Issue 2, 2022

PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review

Abstract

Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals and have been detected throughout the environment. Thermal treatment is the most common remediation approach for PFAS-contaminated solid wastes. Although various thermal treatment techniques have demonstrated the potential to destruct PFAS, the fate of PFAS, removal efficacy, potential emissions, and the formation of incomplete combustion products during thermal treatment are little known. This study provides a critical review on the behavior of PFAS based on different types of thermal treatment technologies with various PFAS-impacted environmental medias that include water, soil, sewage sludge, pure PFAS materials, and other PFAS-containing wastes. Different extents of PFAS thermal destruction are observed across various thermal treatment techniques and operating conditions. PFAS removal and destruction efficiencies rely heavily on PFAS structures, the complex combustion chemistry, the presence or absence of oxygen, temperature, and other operational conditions. This review also covers proposed PFAS thermal destruction mechanisms. Different thermal destruction mechanisms for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), and other PFAS are reviewed and compared. The majority of studies about PFAS thermal destruction mechanisms were focused on a specific list of PFAS and based mostly on the pyrolysis treatment. The basic pathway for PFAS destruction during pyrolysis is hydrodefluorination, which could be largely influenced by the alkaline condition. Future field-scale research that involves the characterization of PFAS destruction products and incomplete combustion products is needed to address public concerns and better emission control.

Graphical abstract: PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review

Article information

Article type
Critical Review
Submitted
03 nov. 2021
Accepted
22 dic. 2021
First published
24 dic. 2021

Environ. Sci.: Processes Impacts, 2022,24, 196-208

PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review

G. K. Longendyke, S. Katel and Y. Wang, Environ. Sci.: Processes Impacts, 2022, 24, 196 DOI: 10.1039/D1EM00465D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements