
associated chemicals that did not originate from skin oil.
When two volunteers, who had sat in the chamber for 1.5 h
without a shirt, put on freshly laundered t-shirts, the concen-
trations of 6-MHO and 4-oxopentanal (4-OPA) immediately
dropped, indicating that ozone/skin oil chemistry had been
suppressed. Concomitantly, the concentrations of nonanal
and nonenal increased, presumably because precursors of
these compounds were present in the clothing fabrics. These
experiments demonstrate that recently laundered clothing
decreases the emission of products generated by ozone/skin oil
chemistry. The extent to which clothing reduces the loss of
ozone to skin oil is expected to depend on the fraction of skin
covered by clothing, how long the clothing has been worn, and
the thickness of the fabric. In calculations that follow we
assume that between half and all (50-100%) of ozone loss on
occupant surfaces is due to skin oil, recognizing that this is
a poorly known parameter.

4 Contribution of skin oil on
nonoccupant surfaces to ozone
removal indoors

4.1 Preamble

Skin oil on nonoccupant surfaces can contribute to ozone
removal in indoor environments. Knowledge regarding ozone
loss to skin oil on off-body surfaces is scant compared to what
has been learned about ozone loss to skin oil on people. To
some extent, knowledge of surface soiling can be applied to
bound the extent to which skin oil contributes to ozone loss on
off-body surfaces. Indoor surfaces are soiled, in part, by
airborne particles and dust. This section begins with
a summary of squalene, indicative of skin oil, measured in
airborne particles and settled dust. We then examine mecha-
nisms by which skin oil might be transported to off-body
surfaces and discuss differences anticipated for the accumu-
lation of skin oil on horizontal versus vertical surfaces. We next
summarize direct evidence for ozone loss to skin oil on inan-
imate surfaces that was obtained during field studies in an
Oakland home® and an Indiana office.*” We conclude this
section with a summary of important indirect evidence: dec-
anal generated by ozone-surface chemistry as an indicator of
skin oil on indoor surfaces.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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4.2 Squalene in airborne particles and settled dust

Squalene, and, by inference, skin oil, has been identified and
quantified in airborne particles and settled dust, but only in
a few studies. Clark and Shirley** measured the mass fraction of
squalene in size-fractionated airborne particles collected from
indoor locations in greater London and used these measure-
ments to estimate the percentage of skin in the particles. Table
2 summarizes their results for squalene. For airborne particles
with diameters between 0.4 and 6 pum, collected in either
a home or in a laboratory corridor, the measured squalene mass
fraction ranged between 40 and 100 pg g~ '. For particles
between 0.3 and 5.5 um diameter, collected in the London
Underground, the measured squalene mass fraction was an
order of magnitude higher, ~1000 pug g~ * (i.e., 0.1%). Coupled
with an expected squalene abundance of 1% in squames, these
measurements suggest a remarkable finding, that 10% of the
airborne particles collected in the London Underground origi-
nated as skin from transit riders.

Weschler et al.®> measured the mass fraction of squalene in
settled dust collected from 495 children's bedrooms and 151
day-care facilities in Denmark. The findings are summarized in
Table 2. The arithmetic means were 56 ug g~ ' for dust from
bedrooms and 26 pg g~ for dust from day-care facilities. The
distributions could be described reasonably well by lognormal
fits with large variances. Homes had a geometric mean (GM) of
32 pg g ' with a geometric standard deviation (GSD) of 4.3; day-
care facilities had GM = 11.5 pg ¢~ " and GSD = 4.3. Homes with
larger occupant densities tended to have a larger mass fraction
of squalene in dust. Because squalene comprises only 10% of
skin oil, the mass fractions of skin oil in airborne particles and
settled dust are anticipated to be an order of magnitude larger
than those of squalene.

From the time that squames were initially shed from human
skin until the time that airborne particles or dust samples were
collected and analysed, double bonds from squalene and other
unsaturated skin oil constituents could be consumed by
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reactions with ozone. Consequently, the mass fractions of skin
oil in fresh airborne particles or settled dust are expected to be
higher than those listed in Table 2.

4.3 Transport of unsaturated skin oil constituents to
surfaces

Nonoccupant surfaces may accumulate skin oil via direct
deposition of squames and airborne particles containing skin
oil. Contributions may also arise via resuspension of dust-
containing skin oil followed by surface deposition. Addition-
ally, skin oil constituents or products of ozone/skin oil chem-
istry (e.g., geranyl acetone) can partition from the gas phase to
indoor surfaces. By such processes, double bonds in skin oil can
become redistributed throughout indoor environments.
Humans also transfer skin oils directly to the objects they touch,
including clothes, bedding, tables, chairs, and countertops.
Cohen Hubal et al.®** studied the contact transfer of chemicals
from surfaces to hands, but this process is certainly a two-way
exchange. Fingerprints demonstrate contact transfer of skin
oils to indoor surfaces.”® In summary, ozone-reactive
compounds in skin oil, including its unsaturated reaction
products, are anticipated to be commonly present on indoor
surfaces.

To what extent do ozone-reactive compounds in skin oil
partition to indoor surfaces? Based on its vapor pressure, (3.7 +
1.3) x 1077 Pa at 25 °C,” squalene's redistribution from
a surface at room temperature to other indoor surfaces via the
vapor phase is expected to be small (see S2 in the ESI}).
However, some indoor surfaces are occasionally warmed, e.g.,
during cooking, heating, bathing, or via sunshine. The resulting
increases in surface temperature and in the vapor pressure of
surface-accumulated skin oil constituents could promote the
redistribution of squalene to other indoor surfaces. This
transport mechanism may explain the detection by Lim and
Abbatt” of what appears to be a set of squalene-derived oxida-
tion products in surface films that had accumulated on

Table 2 Mass fraction of squalene (ug g~2) in airborne particles?® and dust samples® collected from different indoor locations

Mass fraction in airborne particles, in relation to particle diameter, d,

Indoor location Sample dp = 0.4-0.7 pm d, = 0.7-2 um d, = 2-6 pm Average
House Air 80 70 40 63
Laboratory corridor Air 50 50 100 67

dp = 0.3-2 um d, = 2-3.5 um d, = 3.5-5.5 um Average
London underground Air 1000 1000 1000 1000
Mass fraction in dust
Indoor location Sample GM (GSD) 25th percentile 75th percentile AM
Children's bedrooms Dust (N = 495) 32 (4.3) 19 73 56
0.015-0.045 occupants per m® Dust (N = 165) 29
0.045-0.067 occupants per m® Dust (N = 165) 29
0.067-0.247 occupants per m® Dust (N = 165) 1
Daycare facilities Dust (N = 151) 11.5 (4.3) 6 26 26
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vertically oriented glass tubes exposed indoors for about two
weeks. Signals obtained with their DART-MS in negative mode
are consistent with levulinic acid (m/z = 115), succinic acid
(117), a C-14 aldehydic acid (237), a C-14 diacid (253), and a C-17
acid (263). (See Table S7 of Lim and Abbatt.??). While some of
these mass-to-charge ratios are not unique markers of squalene
oxidation, taken together they represent reasonable evidence
for the presence of squalene oxidation products on exposed
indoor surfaces. The question remains whether these squalene
oxidation products derived from the in situ oxidation of squa-
lene, which was not itself detected on the glass tubes, or were
transported to the glass tubes following their generation on
indoor surfaces elsewhere. Other skin oil constituents were
detected on the glass tubes. These include pyroglutamic acid,
palmitic acid, and stearic acid, but some of these have indoor
sources in addition to skin oil. In summary, based on theoret-
ical considerations, coupled with the measurements of surface
film constituents by Lim and Abbatt, it appears that squalene
may migrate to indoor vertical surfaces via the gas-phase at
a slow rate. Rapid oxidation by ozone would preclude its
substantial accumulation.

At 25 °C, unsaturated fatty acids in skin oil have vapor
pressures in the range 5-100 x 10~ ® Pa and are 10-250 times
more volatile than squalene.”® Nevertheless, when these fatty
acids redistribute from skin or inanimate room temperature
surfaces, their fluxes to other surfaces are expected to be smaller
than ozone's. When redistributing from heated surfaces, such
unsaturated fatty acids are more likely than squalene to have
fluxes to other surfaces that approach those of ozone.

Unsaturated skin oil oxidation products (e.g., 6-MHO and
geranyl acetone) occur with much larger average concentra-
tions in indoor air than squalene or unsaturated fatty acids. In
the Oakland home monitored for an extended summer period,
the average indoor 6-MHO concentration was 0.35 ppb during
occupancy.® In an Indiana office, also monitored for an
extended period, it was often in the range of 0.2 to 0.3 ppb
during occupancy.®” Geranyl acetone (GA) concentrations tend
to be smaller than 6-MHO, but GA also has a substantially
larger octanol/air partition coefficient (K,,) and a correspond-
ingly greater tendency to sorb on indoor nonpolar surfaces.
The low water-air (Ky,) partition coefficients would limit the
partitioning of 6-MHO and GA to polar sorptive reservoirs.*
(For 6-MHO, log K,,, = 5.0, log K,,, = 2.5; for GA, log Ky, = 7.1,
log Ky, = 2.3 as calculated for 25 °C using SPARC.) This
evidence hints that transport from the vapor phase of unsat-
urated skin oil oxidation products may contribute to skin oil
double bonds on indoor surfaces - not just in the instance of
geranyl acetone but also for other higher molecular weight
unsaturated ozonolysis products such as 5,9,13-trimethyl-
tetradeca-4,8,12-trienal (TTT).

Ultrafine particles (UFP) rich in unsaturated skin oil oxida-
tion products®*® can also soil indoor surfaces. However,
calculations using what we know about such processes suggest
that the flux of UFP rich in skin oils to indoor surfaces would be
too small for this transport mechanism to constitute a major
surface-reaction sink for indoor ozone (see S3 in the ESIY).
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4.4 Influence of surface orientation

Coarse particles derived from skin flakes predominantly
deposit by means of gravitational settling, which means onto
upward oriented surfaces. In general, coarse particle deposi-
tion rates to upward-facing surfaces are much faster than to
vertical surfaces.*®” We have previously estimated® that
indoor particle deposition and dust fall contribute organic
matter to upward surfaces at a rate of 600-9000 pg m~> day "
and to vertical surfaces at a rate of 0.3-4 pug m~> day . The
large difference in these ranges suggests that double bonds
from skin oil associated with particles and dust accumulate at
relatively slow rates on vertical surfaces. Limited counter-
vailing experimental results®® and recent modelling assess-
ments® suggest higher deposition rates of coarse particles to
vertical surfaces than predicted by simple models. In small to
medium rooms (30-50 m?), upward-facing surfaces nominally
comprise only about 20% of the total indoor surface area.
Deposition to vertical surfaces might be large enough to
matter, especially when one considers that settled dust on
floors can be resuspended via disturbances such as footfalls
multiple times, thereby presenting repeated opportunities for
deposition to other surfaces. In addition, the vapor-phase
transport of skin oil constituents and their unsaturated ozo-
nolysis products may contribute to double bonds on vertical
and downward-facing surfaces to a degree that would be
comparable to upward surface deposition from the vapor
phase. Also, skin oil can be transferred directly to vertical
surfaces by physical contact. However, if transfer from human
contact is a major pathway by which skin oil accumulates on
vertical surfaces, then the distribution of skin oil on vertical
surfaces should be more broadly heterogeneous than would be
the case if airborne transport dominates.

Wang and Morrison'® sampled both horizontal and vertical
surfaces in four occupied homes. They measured a range of
aldehydes emitted because of ozone reacting with these
surfaces. Decanal was among the identified products, which is
noteworthy since decanal resulting from ozone-initiated surface
chemistry is due almost exclusively to reactions with skin oil
constituents (see Section 4.6). The mean decanal yield from
upward-facing horizontal surfaces (living room carpets, kitchen
floors and rugs, and kitchen countertops) was 0.013 + 0.013.
Measurements on vertical surfaces (living room walls) show low
decanal yields (0.00 and 0.01 + 0.0027) in two homes but high
and highly variable yields in a third (0.12 + 0.43). No
measurement is reported for the fourth home. The elevated and
variable yields on the wall of the third home are suggestive of
direct touch as a skin-oil transfer mechanism. These few
measurements hint that the decanal yields on vertical surfaces
may be only fractionally smaller than those on horizontal
surfaces. If this were to be confirmed in a larger sampling of
homes, that would suggest a greater degree of influence of skin-
oil-associated ozone reactivity on vertical surfaces than can be
presently accounted for by partitioning of unsaturated skin oil
constituents and their unsaturated products or by deposition of
particles containing such skin-oil derived species. With respect
to ozone removal by skin oil, even if upward surfaces had an
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area-normalized rate that was as much as five times higher than
that on vertical surfaces, aggregate scavenging by the larger net
area of vertical surfaces could still be a substantial fraction of
the total, given the relative proportion of surface orientations.

4.5 Field evidence

Early evidence that skin oils influence ozone reactivity of off-
body surfaces emerged from the study by Fischer et al.®* of
ozone chemistry in a Swedish classroom. The investigators
measured elevated concentrations of 4-OPA when the class-
room had been vacant for at least an hour and speculated that
ozone might be reacting with “soiled furniture, books and
other objects that were handled by the pupils and teacher
during the workday ....” More definitive evidence is found in
Liu et al.,® who analysed continuous measurements of ozone
and ozonolysis products over an eight-week summer period in
an Oakland, CA home with two occupants. Among the ozone/
skin oil products monitored were 6-MHO, 4-OPA, and decanal.
During normal occupancy, the measured net yield (moles of
product per mole of O; consumed) for these three species was
bounded to be >6.6% (see Table 1 of Liu et al.). On average, 6-
MHO, 4-OPA, and decanal have been found to constitute 35—
45% of the gas-phase products resulting from ozone/skin oil
chemistry.*>** Assuming these percentages apply at the Oak-
land study site, we estimate that 15-19% of ozone loss by
chemical reaction in the occupied home was attributable to
reactions with skin oil on occupant and nonoccupant
surfaces. Liu et al.® estimated that during the initial hours of
vacancy, off-body skin oil was responsible for a 6-MHO
production rate that was 80% of its production rate during
occupancy (see S4 in the ESIt). Assuming that off-body skin oil
was responsible for 80% of the total production of gaseous
products derived from ozone/skin oil chemistry, we estimate
that 12-15% of reactive ozone loss during occupancy of this
Oakland home was due to reactions with skin oil on non-
occupant surfaces.

Analysing the same primary dataset, Zhang et al.>* charac-
terized “off-body squalene ozonolysis on indoor surfaces” in the
Oakland home using a previously developed model.*® Zhang
et al> estimated a nonoccupant surface density of 2.7 pmol
m~> for double bonds contributed by squalene plus three
polyunsaturated aldehydes produced by squalene ozonolysis
(TOP, TOT, and TTT). The density of double bonds from other
skin oil constituents is expected to be similar to those of
squalene and unsaturated products derived from squalene.
Hence, the level of double bonds from skin oil in this house
would have been approximately 5.4 umol m~> during normal
occupancy. This value is approximately five times the mean
value for double bonds from all sources on vertical surfaces
sampled in university buildings®* and somewhat larger than the
residual level of double bonds from all sources on horizontally
oriented substrates sampled in an office and a residence (see
Section 2.4).>* Even recognizing likely differences in indoor
ozone levels and known differences in surface orientation, each
of which affects the abundance of double bonds on a surface,
the comparison suggests that skin oil contributed substantially
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to the net level of double bonds on nonoccupant surfaces in the
Oakland home.

Using continuous, real-time measurements in an occupied
office, indoor ozone was associated with an average net yield for
6-MHO, 4-OPA, and decanal of 9%.%” Assuming 6-MHO, 4-OPA,
and decanal constitute 35-45% of the gas-phase products
resulting from ozone/skin oil chemistry, we estimate that 20-
25% of ozone loss by chemical reaction in this occupied office
was attributable to reactions with skin oil on occupant and
nonoccupant surfaces. Wu et al.¥” erroneously reported that
ozonolysis of off-body skin lipids was not an important source
of skin oil ozonolysis products in their study, a consequence of
miscalculating the ozone loss rate to indoor surfaces, as
acknowledged in personal correspondence. Our analysis of data
from this study suggests that a large fraction of what Wu et al.
ascribed to desorption of 6-MHO, 4-OPA, and decanal from
surfaces is instead attributable to ozone reactions with skin oil
on off-body surfaces (see S5 in the ESI{).

These field studies are the only direct published evidence
that skin oil on nonoccupant surfaces consumes indoor ozone.

4.6 Estimates based on decanal yields

Nominally, an acyl group is an entity that results when an “OH” is
removed from an oxoacid. An acyl group that contains a double
bond located ten carbon atoms from the terminal methyl group
can be described as an w-10 acyl group (i.e., CH;(CH,)sCH=
CH-). Decanal is a major product when Oj reacts with the double
bond in an w-10 acyl group. The three most abundant unsatu-
rated fatty acids in human skin surface lipids contain w-10 acyl
groups. These are cis-hexadec-6-enoic acid (sapienic acid, Fig. 2),
22% of the total fatty acids by weight; cis-octadec-8-enoic acid,
9%; and cis-15-methylpentadec-6-enoic acid, 4%.'® Together
these three decanal precursors constitute 35% of the fatty acids
in skin-surface lipids.

Other decanal precursors in skin oil include octadeca-5,8-
dienoic acid (sebaleic acid), 1% of the total fatty acids, and
the most common polyunsaturated lipid in skin oil; cis-eicos-10-
enoic acid, 0.5%j and cis-eicos-7,10-dienoic acid, 0.5%. The acyl
groups present in the fatty acids that are decanal precursors are
also present in the triglycerides, diglycerides, monoglycerides,
and wax esters that occur in skin oil. Table 3 summarizes the
decanal precursors in skin oil and lists their molar fraction of
total unsaturations, assuming that the distribution of acyl
groups in wax esters and tri-, di-, and monoglycerides is like that
in free fatty acids." Altogether, on a molar basis, the decanal
precursors constitute about a third of the total -C=C- bonds in

= COOH

CHs

Fig.2 Sapienic acid (cis-hexadec-6-enoic acid, C1gH300,) is the most
