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the oxidative coupling of arenes via C–H/C–H
activation†
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Karl Petter Lillerud, cd Norbert Stock bd and Dirk E. De Vos *a

C–H activation reactions are generally associated with relatively low turnover numbers (TONs) and high

catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need

for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several

palladium loaded metal–organic frameworks (MOFs) were tested as single-site catalysts for the oxidative

coupling of arenes (e.g. o-xylene) via C–H/C–H activation. Isolation of the palladium active sites on the

MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher

turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold

higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the

heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three

runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by

Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.
Introduction

The synthesis of biaryls has attracted much attention over the
past decades since these motifs are abundantly present in
pharmaceuticals, natural products, agrochemicals, specialty
monomers and other ne chemicals.1–4 Typically, the synthesis
of the biaryl groups in these compounds involves conventional
coupling reactions, such as the Suzuki reaction, which requires
pre-functionalized substrates and produces stoichiometric
amounts of salt waste.1 In recent years, formation of biaryls via
palladium catalyzed cross-dehydrogenative coupling (CDC)
reactions has been proposed as a more cost-efficient and envi-
ronmentally benign alternative, since simple arenes can be used
as substrate and water is the only byproduct if O2 is used as the
oxidant.5–7
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The primary focus of the scientic community regarding
C–H activation of aromatic C(sp2)–H bonds has been so far on
increasing the catalysts' activity and regioselectivity, besides
expanding the substrate scope.8–13 However, given the relatively
low turnover numbers (TONs) and high catalyst concentrations
generally associated with CDC reactions compared to conven-
tional coupling reactions, efficient recovery and recycling of the
precious homogeneous palladium catalyst is a key aspect in the
eventual implementation of this new synthetic strategy.14

Moreover, since the valence state of palladium changes between
Pd(II) and Pd(0) in the catalytic cycle, formation of Pd(0)
aggregates is commonly recognized as an important deactiva-
tion pathway (Scheme 1), highlighting the need for solid cata-
lysts with stable single-atom active sites.15–17 Nevertheless, only
very few heterogeneous catalysts for the oxidative coupling of
arenes via C–H/C–H activation have been reported so far.18–22
Scheme 1 Schematic representation of catalyst deactivation.

This journal is © The Royal Society of Chemistry 2019
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Metal–organic frameworks (MOFs), which are coordination
polymers made up of inorganic secondary building units (SBUs;
metal ions or clusters) and organic linkers, are an interesting
group of porous, crystalline materials that can be transformed
into heterogeneous single-site catalysts.23–26 Besides any cata-
lytic activity inherent to MOFs, common strategies to imbue
MOFs with well-dened and isolated active sites include
anchoring active transition metals on the organic linkers27–31 or
graing them on open coordination sites of the SBUs.31–40 Due
to their excellent stability, combined with high surface areas
and tunable porosity, Zr-based MOFs have already been proven
to be interesting heterogeneous scaffolds to anchor metals for
several applications ranging from sensing to catalysis.41–45

Herein, we present the rst heterogeneous MOF-based
catalysts for the oxidative coupling of arenes via C–H/C–H
activation, which exhibit superior TONs compared to their
homogeneous analogues due to isolation of the Pd(II) centers on
the MOF supports.
Results and discussion
Screening of MOF supports

The oxidative homocoupling of o-xylene via C–H/C–H activation
(Scheme 2) is considered to be a scientically and industrially
relevant CDC model reaction, since the 3,30,4,40-tetramethylbi-
phenyl product is an important intermediate in a more cost-
efficient route to prepare the high-performance polyimide resin
Upilex.7,14,46 Industrially, the reaction is stopped at low conversion
to avoid oligomerization of the products and the starting feedstock
is recycled. This justies evaluating the reaction using a TON value
instead of a single-pass yield.7 As a rst step, several Zr-MOFs were
evaluated for their potential as heterogeneous supports in the
oxidative coupling of o-xylene (Table 1). Generally, an equimolar
amount of MOF (based on its structural formula) with respect to
Pd(OAc)2 was added, i.e. one Zr6-cluster of UiO-66 or MOF-808 per
Pd atom. This ensures that a 4–6 fold excess of anchoring sites per
Pd center are present in the frameworks (Table S1†). Additionally,
1-propanesulfonic acid was employed as strongly acidic additive,
since recent ndings by the group of Stahl reveal that strong acids
Scheme 2 The oxidative coupling of o-xylene under the standard
reaction conditions: o-xylene (16.58 mmol), Pd(OAc)2 (8.29 mmol),
MOF support (8.29 mmol), 1-propanesulfonic acid (82.85 mmol), acetic
acid co-solvent (2.07 mmol), 90 �C, 16 bar O2, 17 h.

This journal is © The Royal Society of Chemistry 2019
or their corresponding salts dramatically increase the activity of
Pd(II) for this reaction.12 Inspired by the excellent results obtained
with 2,20-bipyridine-graed mesoporous silica for the related
Pd(II)-catalyzed oxidative Heck coupling,17 a MOF containing 2,20-
bipyridine-5,50-dicarboxylate (bpydc2�) linkers (UiO-67-bipy;
[Zr6(m3-O)4(m3-OH)4(bpydc)6])27 was tested. However, the addition
of this MOF resulted in a dramatic decrease in activity versus the
homogeneous reaction (Table 1; entry 1 and 2). A similar deacti-
vation effect was found for the analogous dissolved heterocyclic
nitrogen-containing ligand, 4,40-dimethyl-2,20-bipyridine (Table
S2†). Consequently, other MOFs featuring anchoring sites which
correspond more closely to the carboxylates in the active Pd(OAc)2
complex were investigated. For instance, a UiO-66 analogue with
pendent carboxylic acid groups as Pd(II) anchoring sites (UiO-66-
COOH; [Zr6(m3-O)4(m3-OH)4(bdc-COOH)6], bdc2�-COOH ¼ 1,2,4-
benzenetricarboxylate)47 was synthesized and tested. In contrast to
UiO-67-bipy, a signicantly higher TON than in the homogeneous
case was obtained aer the same reaction time (Table 1; entry 3),
highlighting the positive effect of active site isolation by anchoring
the active Pd(II) centers on the pendent carboxylic acid groups.
Inspired by previous research in which platinum-group metal
complexes were graed onto the inorganic SBUs of a MOF
support,35,38,40 several Zr-MOFs with available coordination sites on
the clusters (hydrogen-bonded OH/OH2 pairs)39 were synthesized
(MOF-808, UMCM-309a and Zr-abtc). The hexanuclear Zr-clusters
of MOF-808 ([Zr6(m3-O)4(m3-OH)4(btc)2(CH3COO)6], btc

3� ¼ 1,3,5-
benzenetricarboxylate)48,49 are 6-fold coordinated by btc3� linkers,
resulting in up to 6 open sites per cluster, aer removing the
acetatemodulators using a simple acid treatment. A closely related
MOF with 6-fold coordinated Zr-clusters is UMCM-309a ([Zr6(m3-
O)4(m3-OH)4(btb)2(HCOO)6], btb3� ¼ 1,3,5-(4-carboxylphenyl)
benzene),50 which features a stable two-dimensional layered
network instead of a three-dimensional framework. Recently,
a new 8-connected Zr-MOF with 3,30,5,50-azobenzene-
tetracarboxylate (abtc4�) linkers ([Zr6(m3-O)4(m3-OH)4(abtc)2(OH)4(-
H2O)4]) was reported,51 which contains 4 open sites per cluster and
could be synthesized following a newly developed water-based
green synthesis procedure (Fig. S2†). In line with the increase in
activity for UiO-66-COOH, the addition ofMOFs with open sites on
the Zr-clusters resulted in signicantly higher TONs compared to
the homogeneous reference case (Table 1; entries 4–6). In addition,
UiO-66 ([Zr6(m3-O)4(m3-OH)4(bdc)6], bdc

2� ¼ 1,4-benzenedicarbox-
ylate),52 a well-known non-functionalized Zr-MOF, was tested as
a reference, since it does not contain signicant amounts of
pendent carboxylic acid groups or open sites on the Zr-clusters to
which Pd(II) could coordinate. The TON observed in the presence
of UiO-66 was similar to that observed for homogeneous Pd(OAc)2
(Table 1; entry 7). This conrms that the increase in TON observed
for other MOFs like MOF-808 is due to active site isolation of the
Pd on the anchoring sites of the MOFs. Besides MOFs with
anchoring sites, a moderate increase in TON could also be ach-
ieved by the addition of high-surface area zirconium oxide. Finally,
higher chemoselectivities were obtained in the presence of MOFs
with open sites on the Zr-clusters or pendent carboxylic acid
groups since less triaryl side products were formed. The formation
of these bulky triaryls may be suppressed in the presence of MOFs
due to pore connement.
Chem. Sci., 2019, 10, 3616–3622 | 3617
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Table 1 Screening of the different MOF supports under the standard reaction conditions (cfr. Scheme 2)

Entry MOF support Chemo-selectivitya (%) Regio-selectivityb (%) Yieldc (%) TONd TOFe (h�1)

1 — 88 71 4.9 97 8.1
2 UiO-67-bipy 74 66 0.3 6 1.1
3 UiO-66-COOH 92 73 7.4 149 10.6
4 MOF-808 92 74 9.2 183 11.2
5 UMCM-309a 93 74 8.4 168 11.1
6 Zr-abtc 93 73 7.1 142 11.0
7 UiO-66 90 75 5.1 103 8.3
8 ZrO2

f 89 75 6.5 130 10.5

a Chemoselectivity is dened as the percentage of biaryls relative to all formed products (oxidation products, biaryls and triaryls). b Regioselectivity
is dened as the percentage of 3,30,4,40-tetramethylbiphenyl relative to all three biaryls. c Yield was determined by GC-FID with hexadecane as
internal standard. d TON is dened as TON ¼ 2 � mole (biaryl)/mole (Pd). e TOF was determined aer 4 h. f 10 mg of zirconium oxide was added.
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Heterogeneity of the single-site MOF catalysts

The heterogeneity of the single-site MOF catalysts was studied
by recycling tests and metals analysis of the reaction solution.
Aer the reaction, the sample was centrifuged and the MOF
crystals were separated from the reaction solution. Fresh reac-
tant (e.g. o-xylene), co-solvent (e.g. acetic acid), internal standard
and strongly acidic additive (e.g. 1-propanesulfonic acid) were
added to the recycled MOF and the reaction was resumed for
a second run. Materials with open sites on the Zr-clusters (MOF-
808, UMCM-309a and Zr-abtc) retained their activity better than
UiO-66-COOH with pendent carboxylic acid groups, resulting in
higher cumulative TONs aer 4 runs (Fig. 1). In line with these
results, a lower cumulative TON was noticed for UiO-66, which
does not contain anchoring sites. In addition, the palladium
and zirconium contents of the reaction solution were measured
aer the rst run by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) (Table S3†). Generally, palladium
leaching could be minimized to approximately 5% for MOFs
with open sites on the Zr-cluster (MOF-808 and Zr-abtc) and no
signicant zirconium leaching was detected. However, more
leaching was observed for UMCM-309a, presumably due to its
two-dimensional layered structure. Higher leaching values were
also obtained for UiO-66-COOH and UiO-66, indicating that
Fig. 1 Recycling experiments of several heterogeneous supports for th
standard reaction conditions.

3618 | Chem. Sci., 2019, 10, 3616–3622
palladium is best retained on MOFs with open sites on the Zr-
clusters and with a three-dimensional pore structure, like
MOF-808. Furthermore, an acrylic acid graed polyolen ber
(Smopex-102), one of the very few already reported heteroge-
neous supports for the oxidative coupling of arenes,22 was tested
using a similar ratio of 1 Pd(II) center per 6 pendent carboxylic
acid groups. The cumulative TON of this Pd-loaded polymer
with pendent carboxylic acid groups is substantially lower than
the TON of its MOF analogue (UiO-66-COOH), which might be
due to inferior accessibility of the carboxylic acid groups. In
addition, the stability of the MOFs was evaluated by comparing
the powder X-ray diffraction patterns before and aer the
reaction (Fig. S5–S10†). No signicant decrease in crystallinity
was observed for MOF-808, UMCM-309a, Zr-abtc, UiO-66-COOH
and UiO-66 aer four runs at 90 �C. In contrast, UiO-67-bipy
largely lost its long-range order aer exposure to the reaction
solvent and conditions.
Substrate scope

In view of its superior activity, heterogeneity and facile synthesis
procedure, MOF-808 was selected as model support to expand
the substrate scope (Fig. S11†). High TONs were obtained for
the homocoupling of toluene and tert-butylbenzene, while the
e Pd-catalyzed oxidative coupling of o-xylene performed under the

This journal is © The Royal Society of Chemistry 2019
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activity was signicantly lower for the coupling of p-xylene and
1,2-diuorobenzene due to steric hindrance and electron-
withdrawing effects, respectively.
Fig. 3 Oxidative coupling of o-xylene performed under optimized
reaction conditions and with reactivation of the Pd loaded MOF
support under vacuum (1 mbar) at room temperature for 24 h in
between consecutive runs. Conditions: o-xylene (16.58 mmol),
Pd(OAc)2 (8.29 mmol), MOF-808 (41.43 mmol), 1-propanesulfonic acid
(331.40 mmol), acetic acid (2.07 mmol), 110 �C, 20 bar O2, 17 h. The
TONs are the average of three experiments.
Optimizing the reaction conditions

Signicantly higher TONs for the oxidative coupling of o-xylene
could be obtained for the heterogeneous system with MOF-808
by increasing the reaction temperature (Fig. 2). Notably, at
110 �C, the TON is 2.9 times higher for the MOF-808 system
than for the analogous homogeneous system, which is a clear
benet of active site isolation enabled by the MOF. At even
higher temperatures, the MOF support started to decompose
(Fig. S12†), resulting in lower TONs, which were more compa-
rable to those of the homogeneous system. Aer further opti-
mizing the palladium loading of the MOF and the amount of 1-
propanesulfonic acid and co-solvent (Table S2†), a TON of 436�
17 could be reached aer the rst run (Fig. 3) with only 2% Pd
leaching (Table S4†). Since oxygen is used as terminal oxidant,
a stoichiometric amount of water is produced and partially
absorbed by the hydrophilic MOF material. Product inhibition
experiments revealed that the formation of water did not lead to
a signicant decrease in activity at short reaction times
(Fig. S13†). However, aer many catalytic cycles (TONs > 400),
a large amount of water is formed and product inhibition due to
water formation is observed (Table S2†). Nevertheless, the
activity of the solid MOF-based catalyst could be restored by
reactivating the MOF materials aer each run under vacuum (1
mbar) at room temperature for 24 h (Fig. 3). A cumulative TON
of 1218 � 36 with an overall regioselectivity of 73% for 3,30,4,40-
tetramethylbiphenyl was obtained aer three runs, which is
well beyond the state-of-the-art.12,22 Moreover, only 5% of Pd was
leached aer three runs (Table S4†).
Active site isolation

The binding mode of Pd(II) to the zirconium clusters of MOF-
808 was studied by Fourier transform infrared spectroscopy
Fig. 2 Effect of temperature on the TON of the oxidative coupling of
o-xylene with and without MOF-808 performed under the standard
reaction conditions.

This journal is © The Royal Society of Chemistry 2019
(FTIR). Upon removal of a capping acetate from the cluster,
a hydrogen-bonded OH/OH2 pair occupies the place of the
missing carboxylate. This OH/OH2 pair displays a characteristic
IR band at 2744 cm�1, while the sharp IR band at 3672 cm�1

results from a combination of non-hydrogen-bonded OH
groups and m3-OH groups inside the cluster (Fig. S15†).53,54 In
agreement with previous research,33,35,36,38,55 the characteristic IR
band at 2744 cm�1 disappears aer chemisorption of the
transition metal complex and the sharp IR band at 3672 cm�1

broadens, indicating that the palladium species interact with
these open sites on the Zr-clusters. Moreover, the local envi-
ronment of the MOF-supported Pd(II) was studied by X-ray
absorption spectroscopy (XAS). In line with the FTIR data, the
t between the experimental and simulated extended X-ray
absorption ne structure (EXAFS) data is excellent for the
structure in which Pd(II) is anchored on the open site of the Zr-
cluster aer exchanging with the proton of the –OH2 group and
liberating acetic acid (Fig. 4). Furthermore, the absence of
a clear peak around 2.6 Å conrms that the trimeric Pd(OAc)2
complexes are converted into monomeric, MOF-supported
Pd(II) species (Fig. S16†).17,22 Hence, the Pd(II) species formed
aer the reoxidation step and possibly also the Pd(II) complex
formed aer the rst C–H activation step, can be anchored on
the MOF support (Scheme 3). High-angle annular dark-eld
scanning transmission electron microscopy (HAADF-STEM)
images of MOF-808 and UiO-66 aer reaction in combination
with energy-dispersive X-ray spectroscopy (EDX) showed that
palladium anchoring reduces Pd nanoparticle aggregation and
thus deactivation aer the reductive elimination step (Fig. S19–
S22†).
Reaction mechanism

Catalyst deactivation was studied by analyzing the reaction
kinetics (Fig. 5). Although the homogeneous system was found
Chem. Sci., 2019, 10, 3616–3622 | 3619
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Fig. 4 The magnitude (blue) and real component (orange) of the
Fourier transform of the experimental k2-weighted Pd K-edge EXAFS
spectra of preloaded MOF-808 (1 Pd per Zr-cluster in o-xylene)
(hollow circles) and the corresponding fits of the structuremodel (solid
lines) in R-space. The vertical dashed lines indicate the fitting range.
The Zr, O, C, H and Pd atoms are represented in the structuremodel by
turquoise, red, gray, white and dark blue spheres, respectively.

Scheme 3 The proposed catalytic cycle (X ¼ acetate or 1-
propanesulfonate).

Fig. 5 Kinetic profiles of the oxidative coupling of o-xylene performed
under the standard reaction conditions with MOF-808 (blue), UiO-66-
COOH (green) and the homogeneous reaction without MOF support
(orange). Lines were added as a guide to the eye.
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to be the most active at short reaction times, only moderate
yields were obtained at longer reaction times due to catalyst
deactivation. On the contrary, almost no deactivation was
observed when MOF-808 was added, with an essentially
constant rate up to 24 h reaction time. This implies that catalyst
lifetime can be considerably prolonged by isolating the active
sites on the MOF material. Moreover, a maximum TON was
achieved for the heterogeneous system if more than 8 bar O2

was applied, indicating that deactivation is negligible under
these conditions. In contrast, a clear dependence of the TON on
the oxygen pressure could be seen in the homogeneous system
for a wide range of oxygen pressures (Fig. S23†). To gather
further insights into the catalytic mechanism, the kinetic
isotope effect (KIE) was evaluated by comparing the conversion
of o-xylene with o-xylene-d10 at short reaction times. The
measured kH/kD values were 1.4 and 1.3 for the homogeneous
3620 | Chem. Sci., 2019, 10, 3616–3622
and heterogeneous case, respectively, indicating a similar rate-
limiting step for both systems. These modest KIE values are in
accordance to the literature for the oxidative coupling of o-
xylene under neat conditions.14
Conclusions

In this work, we have shown for the rst time that palladium
loaded Zr-MOFs can be efficient single-site solid hybrid cata-
lysts for the oxidative coupling of arenes via C–H/C–H activa-
tion. MOFs with various anchoring sites were screened rst and
the heterogeneity of these solid catalysts was studied by recy-
cling tests and metals analysis of the reaction solution, which
indicated that the heterogeneous catalysts could efficiently be
reused. Aer optimization of the reaction conditions, a three-
fold higher TON could be achieved for the MOF-808 system
compared to the analogous homogeneous system and Pd
leaching was minimized to 2%. The activity of the solid MOF-
based catalyst could be retained by reactivating the MOF
materials by drying in between consecutive runs, resulting in
a cumulative TON of 1218 aer three runs. Finally, analysis of
the reaction kinetics revealed that the superior TONs result
from isolation of the active sites on the MOF material, which
prolongs catalyst lifetime, and the isolated palladium single-
atom active sites on MOF-808 were successfully identied by
FTIR and EXAFS spectroscopy. These results show that the TON
of palladium in C–H activation reactions can be signicantly
increased by developing stable heterogeneous single-site
catalysts.
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