Chitosan-azo dye bioplastics that are reversibly resoluble and recoverable under visible light irradiation†
Abstract
Biopolymer composite materials were prepared by combining bio-sourced cationic water-soluble chitosan with bi-functional water-soluble anionic azo food dyes amaranth (AMA) or allura red (ALR) as ionic cross-linkers, mixing well in water, and then slow-drying in air. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water, and competitive mechanical properties as plastic materials. However, upon exposure of the bioplastics to low power light at sunlight wavelengths and intensities stirring in water, the stable materials photo-disassembled back to their water-soluble and low-toxicity (edible) constituent components, via structural photo-isomerization of the azo ionic crosslinkers. XRD, UV-vis, and IR spectroscopy confirmed that these assemblies are reversibly recoverable and so can in principle represent fully recyclable, environmentally degradable materials triggered by exposure to sunlight and water after use, with full recovery of starting components ready for re-use. A density functional theory treatment of the amaranth azo dye identified a tautomeric equilibrium favouring the hydrazone form and rationalized geometrical isomerization as a mechanism for photo-disassembly. The proof-of-principle suitability of films of these biomaterial composites as food industry packaging was assessed via measurement of mechanical, water and vapour barrier properties, and stability to solvent tests. Tensile strength of the composite materials was found to be 25–30 MPa, with elongation at break 3–5%, in a range acceptable as competitive for some applications to replace oil-based permanently insoluble non-recyclable artificial plastics, as fully recyclable, recoverable, and reusable low-toxicity green biomaterials in natural environmental conditions.
- This article is part of the themed collection: 2024 RSC Advances Popular Advances Collection