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2-dicarbofunctionalization of
alkenes with organotrifluoroborate nucleophiles
via radical/polar crossover†

Maŕıa Jesús Cabrera-Afonso, ‡a Anasheh Sookezian, ‡a Shorouk O. Badir, a

Mirna El Khatib b and Gary A. Molander *a

Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase

of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through

the intermediacy of alkylmetal species susceptible to deleterious pathways including b-hydride elimination

and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N-(acyloxy)

phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered

nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through

photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent

trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation,

carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic

intricacies of this difunctionalization were elucidated through Stern–Volmer quenching studies,

photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates.
Introduction

The vicinal difunctionalization of alkenes has emerged as an
enabling technology in organic synthesis to access diverse
structural skeletons from readily available building blocks.1,2 In
particular, intermolecular 1,2-dicarbofunctionalization (DCF)
reactions represent a powerful method to install two carbon
subunits across an unsaturated system in one step with an
accompanying increase in molecular complexity.3 Traditionally,
DCF efforts have been largely limited to transition-metal-
mediated processes, with1 or without2 the aid of a photo-
catalyst (Fig. 1A). Palladium,4 nickel,5 copper,6 and othermetals7

have all been utilized to afford 1,2-substituted products.
Although these DCF advancements represented milestones in
their own right, the necessity of a metal catalyst can lead to
numerous deleterious pathways, such as b-hydride elimination,
homocoupling, isomerization, or proto-demetalation.1

Radical/polar crossover (RPC) has recently been enlisted to
assemble challenging structural motifs under mild reaction
conditions (Fig. 1B).8,9 Under RPC paradigms, odd-electron
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intermediates are generated through single-electron transfer
(SET) and then engage in further transformations. The resulting
radical species can subsequently undergo single-electron
Fig. 1 Strategies for olefin 1,2-difunctionalization. (A) Transition-
metal-catalyzed difunctionalizations. (B) Overview of photochemical
radical/polar crossover. (C) Developed vicinal dicarbofunctionalization
using organotrifluoroborate nucleophiles.
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reduction10,11 or oxidation12,13 to enter the two-electron reaction
domain for further diversication. Although photo- and elec-
trochemical RPC-mediated intermolecular 1,2-DCFs that
proceed with in situ formed carbanions have been reported,
these efforts are largely limited to carbonyl alkylation8d,10 or
carbocarboxylation.8d,11

Methods to incorporate carbon-centered nucleophiles typi-
cally rely on the use of electrophilic radicals including per-
uoroalkyl feedstocks as well as strongly nucleophilic, electron-
rich systems in conjunction with Lewis acids or peroxides as
additives.13 In this vein, the development of a general RPC route
employing two carbon-based coupling partners for DCF
remains elusive. Importantly, the implementation of a unied
approach toward the carboallylation, carboalkenylation, car-
boalkynylation, and carboarylation of alkenes presents a formi-
dable, yet highly powerful scenario to rapidly assemble
molecular complexity from commodity chemicals.
Discussion

As part of a program centered on the development of catalytic
tools for alkene functionalization, a photochemical intermo-
lecular 1,2-dicarbofunctionalization of olens with alkyl N-
(acyloxy)phthalimide redox-active esters (RAEs) as radical
progenitors has been developed (Fig. 1C). RAEs are bench-stable
solids readily accessible from carboxylic acids with an
Table 1 Optimization of reaction conditionsa

Entry Deviation from std. conditions % Yieldb

1 None 89
2 PC2 instead PC1 81
3 PC3 instead PC1 67
4 PC4 instead PC1 91
5 PC5 instead PC1 89
6 PC6 instead PC1 52
7 PC7 instead PC1 58
8 PC8 instead PC1 68
9 PC9 instead PC1 81

a Reaction conditions: styrene 1a (0.1 or 0.2 mmol), RAE 2a (1.5 equiv.),
MeCN (0.1 M), 24 h irradiation with blue LEDs (lmax ¼ 456 nm). b Yiel
internal standard. Abbreviations: std, standard; nr, no reaction.

9190 | Chem. Sci., 2021, 12, 9189–9195
established propensity to undergo decarboxylative fragmenta-
tion upon single-electron reduction.14 We envisioned that
radical addition to vinyl arenes would generate key radical and
carbocation intermediates that could be harnessed in sequen-
tial bond formation through RPC. With these goals in mind, the
interrogation of potassium organotriuoroborates as nucleo-
philes to construct C–C linkages under photoredox catalysis was
considered, as they have been shown to engage in addition
reactions under Brønsted and Lewis acid catalysis.15 Further-
more, alkynyltriuoroborates have been enlisted as alternative
nucleophilic partners in Suzuki–Miyaura cross-couplings, with
the Bsp3–Csp bond being adequately polarized to engender
a direct transmetalation event.16 From a synthetic standpoint
and through the same RPC reactivity mode, the proposed
strategy would facilitate carboallylation, carboalkenylation,
carboalkynylation, and carboarylation from commodity chem-
icals with regio- and chemoselective control. Notably, this net-
neutral photochemical RPC process is driven by SET events
that occur predominantly between the photocatalyst and
substrates/intermediates, bypassing the requirement for stoi-
chiometric external reductants or oxidants.

To examine the feasibility of the proposed reaction design, 4-
acetoxystyrene 1a, aliphatic RAE 2a, and potassium (2-phenyl-
ethynyl)triuoroborate 3a were employed (Table 1). A more
detailed optimization of the equivalences of reaction compo-
nents, catalyst loading, solvent, and reaction concentration is
Entry Deviation from std. conditions % Yieldb

10 PC10 instead PC1 nr
11 PC11 instead PC1 Trace
12 PC12 instead PC1 nr
13 PC13 instead PC1 nr
14 20 mol% Cu(OTf)2 32
15 20 mol% Yb(OTf)3 36
16 No PC nr
17 No light nr

potassium organotriuoroborate salt 3a (2 equiv.), Ir(ppy)3 (3 mol%) in
ds were determined by 1H NMR analysis using trimethoxybenzene as

© 2021 The Author(s). Published by the Royal Society of Chemistry
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provided in the ESI.† Here, the most relevant ndings are
highlighted, namely the critical performance of photoredox
catalysts on the DCF outcome.

Notably, the crux of this net-neutral RPC approach is a series
of well-orchestrated, single-electron oxidation and reduction
steps. To achieve chemo- and regio-selectivity, the following
criteria must be considered: (i) the aliphatic RAE should be
more susceptible to reduction than the alkene or the resulting
benzylic radical formed upon addition to the olen. (ii) The
alkyl radical should react with alkene 1 at a rate faster than its
single-electron oxidation to a carbocation intermediate or
radical dimerization. (iii) The rate of benzylic radical oxidation
must be competitive with its addition to another equivalent of
the styrene. (iv) The rate of single-electron oxidation of the
benzylic radical must be faster than that of the radical inter-
mediate generated from RAE reduction. (v) The rate of nucleo-
philic addition of the potassium organotriuoroborate to the
benzylic carbocation should take place preferentially over
single-electron oxidation of the organoboron reagent under
photoredox conditions. (vi) This rate must also be competitive
with the nucleophilic addition of phthalimide anions generated
upon decarboxylative fragmentation of the RAE. In this vein, the
choice of photocatalyst signicantly impacts product distribu-
tions. Given the propensity of RAEs to undergo SET (Ered1/2 ¼
�1.26 V vs. SCE for 1-methylcyclohexyl-N-hydroxyphthalimide-
ester17), a palette of catalysts in acetonitrile (MeCN) was
surveyed (entries 1–13). Reducing iridium-based (Ir) photo-
catalysts in combination with 2-phenylpyridine (ppy) derived-
ligands (entries 1–9) exhibited optimal reactivity, affording 4a
in excellent yield. Importantly, in the absence of a highly
oxidizing photocatalyst, the corresponding organo-
triuoroborates would not undergo SET.18 As expected, weaker
reductants, PC10 (IrIV/*IrIII E1/2¼�1.00 V vs. SCE19) and organic
dye PC11 (PCc+/PC* E1/2 ¼ �1.12 V vs. SCE19), showed little
(entry 11) to no conversion (entry 10). Notably, iron-based
catalyst PC12 (FeIII/*FeII E1/2 ¼ �1.65 V vs. SCE19) and organic
sensitizer PC13 (PC$+/PC* E1/2 ¼ �2.1 V vs. SCE19) resulted in
full recovery of the styrene derivative (entries 12–13), presum-
ably because they possess a short excited-state lifetime (for
PC13, s ¼ �0.8–2.3 ns (ref. 19)). Inspired by precedents on the
activation of RAEs with Lewis acids,20 the inuence of these
additives on the outcome of the three-component photochem-
ical paradigm was studied. Surprisingly, the addition of
Cu(OTf)2 or Yb(OTf)3 led to a decrease in yield (entries 14–15).
Control experiments omitting light as well as photocatalyst
validated the necessity of all reaction components to facilitate
sequential bond formation (entries 16–17).

With suitable conditions established, the scope of RAEs with
nucleophile 3a was evaluated (Scheme 1). In general, the reac-
tion is amenable to an array of unactivated secondary and
tertiary radical architectures. The method further benets from
broad substrate tolerance, facilitating the incorporation of
a strained cyclobutane subunit (4b), a Boc-protected amine (4d),
a bridged bicycle (4e), acyclic moieties, as well as biologically
relevant scaffolds including lipid-lowering agent gembrozil
(4h). In addition, efficient product formation occurs in the
presence of an internal olen (4c), showcasing the
© 2021 The Author(s). Published by the Royal Society of Chemistry
chemoselectivity of this protocol toward styrenyl-type systems.
Notably, RAE bearing a chloride handle (4g, 4k, 4y, 4ah, 4ai) can
be introduced without compromising yields, delivering linch-
pins that can drive molecular complexity through subsequent
transition metal-mediated functionalization.

Next, the reactivity of various potassium organo-
triuoroborates using 4-acetoxystyrene 1a was evaluated
(Scheme 1). Carboallylation proved feasible, affording the
difunctionalized product (4j) in good yield, while simulta-
neously incorporating an olenic moiety that can engage in
diverse downstream alkene transformations. Although progress
has been made in conjunctive cross-couplings employing
transition-metal catalysts with alkynyl, alkenyl, alkyl, and aryl
electrophiles, the use of allyl counterparts remains scarce.21,22 In
addition to b-hydride elimination associated with alkylmetal
species, these processes are further complicated by the gener-
ation of undesired two-component allylation products. Impor-
tantly, the allyl handle might be susceptible to additional
insertion events resulting in oligomerization.21,22 In this vein,
the utility of the developed three-component allylation is
partially driven by its ability to deliver two C(sp3)–C(sp3) link-
ages selectively from readily available building blocks. Simi-
larly, potassium arylethynyltriuoroborates bearing electron-
donating (para-methoxy, 4k) or electron-neutral (naphthyl, 4l)
substituents serve as effective nucleophiles. The phenyl moiety
was successfully replaced by primary short- (4m) and long-chain
(4o) alkyl groups as well as more sterically hindered carbocycles
(4n). The scope was further extended to alkenyltriuoroborates
(4p–4s), with aryl-substituted derivatives performing slightly
better under the reaction conditions. Notably, both the (E)- and
(Z)-isomers of 1-propenyltriuoroborate resulted in product
formation with retention of stereochemistry about the olen
(4p, 4q).

Remarkably, aryltriuoroborates function as competent
nucleophiles, facilitating intermolecular 1,2-alkylarylation
(Scheme 1). Substitution at the para- and meta-positions of the
aryl scaffolds was explored, whereby efficient photocoupling
took place. Specically, alkoxy derivatives, a methyl thioether,
and a Boc-protected amine were successfully harnessed to
afford difunctionalized synthetic frameworks (4t–4aa). The
amenability of aryltriuoroborates provides a facile, unique
approach toward the synthesis of 1,1-diaryl compounds of
signicance in drug discovery efforts.23 Furthermore, medici-
nally relevant heterocycles such as furan (4ab, 4ad) and thio-
phene (4ac) moieties exhibited good reactivity. Notably, this
photoredox-mediated RPC proceeds exceptionally well with
electron-rich aryl systems that suffer from lower coupling effi-
ciency in certain transition-metal-catalyzed cross-couplings.
The mild reaction conditions (room temperature, additive-
free, and near-neutral pH) serve to suppress side reactivity
stemming from an otherwise competitive hydrodeboration of
the triuoroborate starting material.

Finally, the scope of olens was investigated (Scheme 1). In
general, styrenes bearing no substitution, electron-donating,
and electron-withdrawing groups at the ortho-, meta-, and
para-positions exhibited comparable reactivity (4ae–4ai). Of
note, aryl bromide 4ag proved to be a suitable substrate with
Chem. Sci., 2021, 12, 9189–9195 | 9191
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Scheme 1 Evaluation of substrate scope. Reaction conditions: styrene 1 (0.3 mmol), RAE 2 (0.45 mmol, 1.5 equiv.), potassium organo-
trifluoroborate salt 3 (0.6 mmol, 2 equiv.), Ir(ppy)3 (3 mol%) in MeCN (3.0 mL, 0.1 M), 24 h irradiation with blue LEDs (lmax ¼ 456 nm).
a[Ir(dtbbpy)(ppy)2]PF6 (3 mol%) was used instead Ir(ppy)3.

bGram scale reaction: styrene 1 (6.2 mmol).
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complete retention of the halide handle, providing a clear
advantage in terms of scope over traditional transition-metal-
catalyzed DCFs. A broad array of functional groups is toler-
ated, including esters, ketones, Boc-protected amines, and
carbamates (4aj–4ar). Additionally, a substrate derived from
estrone was examined, generating steroid derivative 4an in
excellent yield. Heterocyclic compounds including pyridine,
benzofuran, benzothiophene, and indazole systems were
readily incorporated under the developed conditions (4ao–4ar).
In particular, these Lewis basic moieties are traditionally chal-
lenging structures in cross-couplings because of their ability to
bind and poison the catalyst.

To conrm this RPC protocol was unique to potassium
organotriuoroborates, boronic acid 3xa, pinacol boronate 3xb,
and MIDA boronate 3xc were tested as partner nucleophiles but
proved ineffectual (Scheme 2A). These results are in accordance
with the N-parameters reported by Mayr,24 a solvent-dependent
nucleophilicity scale, which identied potassium
9192 | Chem. Sci., 2021, 12, 9189–9195
organotriuoroborates as one of the most reactive nucleophilic
organoboron sources.

To investigate the reaction mechanism, radical and carbo-
cation trapping studies were performed under standard
conditions (Scheme 2). Addition of TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy) inhibited product generation.
Specically, recovery of 4-acetoxystyrene 1a was observed, and
the corresponding TEMPO adduct 5 was isolated and
conrmed via NMR and HRMS analysis (Scheme 2B). To probe
the intermediacy of carbocation species, nucleophilic trapping
experiments were conducted using O-centered nucleophiles
with slight modications in the loading of these reagents (3.0
equiv. of MeOH or 30.0 equiv. of H2O). The corresponding
ether 6 and alcohol 7 were successfully isolated and charac-
terized, providing further credence to the existence of an ionic
pathway (Scheme 2C).

Stern–Volmer luminescence studies of individual reaction
components established that the excited state photocatalyst was
quenchedmost effectively by the aliphatic RAE with an observed
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 (A) Reactivity studies of organoboron compounds. (B)
Radical trapping experiments. (C) Carbocation trapping experiments.
(D) Stern–Volmer quenching. Reaction conditions: styrene 1 (0.2
mmol), RAE 2 (0.3 mmol, 1.5 equiv.), potassium organotrifluoroborate
salt 3 (0.4 mmol, 2 equiv.), Ir(ppy)3 (3 mol%) in MeCN (2.0 mL, 0.1 M),
24 h irradiation with blue LEDs (lmax ¼ 456 nm). aYield was determined
by 1H NMR analysis using trimethoxybenzene as internal standard.
Abbreviations: nr, no reaction.
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constant KSV of 1.4 � 104 M�1 (Scheme 2D, see the ESI†).
Furthermore, the photochemical quantum yield F of this
reaction is 0.26, indicating that a radical chain mechanism is
unlikely or inefficient (see the ESI†).25

Based on these ndings, a mechanistic scenario is
postulated (Scheme 3) whereby excitation of Ir(ppy)3 under
blue light irradiation generates a potent excited state *[Ir]III

complex (E1/2 [Ir
IV/Ir*III] ¼�1.88 V vs. SCE19). Single-electron

transfer (SET) to RAE 2 (Ered
1/2 ¼ �1.26 V vs. SCE for 1-meth-

ylcyclohexyl-N-hydroxyphthalimide ester17) induces forma-
tion of C(sp3)-hybridized radical A followed by extrusion of
carbon dioxide. Subsequent addition of this reactive inter-
mediate to vinyl arene 1 furnishes a relatively stabilized 2�

benzylic radical B (Eox
1/2 ¼ 0.37 V vs. SCE26). Single-electron

oxidation of this species by [Ir]IV (E1/2 [IrIV/IrIII] ¼ 0.77 V vs.
SCE19) yields the corresponding carbocation C, restoring the
Scheme 3 Proposed mechanism of photoinduced olefin dicarbo-
functionalization via RPC.

© 2021 The Author(s). Published by the Royal Society of Chemistry
ground-state photocatalyst. At this critical juncture, ionic
intermediate C is intercepted by the organotriuoroborate
nucleophile 3 to furnish the desired 1,2-dicarbofunctional-
ized product 4.

Conclusions

In summary, a unied protocol to achieve the carboallylation,
carboalkenylation, carboalkynylation, and carboarylation of
olens with regio- and chemoselective control has been devel-
oped. Through an oxidative quenching pathway, the photore-
duction of aliphatic RAEs has been enlisted to generate reactive
alkyl radical intermediates that react with alkene feedstocks in
a regulated fashion. The resulting C-centered radical undergoes
single-electron oxidation to afford a key carbocation interme-
diate that is intercepted by organotriuoroborate nucleophiles
to facilitate sequential C–C bond formation under mild reaction
conditions. Mechanistic studies, including Stern–Volmer
quenching studies, photochemical quantum yield measure-
ments, and trapping experiments of radical and ionic inter-
mediates, emphasize that a RPC-mediated mechanism is likely
operational. Most importantly, this report provides a general
blueprint toward 1,2-dicarbofunctionalizations in the absence
of organometal species.
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