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Recent Progress in Selective Functionalization of Diols via 
Organocatalysis
Liaba Niaz, ‡a Sojeong Bang ‡a and Jeonghyo Lee*a

Polyols bearing multiple hydroxyl groups present persistent challenges for site-selective functionalization due to their 
inherent reactivity similarity. As minimal polyol systems, diols offer a practical and conceptually rich platform for developing 
regioselective catalytic strategies. This review highlights recent progress in organocatalyzed diol functionalization, with a 
survey of organocatalysts incorporating boron, nitrogen, and phosphorus-based motifs, as well as emerging photoredox 
methodologies. These systems enable selective transformation under mild conditions, avoiding stoichiometric activation 
and minimizing reaction complexity. Steric and electronic effects, along with noncovalent interactions, are examined in 
detail to rationalize the observed selectivity and guide the rational design of catalysts. Collectively, this review offers a 
conceptual foundation for advancing sustainable, selective methods in diol derivatization.

1. Introduction
Hydroxyl groups are among the most fundamental and 
ubiquitous functional groups in organic chemistry, frequently 
found in biologically important molecules.1, 2 Their chemical 
versatility allows transformations via oxidation, reduction, and 
substitution, however, achieving regio- and stereoselective 
functionalization in highly functionalized environments remains 
a major challenge. A seminal contribution in this field came 
from the Miller group, who developed small-peptide catalysts 
for the enantioselective kinetic resolution of alcohols via 
hydrogen bonding, selectively acylating hydroxyl groups over 
amides.3 This work exemplified the potential of non-enzymatic 
catalysts for selective hydroxyl functionalization in complex 
settings.

Polyols, which contain multiple hydroxyl groups, are 
widespread in both natural and synthetic compounds, including 
carbohydrates,4 glycosides,5 and other biomolecules,6 and are 
key intermediates in pharmaceutical,7 agrochemical,8 and 
materials  science9. The dense presence of hydroxyl groups 
often necessitates complex protecting group strategies to 
achieve site selectivity.10 To address this, direct and site-
selective functionalization approaches have emerged. In 
another pioneering example, the Miller group achieved 
desymmetri-zation of myo-inositol through site-selective 
phosphorylation,11, 12 and later extended this concept to the 
selective modification of erythromycin A, a complex natural 
product polyol.13, 14 These studies placed a premium on 
selective catalysis and functional group tolerance in high-
complexity environments, setting the stage for today’s late-
stage functionalization strategies. More recent approaches 
further advance selectivity through the strategic use of non-
covalent interactions,15 minimizing undesired over-
functionalization.

Diols represent an essential subclass within the broader 
polyol family and serve as a critical platform for advancing 
selective functionalization methodologies.16 Despite possessing 

fewer hydroxyl groups compared to higher-order polyols, diols 
still pose the fundamental challenge of distinguishing between 
two closely similar OH functionalities. Consequently, diols act as 
practical model systems for developing innovative site-selective 
transformations, potentially extendable to more structurally 
complex polyols. Modern catalytic strategies are designed to 
achieve not only regioselectivity, by selectively modifying one 
hydroxyl group over the other, but also stereoselectivity and 
chemoselectivity, thereby broadening the synthetic versatility 
and application potential of diol-based transformations.17
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Figure 1. Overview of diol substrate: synthetic accessibility, 
pharmaceutical relevance, and the thematic focus of this review.
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From a synthetic standpoint, diols are easily accessible via 
well-established methods, including the dihydroxylation of 
alkenes,18 hydrolysis of epoxides,19 carbonyl reduction,20 and 
cascade aldol/reduction sequences21, rendering them both 
cost-effective and widely available building blocks (Figure 1a). 
Beyond their synthetic accessibility, diols possess notable 
biological significance due to their widespread occurrence in 
natural products and bioactive molecules (Figure 1b). 
Prominent examples include (1R,2S)-Goniodiol, known for its 
antibacterial activity; Zephyranthine, utilized in respiratory 
treatments; and Fluvastatin, an anti-hypercholesterolemic 
agent. 22, 23, 24, 25 Targeted diol manipulation via functional group 
interconversion, ring formation, or derivatization can 
dramatically alter biological activity or streamline synthetic 
pathways. These attributes highlight the critical importance of 
selective diol functionalization in contemporary organic 
synthesis.

However, these manipulations demand precise control, and 
achieving regioselective functionalization of diol remains a 
persistent challenge due to the similar reactivity of hydroxyl 
groups (Figure 1c). Traditional solutions often involve multi-step 
protection and stoichiometric activation, which can inflate the 
length and cost of a synthetic sequence while generating 
undesirable waste.26, 27 Over the past few decades, researchers 
have made substantial progress in developing more direct and 
sustainable processes.28 Regiodivergent reactions, for instance, 
allow a single diol to give different regioisomers by modulating 
reaction parameters, thereby offering a potent means to 
generate structural diversity in fewer steps.29 

A broad array of catalytic paradigms has been developed to 
realize this objective. Early efforts predominantly utilized 
organometallic or tin-based reagents,30, 31 whereas enzymatic 
approaches 32 leveraged the remarkable selectivity of biological 
catalysts. Transition-metal complexes, with palladium,33 
ruthenium,34 and copper35 among popular choices, continue to 
demonstrate impressive regio- and stereoselectivities in diol 
functionalization. More recently, organocatalysts have gained 
prominence owing to their mild conditions, minimal toxicity, 
and straightforward reaction setups. Through the integration of 

hydrogen-bond donor frameworks (e.g., peptides, thioureas), 
Lewis and Brønsted acid catalysis (e.g., boron-based species, 
phosphoric acids), and photoredox platforms, organocatalytic 
methods have achieved high selectivity in the direct 
modification of diols, significantly reducing the need for 
protective groups and harsh reagents.

While the selective functionalization of carbohydrate 
systems has been extensively explored and reviewed,28, 36, 37, 38, 

39, 40, 41, 42, 43, 44, 45, 46 contemporary research increasingly turns to 
non-carbohydrate diols as platforms for testing new catalytic 
concepts. These investigations have not only yielded 
streamlined synthetic pathways, but also critical mechanistic 
insights, revealing how subtle variations in sterics, electronics, 
and reaction conditions can bias reactivity toward one hydroxyl 
group over another. A detailed understanding of these control 
factors provides the foundation for designing next-generation 
catalysts that enable highly selective functionalization of diols 
and structurally complex polyols.

This review provides an overview of recent advancements in 
the organocatalyzed selective functionalization of diol 
substrates. Selective transformations of carbohydrates are 
deliberately excluded, as they have been comprehensively 
covered in previous reviews. 28, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 
Likewise, transition metal-catalyzed approaches to diol 
functionalization are beyond the scope of this discussion.31, 47, 

48, 49, 50, 51, 52  Our focus is confined to organocatalytic strategies, 
reflecting their significance in selective diol derivatization. The 
literature is systematically categorized based on the nature of 
the organocatalyst, with particular emphasis on systems, 
incorporating nitrogen, boron, or phosphorus centers, as well 
as emerging photoredox methodologies. Throughout, we 
highlight key mechanistic insights and showcase representative 
synthetic applications that underscore the potential and 
versatility of these catalytic platforms (Figure 2). By 
contextualizing these recent advances within a broader 
historical and conceptual framework, this review aims to guide 
practitioners toward innovative and sustainable solutions for 
this enduring challenge in organic synthesis.

Figure 2. Selective functionalization of diol via organocatalysis.
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Figure 3. Overview of boron-based organocatalyst. 

2. Organoboron Catalytic Systems
Boron is a main-group element uniquely characterized by its 
electron deficiency, possessing only three valence electrons and 
commonly adopting sp² and sp³ hybridizations. These features 
give rise to tricoordinate, planar geometries with an empty p-
orbital, allowing boron compounds to act as Lewis acids capable 
of engaging nucleophiles (Figure 3a).53 Upon coordination, 
tetracoordinate boron species are formed, which often serve as 
key intermediates in organic transformations.54

Organoboron compounds are classified into borane, borinic 
acids, boronic acids, and boric acid according to their oxidation 
states55 (Figure 3b). While each of these boron species has 
demonstrated substantial utility in organic synthesis, their 
differing oxidation states impart distinct electronic properties. 
These variations in electronic nature strongly influence their 
reaction mechanisms and acidity profiles.56 Among them, 
boranes, borinic acids, and boronic acids possess at least one 
organic substituent, allowing for structural and electronic 
tunability.57, 58 In contrast, boric acid consists solely of hydroxyl 
groups, offering limited flexibility for such modifications, and is 
therefore excluded from further discussion in this review.

In the following sections, four representative classes of 
organo-boron catalysts, such as boranes, borinic acids, boronic 
acids, and heterocylic boronic acid derivatives, are introduced 
with a focus on their characteristic activation modes and their 
application to the selective functionalization of diol substrates 
(Figure 3c). 

2.1 Borane Catalysis
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Scheme 1. The BCF-silane catalytic reduction system.

Boranes have a trivalent boron center bonded to three organic 
groups and no hydroxyl groups, which makes them highly electron-
deficient and Lewis acidic. To further enhance their electrophilicity, 
strong electron-withdrawing groups are introduced onto the borane 
framework. A prominent example is tris(pentafluorophenyl)borane 
(BCF), an exceptionally electron-deficient Lewis acid owing to the 
strong inductive and resonance effects of the pentafluorophenyl 
groups. BCF has found widespread utility in organic synthesis, 
particularly in combination with hydrosilanes for the deoxygenation 
of alcohols. (Scheme 1).59 

The deoxygenation mechanism initiates when BCF interacts with a 
hydrosilane, leading to polarization of the Si–H bond (Scheme 2a).60. 
The electron-deficient boron center withdraws electron density from 
silicon, resulting in partial positive charge on silicon and partial 
negative charge on boron. Next, oxygen atom of an alcohol 
coordinate to the electrophilic silicon center, forming a transient 
oxonium ion. Concurrently, this interaction facilitates the transfer of 
a hydride ion (H⁻) from the silane to the boron center, resulting in 
the formation of a reactive boron–hydride species. The resultant 
hydride is then delivered to the α-carbon to substitute the oxonium 
leaving group, leading to cleavage of the C–O bond. 

When diol substrates are treated with the BCF/hydrosilane system, 
selective deoxygenation can proceed through either cyclic or acyclic 
intermediates, as illustrated in Scheme 2b. The nature of the 
intermediate, cyclic or acyclic, depends on the substrate's structure 
and the reaction conditions, influencing both selectivity and 
efficiency. In the following section, we will explore examples 
demonstrating how the BCF/silane system enables selective 
deoxygenation of diol substrates.
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In a 2015 study, Morandi demonstrated a BCF (OC-1)-catalyzed 
regioselective deoxygenation of terminal 1,2-diols with a preference 
on 1o-hydroxyl group reduction. (Scheme 3).61 In this reaction, two 
types of silane sources were employed. The first, Ph₂SiH₂, which 
contains two equivalents of hydride, is sacrificially consumed to 
generate the key cyclic siloxane intermediate. In the subsequent 
addition of the second silane, Et₃SiH, the more sterically accessible 
primary alcohol coordinates to the electrophilic silicon center, 
forming an oxonium intermediate. Subsequently, the hydride was 
selectively delivered to the activated carbon center resulting in high 
primary regioselectivity. From their DFT calculation study, the 
authors proposed that the cyclic siloxane pathway is energetically 
favored, providing a rationale for the observed selectivity.62
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Extending their earlier findings, the Morandi group applied the 
previously established B(C₆F₅)₃/silane conditions to internal 1,2-diols, 
rather than terminal ones, and observed distinct reactivity, leading 
to a catalytic reductive pinacol-type rearrangement (Scheme 4a).63 
This transformation enabled stereoinvertive migration of alkyl 
groups from secondary–secondary diols (Scheme 4b), efficiently 
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affording rearranged alcohols. Computational studies indicated that 
steric hinderance between BCF scaffold and alkyl substitutents of a 
cyclic siloxane intermediate prohibited direct hydride insertion (TS-
A, Scheme 4c) and that hyperconjugative effects from the migrating 
group stabilize the transition state, thereby favoring rearrangement 
over direct hydride deoxygenation (TS-B, Scheme 4c).
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Scheme 5. Chemoselective deoxygenation of tosylated diols 

Oestreich and co-workers reported a B(C₆F₅)₃-catalyzed 
chemoselective reduction of primary alkyl tosylates under mild 
conditions (Scheme 5).64 In this study, remote diols, in which one 
hydroxyl group was converted into a tert-butyldimethylsilyl (TBDMS) 
ether and the other into a tosylate, were examined for evaluating the 
leaving group aptitudes of these two different groups. Upon addition 
of BCF/hydrosilane, in situ generated boron–hydride species was 
found to be preferentially delivered to tosylated position for the 
chemoselective deoxygenation (Scheme 5a).

This strategy was further applied to terminal 1,2-diols bearing a 
primary tosylate (Scheme 5b). Notably, the product outcome varied 
significantly depending on the nature of the secondary substituent. 
In aryl-substituted substrates (5b), the benzene π-system 
participates as a neighboring group, facilitating the formation of a 
spirocyclic phenonium ion intermediate. The resulting three-
membered ring was then opened by hydride delivery from the boron 
species, affording the rearranged product (6b).

In contrast, alkyl-substituted diols (5c) underwent intramolecular 
attack of the tosyl group by the oxygen atom on vicinal silyl ether to 
form a silyl oxonium ion. This intermediate was reduced by hydride 
attack at either ring carbon (path a or path b), resulting in a nearly 
1:1 mixture of regioisomeric products (6ca and 6cb). These results 
demonstrate that distinct reaction pathways can emerge from subtle 
changes in substrate structure, highlighting the mechanistic 
flexibility of this catalytic system.
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Following this investigation, the same group presented a 
BCF/silane-stimulated selective deoxygenation, particularly designed 
for secondary benzylic alcohols from remote diol substrates (Scheme 
6).65 The process is associated with a tandem formylation and 
deoxygenation sequence. The prior formylation reactions take place 
only for primary or secondary alcohol substrates due to steric 
accessibility to formyl group, and the latter deoxygenation proceeds 
via presupposed carbocation formation followed by hydride delivery. 
In the second step, secondary benzylic selectivity was achieved given 
that carbocation is more stable in secondary position than primary 
position. This result implied that the rationale design of substrates 
with proper understanding of reaction mechanism would facilitate 
the development intriguing selective functionalization on 
unsymmetrical diol substrates. 
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In light of the research by Song and Lu, a B(C₆F₅)₃-catalyzed 
deoxygenation protocol was developed for mono-protected diols 
using a uniquely structured bis(silyl) reductant, (HMe₂SiCH₂)₂ 
(Scheme 7).66 The reaction displayed high selectivity for free hydroxyl 
groups over aryl and silyl ethers, as well as other functional groups. 
The remarkable chemoselectivity is attributed to the dual 
coordination mode of the bis(silyl) reagent. (HMe₂SiCH₂)₂ features 
two atom-centered silicon units capable of simultaneously 
coordinating to a single hydroxyl group, thereby enhancing the 
leaving group ability of the oxygen and facilitating hydride transfer 
from the in situ generated boron–hydride species. This mode of 
activation preferentially engages naked hydroxyl groups over 
sterically hindered silyl ethers, allowing for selective deoxygenation 
even in the presence of multiple oxygen-containing functionalities. 
Notably, the method was also extended to more hindered secondary 
and tertiary alcohols, which were efficiently converted to the 
corresponding hydrocarbons, 11c and 11d, respectively. 

2.2 Borinic Acid Catalysis

Cyclic
Borinate Ester

OH
B

R1 R2

HO OH
+

1,2-diols

E+

borinic acid

steric bulky + chirality

OEHO

R1 R2

 regioselective
 enantioselective

Selective Diol
Functionalization

OHB

fast
B

HO
H

OH

proton
transfer

B

OH

O
H

H
tetrahedral (sp3)

HO OH HOH

B
O
O

Borinate ester

-H2O

borinic acid

OHH
B

OH

a)

b)

O O
B

R1 R2

proton
transfer

B
O
OH
H

OH

Scheme 8. a) Formation of borinate ester, b) borinic acid-mediated 
selectivity control.

Borinic acids, featuring one hydroxyl group and two organic 
substituents bound to a trivalent boron center, possess a vacant p-
orbital, rendering them moderately Lewis acidic. The electrophilic 
boron center of borinic acids can reversibly interact with the 
electron-rich hydroxyl groups of diols. This interaction facilitates a 
reversible alcoholysis, leading to the formation of a key cyclic 
borinate ester intermediate. (Scheme 8a).67 The formation of this 
cyclic borinate intermediate not only enhances the nucleophilicity of 
the coordinated oxygen, but also creates a tunable spatial and 
electronic environment that allows for precise control over site-
selectivity in subsequent transformations.

The selectivity of borinic acid-mediated transformations can be 
modulated by altering the nature of the substituents on the boron 

center (Scheme 8b). When sterically bulky groups are introduced, the 
reaction is directed toward the more accessible hydroxyl group in 
unsymmetric diols. Alternatively, attaching chiral substituents can 
restrict the spatial approach of electrophiles, thereby promoting 
functionalization in an enantioselective manner. In this section, we 
introduce examples of diol functionalization using borinic acid 
catalysts, focusing on how steric and electronic features of the 
catalyst structure influence selectivity.
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a) Mark S. Taylor (2013)

b) Mark S. Taylor (2014)
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O
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Proposed mechanism:
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O
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Ph
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O
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Ph

Ph
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OH
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catalyst resting
state turnover-limiting

step
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12
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Scheme 9. Borinic acid-catalyzed regioselective acylation of diols.

Taylor and coworkers employed a diphenylborinic acid 
ethanolamine complex (OC-2) as a catalyst for the monobenzoylation 
of vicinal-1,2-diol substrates (Scheme 9a).68 The catalyst OC-2 was 
turned out to form the key cyclic borinate intermediate 
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preferentially with cis-1,2-diols over trans-diols (cis/trans = 11:1),  
which was owing to the less angle and torsional strain in cis-
intermediate. 

Diphenylborinic acid ethanolamine catalyst (OC-2) forms a 
reversible complex with the diol substrate, which subsequently 
undergoes nucleophilic attack on benzoyl chloride to furnish the 
monobenzoylated products with high selectivity. Importantly, the 
reaction exhibits a strong preference for cis-vicinal diols, whose 
adjacent hydroxyl groups adopt a chelating geometry conducive to 
the formation of a stable five-membered borinate ring. This 
preference is attributed to the reduced dihedral angle and torsional 
strain associated with the cis conformation. 

Building on this strategy, Taylor and co-workers expanded the 
scope of the borinic acid-catalyzed monofunctionalization to include 
sulfonylation and alkylation of non-carbohydrate diols (Scheme 9b). 
The proposed catalytic cycle begins with the activation of catalyst 
(OC-2) via irreversible bis-benzoylation of the ethanolamine ligand, 
followed by coordination of the resulting boron center with the diol 
substrate to form a stable borinate adduct. The nucleophilic 
intermediate then undergoes a turnover-limiting benzoylation step, 
forming a monobenzoylated intermediate. This species is readily 
displaced by another diol substrate, yielding the desired product and 
regenerating the resting-state borinate complex.

OC-3

14
15a, 90% (R = Ph)
15b, 95% (R = CH3)

R

OH
OH OC-3 (0.1 mol %) R

OH
OTs

B

O

OH

Proposed mechanism:

B

O

OH

R

OH
OH

-H2O, H+

B

O

OO

R

B

O

O

OTs

R
TsCl
-Cl-

+
TsCl

i-Pr2NEt

steric preference

14

Scheme 10. Borinic acid (OC-3)-catalyzed regioselective tosylation of 
terminal 1,2-diol. 

As a part of their ongoing studies on borinic acid catalysis, the 
Taylor group introduced a heteroboraanthracene-derived catalyst 
(OC-3) for the 1o-alcohol selective mono-functionalization of 
terminal 1,2-diols (Scheme 10).69 The system exhibited high 
selectivity for primary alcohols, which was attributed to both 
electronic and steric factors favoring activation at the less hindered 
hydroxyl group. Mechanistically, the catalyst forms a borinate 
intermediate with the diol substrate, which then undergoes 
nucleophilic attack on the electrophile to furnish the functionalized 
product. Although the interaction between the catalyst and diol is 
relatively weak, the resulting borinate species is sufficiently 
nucleophilic to ensure efficient transformation and high selectivity.
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Scheme 11. Alkylative functionalization of vicinal diols catalyzed by a 
chiral ammonium borinate.

Maruoka and Hashimoto demonstrated that a combination of a 
borinic acid catalyst (OC-4) and a chiral ammonium salt (Co-cat-1) 
can induce an enantioselective benzylation of terminal vicinal diols 
selectively targeting the primary hydroxyl group (Scheme 11).70 In 
this catalytic process, a borinate ester intermediate, formed 
between catalyst OC-4 and the diol substrate, interacts with the 
chiral ammonium salt, generating ion-pair complex labeled, IPS and 
IPR. Stoichiometric experiments indicated that the formation of the 
IPS intermediate is kinetically favored; however, the subsequent 
benzylation step was proposed as the enantio-determining event. 
While nucleophilic attack by IPS on benzyl chloride is kinetically 
accessible, nucleophilic substitution involving the IPR intermediate is 
kinetically disfavored. This kinetic difference results in an effective 
kinetic resolution of the racemic diol.

O
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Scheme 12. Asymmetric desymmetrization using chiral borinic acid.
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Zheng designed a C₂-symmetric chiral borinic acid catalyst (OC-5) 
for the enantioselective desymmetrization of 2,2-disubstituted-1,3-
propanediols (Scheme 12).71 The catalyst features a rigid 
oxaboraanthracene core with two chiral side arms, which adopt a 
twisted C₂-symmetric conformation upon diol binding. This 
conformation generates a well-defined asymmetric cleft that 
enforces a fixed geometry on the bound diol. Within this cleft, the 
two enantiotopic hydroxyl groups are differentiated by their spatial 
environments, one is deeply buried and sterically shielded by the 
catalyst framework, while the other remains accessible for reaction. 
As a result, nucleophilic attack occurs selectively at the exposed site, 
enabling high levels of enantioselectivity. This cleft-based 
differentiation is key to the catalyst’s ability to control 
stereochemical outcome, even with sterically hindered diol 
substrates bearing quaternary centers.

OC-6

20

21

R
OH

OH

R
OC-6 (10 mol %)

n-Bu4NBr (4 mol %)
R

O
OH

R

R'

21a, 99%, 26% ee (R'=Ph)

B
Ph

OH
OMe

O B
O O

Br

Ar'

complex A

complex B

Br

Ar'

Br

Ar'

Br

Ar'

(1S,2R)-21
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(1R,2S)-21
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Proposed mechanism:

B OO O

Ph
O

OH

Ph

R' 21b, 91%, 21% ee (R'=3-IC6H4)
21c, 85%, 27% ee (R'=4-FC6H4)
21d, 84%, 43% ee (R'=2,6-Me2C6H3)

path apath b

path cpath d

R'CX

Cs2CO3+

Scheme 13. Alkylative desymmetrization of 1,2-diols catalyzed by 
chiral borinic acid.

Arisawa and Sako presented an enantioselective alkylative 
desymmetrization of meso-1,2-diols (20) using an axially chiral 
boronic acid catalyst (OC-6) (Scheme 13).72 The catalyst 
featured a C₂-symmetric biaryl scaffold that established a chiral 
environment upon coordination with the diol substrate. This 
interaction generated a cyclic borinate intermediate, position-
ing the two enantiotopic hydroxyl groups unsymmetrically 
within the catalyst’s architecture. Consequently, one hydroxyl 

group became sterically shielded, while the other remained 
accessible for nucleophilic attack, enabling asymmetric 
induction.

According to their mechanistic study via DFT calculations 
using (R,R)-butane-2,3-diol ((1R,2R)-20), coordination to the 
chiral boronic acid catalyst OC-6 generates two borinate 
complexes (Complex A and B), resulting in a total of four 
possible transition states (Paths a–d). For Complex A, Path a is 
energetically favored, as minimal steric interference between 
the oxygen and the electrophile leads to the (1S,2R)-product. In 
contrast, Path b is disfavored due to steric congestion from the 
catalyst’s methoxy group. The other conformational complex B 
proceeds through Paths c and d, which compete and reduce 
overall enantioselectivity. Path c, despite nearby steric bulk, 
benefits from a twisted geometry that enables effective 
nucleophilic attack, forming the major enantiomer, (1S,2R)-
product. Path d, though free from steric hindrance, suffers from 
a stereoelectronic mismatch and leads to the minor (1R,2S)-
product. These features collectively account for the modest 
enantioselectivity observed.

2.3. Boronic Acid Catalysis 

Selective Diol
Functionalization

Cyclic
Boronate Ester

+

1,2-diols

OHHO
B

boronic acid

Nu-like property

O O
B

R1 R2

HO

R1 R2

HO OH

OEHO

R1 R2

E+

Scheme 14. Boronic acid-catalyzed selective functionalization of diol.

Boronic acids are well known for their utility as synthetic 
building blocks in a variety of bond-forming reactions, such as 
the Suzuki–Miyaura coupling73, Petasis reaction74, and Chan–
Lam coupling75, where they typically function in a stoichiometric 
manner. However, their role as catalytic reagents, particularly 
in the context of diol functionalization, is comparatively less 
developed and remains distinct from that of other boron-based 
species such as borinic acids, which offer greater structural 
tunability and catalytic versatility.

This limitation is closely linked to the structural simplicity of 
boronic acids, which possess a trivalent boron center bound to 
two hydroxyl groups and a single organic substituent. While this 
architecture is well suited for reversible covalent interactions 
with diol substrates, a key feature in dynamic covalent catalysis, 
it inherently restricts opportunities for fine-tuning steric and 
electronic environments. As a result, in boronic acid-catalyzed 
selective functionalization of diols, regio- or chemoselectivity is 
rarely dictated by the catalyst itself and instead arises from the 
intrinsic electronic or steric bias within unsymmetric diol 
substrates (Scheme 14).

While numerous methods employing boronic acids have 
been developed for diol modification, this review focuses 
specifically on catalytic approaches. Accordingly, systems 
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requiring stoichiometric or excess amounts of boronic acids are 
excluded.76, 77 In the following section, we highlight 
representative examples in which boronic acid-derived catalysts 
have enabled selective diol functionalization, with particular 
attention to the underlying reaction mechanisms.
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Scheme 15. Boronic acid-catalyzed selective oxidation of 1,2-diols to 
α-hydroxyl ketones.

Onomura's group reported that a boronic acid catalyst (OC-7) 
efficiently facilitates the selective oxidation of vicinal-diols to α-
hydroxyketones under aqueous conditions, performing in both 
chemical and electrochemical reaction systems. (Scheme 15).78 
According to their proposed mechanism, the 1,2-diol substrate is first 
activated by the boronic acid catalyst OC-7 via formation of a 
boronate ester intermediate. In the chemical pathway, the cyclic   
boronate undergoes nucleophilic attack on an Br+ species, generated 
in situ from DBI. This transformation ultimately affords the ketone 
product 23 through an elimination process. The authors further 
demonstrated that a combination of KBrO₃ and KHSO₄ can also serve 
as an electrophilic bromine source for this transformation.79 In the 

electrochemical pathway, Br⁺ is produced at the anode from KBr, 
while OH- ions formed at the cathode and subsequently act as the 
base in the elimination step.

In this context unsymmetrical terminal diol substrates exhibited 
selective oxidation at the secondary hydroxyl group, highlighting a 
preference over the primary site under the optimized conditions.
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Scheme 16.  Intramolecular cyclization of remote diols. 

In 2021, Taylor and co-workers reported a site-selective 
intramolecular cyclization of remote diols utilizing a 
pentafluorophenylboronic acid catalyst (OC-8) and oxalic acid 
co-catalyst (Co-cat-2) (Scheme 16).80 The reaction proceeds via 
the formation of a Brønsted acid-like boron species (I), 
generated through dynamic association between OC-8 and Co-
cat-2, which acts as the active catalyst. Upon exposure to the 
diol substrate, species (I) functions as a proton donor toward 
the benzylic hydroxyl group, thereby promoting the elimination 
of water and generating a benzylic carbocation intermediate. 
This intermediate subsequently undergoes intramolecular 
nucleophilic attack by the pendant hydroxyl group, resulting in 
formation of the cyclic ether. Concurrently, the conjugate base 
boron species (II), generated in the initial proton transfer step, 
accepts the proton released during ether formation to afford 
the protonated boron species (III). Rehydration of (III) under 
aqueous conditions restores the active species (I), thus 
completing the catalytic cycle. The observed regioselectivity is 
attributed to the involvement of a carbocation intermediate, as 
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benzylic positions provide sufficient stabilization to allow 
efficient cyclization.

2.4. Catalysis by Heterocyclic Boronic Acid Derivatives

B-Diol
Complexation

X
B
OH

+

1,2-diols

boronic acid
derivatives

sterically more
accessible

steric bulky + chirality

O O
B

R1 R2

X

OEHO

R1 R2

Selective Diol
Functionalization

R1 R2

HO OH

✔ regioselective

E+

Scheme 17 General mechanism for heterocyclic boronic acid-
catalyzed selective functionalization of diols.

Heterocyclic boronic acid derivatives have gained attention as 
promising catalysts for selective polyol functionalization due to 
their customizable properties in catalyst desgin.81 A subset of 
these catalysts possesses boron-containing heterocycles 
incorporating oxygen or nitrogen atoms within the ring, which 
provide stable rigidity and sufficient Lewis acidity for effective 
diol binding (Scheme 17).82 These heterocyclic frameworks 
often feature unsymmetric geometries distinct from classical 
boronic or borinic acids, allowing differentiation between the 
two hydroxyl groups in diol substrates during complexation. 
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Scheme 18. Monophosphorylation reaction of vicinal diols catalyzed 
by benzoxazaborine scaffold.

Incorporating steric hindrance or chiral elements into the 
heterocyclic backbone can further enhance the selectivity of 
electrophilic reactions mediated by such boron–diol complexes.  
The following section highlights representative examples of 
selective diol functionalizations, with a particular focus on 

catalysts based on benzoxaborole scaffolds. This section 
presents various examples of selective diol functionalizations, 
focusing on catalysts derived from heterocyclic boron-based 
scaffolds.

Hall and Rygus developed a neutral benzoxazaborine-based 
organocatalyst (OC-9) for the regioselective functionalization of 
vicinal-diols (Scheme 18).83 Upon reversible formation of a 
tetracoordinate boronate species (IV), the sterically accessible 
oxygen, originating from the primary alcohol, selectively attacks 
chlorophosphate electrophiles, affording the desired products 
in high yields with excellent site-selectivity.
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Scheme 19. Chiral benzazaborole-catalyzed enantioselective 
sulfonylation of meso-1,2-diol.

Kuwano and Arai unveiled that a chiral benzazaborole 
catalyst (OC-10), in combination with an N-methylimidazole 
(NMI) co-cataylst (Co-cat-3), effectively induced the enantio-
selective sulfonylation of cis-1,2-diols (Scheme 19).84 The 
benzazaborole scaffold of OC-10 facilitates the stepwise 
formation of a key boronate intermediate upon binding to the 
cis-diol substrate. Meanwhile, the NMI co-catalyst activates 
sulfonyl chloride by generating a tosyl imidazolium species, 
which serves as the actual electrophile. The conformationally 
more accessible oxygen atom within the cyclic boronate 
intermediate then performs a nucleophilic attack on the 
activated tosyl electrophile, providing the enantioriched 
tosylated product. Finally, the boronate ester is regenerated as 
the catalytic boron center is displaced by another incoming diol 
substrate, thus completing the catalytic cycle. 

Page 10 of 35Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

O
rg

an
ic

C
he

m
is

tr
y

Fr
on

tie
rs

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 11

Please do not adjust margins

Please do not adjust margins

OC-11

F

B
O

OH

F

F

OC-11 (10 mol %)

base, CH3CN30 31: R3 = Bz,
32: R3 = Ts,
33: R3 = BnBzCl, TsCl, BnBr

+

R1

OHHO

R2 R2

HO OR3

R1

31b : 31b',
> 98% (15:1)

32b : 32b',
93% (14:1)

33b : 33b',
> 98% (5.5:1)

B
O

O
O

ArAr

E

OH
OR3

OR3
OH

+
b

b'

key intermediate
OR3

OH

31a, 83%
32a, 91%
33a, 98%

OH

OH

OH

OH
+

OC-11 (5 mol %)

base, CH3CN
BzCl (1 eq)

OBz

OH

OBz

OH
+

Competitive benzoylation :

cis-30 trans-30 cis : trans = 12 : 1

Scheme 20. Site-selective modification of diols catalyzed by OC-11.

The Kusano research group presented a benzoxaborole-based 
catalytic platform for the site-selective functionalization of 1,2-diols 
(Scheme 20).81 The catalyst features a benzoxaborole core bearing 
electron-withdrawing aryl substituents, which increase the binding 
affinity toward diol substrates and promote the formation of 
catalytically active boronate intermediates. This conformational 
advantage was experimentally shown to confer high selectivity for 
cis-1,2-diols over their trans-isomers, as evidenced by competitive 
benzoylation reactions in which preferential functionalization of the 
cis-isomer was observed. In substrates bearing both primary and 
secondary hydroxyl groups, functionalization predominantly occurs 
at the primary site, likely due to its lower steric hindrance.
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Scheme 21. Selective cis-1,2-diol modification using the 
benzoxaborole catalyst embedded with Lewis base.

In a follow-up study, the same research group developed an 
improved bifunctional benzoxaborole catalyst (OC-12) bearing a 
pendant N,N-dimethylamino group for the regioselective 
benzoylation of 1,2-diols (Scheme 21).85 The catalyst engages in 

bifunctional activation, wherein the benzoxaborole moiety 
selectively forms a tetrahedral boronate intermediate with cis-1,2-
diols due to their favorable geometry for cyclic ester formation, while 
the pendant N,N-dimethylamino group simultaneously performs 
nucleophilic activation of the benzoyl chloride, enabling an 
intramolecular acyl transfer to the coordinated diol. This cooperative 
mechanism not only enhances catalytic efficiency but also confers 
high regioselectivity, favoring monobenzoylation at the less hindered 
primary alcohol of the terminal 1,2-diol substrate. 
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Scheme 22. Enantioselective alkylation of 1,3-diols with a chiral 
hemiboronic acid catalyst.

Hall and co-workers described a method for the 
desymmetrization of meso-1,3-diols via an enantioselective 
alkylation, employing a chiral hemiboronic acid catalyst (OC-13) 
(Scheme 22).86 A boroxarophenanthrene core from a BINOL-derived 
backbone, along with steric elements such as a trityl ether and two 
methyl groups, confers the catalyst (OC-13) for having 
conformational-biased environment when reactants approach to 
them. Complexation of OC-13 catalyst with the 1,3-diol forms a six-
membered borinate ester, positioning the two hydroxyl groups in 
distinct spatial orientations. Selective alkylation occurs at the less 
hindered hydroxyl group, located away from the bulky trityl 
substituent, furnishing the enantioriched alkylated product.

3. Nitrogen-Based Organocatalytic Systems

In recent years, nitrogen-containing organocatalysts have 
played a crucial role in modern organic synthesis, offering 
versatile reactivity, favorable electronic properties, and 
enhanced catalytic efficiency.87 In the context of selective diol 
functionalization, various types of nitrogen-containing catalytic 
systems have been employed, including N-heterocycles, 
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diamines, peptides and N-heterocyclic carbenes (NHCs), and 
others, each operating through distinct mechanistic pathways. 
The continued application of these catalysts to a broader range 
of diol substrates has enabled value-added structural 
modifications with high selectivity.88

3.1. N-Heterocycle Catalysis

RO
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R2N R2NH3

E

X

N
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X
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n

E

X

N

n

H

V

Electrophile

VI

E
N

N

N
H

or

X

N

n
=

The counteranion is omitted

Scheme 23. General mechanism of N-Heteroycle-catalyzed 
alcohol functionalization. 

Aromatic N-heterocycles are widely recognized as efficient 
catalysts for the functionalization of alcohols.89 The mechanism 
underlying their catalytic activity in hydroxyl group 
functionalization is well understood (Scheme 23).90 It begins 
with the activation of the N-heterocycle by an electrophilic 
species, leading to the formation of a key ammonium 
intermediate (V), which acts as a new electrophile, for the 
subsequent nucleophilic attack by the alcohol. This nucleophilic 
attack leads to the functionalization of the alcohol, forming a 
desired product with a second ammonium intermediate (VI). 
Consequently, intermediate VI undergoes deprotonation by an 
external base, regenerating the catalyst and completing the 
catalytic cycle.91

OH
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(i-PrCO)2O,
Collidine, rt

39, 61%
65% ee

OC-14
(5 mol %)

38

N N

NH
O

MeO2C

O

N Cbz

R OC-14

OCOiPr

OH
2

4

Scheme 24. Desymmetrization of meso-1,2-cyclohexane diol using 
organo-catalyst (OC-14).

With these mechanistic features in hand, researchers have 
explored the potential of N-heterocycles in selective catalysis for diol 
functionalization. Notably, chiral 4-amino pyridine structures have 
been widely considered as an asymmetric catalyst in the context of 
enantioselective acylation of diol substrates. In 2003, Kawabata et al. 
introduced a chiral 4-pyrrolidinopyridine catalyst (OC-14), featuring 
two distinct functional side chains at C2 and C4 of the pyrrolidine 
ring, to perform enantioselective isopropanoylation of meso-1,2-
cyclohexane diol (Scheme 24).92 As outlined in the general 
mechanism (Scheme 23), forming a chiral isopropyl acyl-pyridinium 
intermediate was identified as a key step in achieving 
enantioselectivity. Despite moderate yield (61%) and 
enantioselectivity (65% ee), the successful sterochemical induction 

achieved by introducing chiral substituents onto the N-heterocycle 
offers pioneering insights and establishes a foundation for advancing 
chiral pyridine-based catalysts in the selective functionalization of 
diols.
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Scheme 25.  Enantioselective isopropanoylation of meso-diols using 
chiral-DMAP catalyst (OC-15).

Building on these insights, Yamada and co-workers designed 
a novel class of chiral 4-(dimethylamino)pyridine (DMAP) 
catalyst (OC-15) for the asymmetric isopropanoylation of meso-
diols (Scheme 25).93 A distinctive feature of this catalyst is its 
unique conformation switch system, which is based on the 
interconversion between the uncomplexed form (VII) and the 
self-complexed form (VIII), induced by N-acylation. The 
proposed mechanistic model suggests that self-complexation, 
driven by an intramolecular cation–π interaction between the 
pyridinium ring and a thiocarbonyl group, creates a chiral 
environment around the active site, which is used for 
discriminating symmetric diols.

OH OH

R2R1

43a, 90 %
94:6 er

43c, 87 %,
79:21 er

43b, 69 %,
95:5 er

OC-16 (1 mol %)
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Ph Ph
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OH
PhOC-16

OH OCOiPr

R2
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(i-PrCO)2O,
TMEDA, -60 oC

OH OCOiPr

Scheme 26. Enantioselective isopropylation of 1,3-diols via chiral-
DMAP catalyst (OC-16).

Furthermore, a study by Mandai et al. made a significant 
contribution to the chiral 4-amino pyridine catalytic system by 
introducing a 1,1′-binaphthyl containing two 3o hydroxyl units 
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(OC-16) (Scheme 26).94 The study highlighted that the two 3o 
hydroxyl units were crucial for achieving high catalytic activity 
and enantioselectivity in desymmetrization of 1,3-diols, though 
their specific role in the reaction mechanism has not yet 
elucidated.
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Scheme 27.  Rotaxane-based catalyst (OC-17) for asymmetric 
regioselective benzoylation of meso-1,2-diol.
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Scheme 28. Desymmetrization of meso-Diols catalyzed by chiral 
Pyridine-N-Oxide (OC-18 and OC-19).

In 2018, Takata and his colleagues disclosed a novel 
rotaxane-type catalyst (OC-17) to undergo O-benzoylative 
asymmetric desymmetrization of meso-1,2-Diol (Scheme 27).95 
The rotaxane-type catalyst OC-17 exhibited a cooperative effect 
between its crown ether wheel bearing (R)-binaphthyl group 
(back structure of OC-17, scheme 27) and its axle containing N-
pyridylmethyl substituent (front structure of OC-17, scheme 27). 
As described in Scheme 23, the reaction initiated with the 
formation of an N-acylpyridinium intermediate, followed by the 
enantioselective approach of the diol substrate. The proximity 
effect, driven by the localization of the chiral wheel around the 
N-benzoyl pyridinium intermediate, facilitated this selectivity.

As a further contribution, Lian et al. recently developed a 
chiral C2-substituted aminopyridine-N-oxide (OC-18) and a 
chiral C3-substituted arylpyridine-N-oxide (OC-19), enabling 
enantio-divergent benzoyl transfer in the desymmetrization of 
meso-1,2-diols (Scheme 28).96 Depending on the choice of chiral 
catalyst (OC-18 or OC-19), benzoylation of meso-diol 46 
proceeded selectively to afford either enantiomer, 47 or 48.  
DFT calculations further elucidated the reaction mechanism, 
revealing that it proceeded through a bifunctional activation, 
where the benzoyl-activated N-oxide and the proton of the 
amides played pivotal roles in both catalytic reactivity and 
enantio-control. 
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Scheme 29. Enantioselective silylation of meso-1,2-diols 
employing bifunctional imidazole catalyst (OC-20).

Selective functionalization has been achieved using not only 
pyridine-based organocatalysts but also imidazole-derived 
catalysts. In the context of imidazole-based selective 
organocatalysis, Tan and coworkers demonstrated that an 
imidazole bearing a chiral substituent at the C2-position (OC-20) 
effectively catalyzed the enantioselective silylation of meso-1,2-
diols (Scheme 29).97 This catalyst exhibits bifunctional 
properties: a 2-methoxy oxazolidine moiety functions as the 
diol-binding site, while the imidazole group serves as the silyl-
binding site. This arrangement enables efficient and selective 
transfer of silyl groups to diols in an enantioselective manner. 
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Scheme 30. Regiodivergent kinetic resolution of terminal 1,2-diols.

In the following year, the same group presents a regiodivergent 
kinetic resolution of terminal 1,2-diols through asymmetric silyl 
transfer, utilizing the same chiral catalyst OC-20 (Scheme 30).98 This 
strategy enables selective silylation of either the primary or 
secondary hydroxyl group in each enantiomer, thereby achieving 
both chemical differentiation and enantiomeric resolution. The key 
to this transformation lies in the reversible covalent bonding 
between the catalyst and substrate, which plays a pivotal role in 

directing regio- and enantioselectivity. Initially, the primary alcohol 
reacts more rapidly due to its higher intrinsic reactivity, leading to 
preferential formation of the silylated product from one enantiomer. 
As the reaction proceeds, acid byproducts promote dynamic 
exchange between catalyst and substrate, which accelerates the 
silylation of the less reactive enantiomer. By fine-tuning the reaction 
parameters, such as the rate of silyl chloride addition and reaction 
temperature, the authors achieved high enantioselectivity and 
synthetically useful yields. This regiodivergent resolution offers an 
efficient approach to access enantiopure, mono-protected diols.
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Scheme 31. Enantioselective acylation of meso-1,3-diols using 
OC-21.

Subsequently, the Ishihara group developed a novel 
bifunctional organocatalyst (OC-21), which integrates a chiral 
sulfonamide moiety as a hydrogen-bond donor and an 
imidazole unit as an electrophilic acceptor (Scheme 31).99 
Leveraging its potent hydrogen-bond donating capability, 
catalyst OC-21 effectively promoted the enantioselective 
acylation of meso-1,3-diols bearing a hydrogen-bond-accepting 
3-pyrroline-1-carbonyl (Pyroc) group. The established 
hydrogen-bond network between sulfonamide and Pyroc group 
creates a chiral environment that facilitates acyl transfer from 
the acyl ammonium intermediate to the diol substrate, 
achieving enantioselectivity.
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Scheme 32. Isothiourea catalyzed desymmetrization of meso 
1,3-diols.

Moreover, like pyridine and imidazole, isothioureas are 
widely recognized as highly effective nucleophilic 
organocatalysts, owing to the presence of an electron-rich 
nitrogen atom adjacent to a thiocarbonyl group. This structural 
feature endows isothioureas with strong nucleophilic character, 
enabling them to efficiently activate electrophilic centers, 
particularly carbonyl-containing compounds. Considering this 
intrinsic nucleophilic reactivity of isothioureas, Bressy group 
developed a highly enantioselective method for the 
desymmetrization of acyclic meso-1,3-diols via acylation, 
utilizing a chiral isothiourea-based organocatalyst (OC-22) 
(Scheme 32).100 Mechanistically, the reaction proceeds via a 
nucleophilic attack by the electron-rich nitrogen atom of the 
catalyst (OC-22) on the anhydride electrophile, generating a 
chiral N-acyl isothiouronium intermediate. This intermediate 
acts as an efficient acyl transfer agent, enabling the 
enantioselective acylation of the meso-diol with high 
stereocontrol. 
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Scheme 33. Synthesis of Lobeline via regioselective acylation of 
lobelanidine (57).

Expanding upon this strategy, Birman et al. employed an 
isothiourea-based organocatalyst (OC-23) for the enantio-
selective acylation of lobelanidine (57), enabling the asymme-
tric synthesis of lobeline under ambient conditions using 
propionic anhydride as the acyl donor. (Scheme 33).101 The 
reaction proceeds via formation of a chiral N-isopropanoyl 
isothiouronium intermediate, which acts as an electrophilic acyl 
transfer agent, delivering the acyl group with high regio- and 
enantioselectivity.
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Scheme 34. DBN (OC-24) catalyzed regioselective acylation of diols.

Building on the nucleophilic character of N-heterocycles in 
facilitating selective diol functionalization, Ren and co-workers 
subsequently reported a cost-effective and highly efficient 
method for the regioselective acylation of diols using 1,5-
diazabicyclo[4.3.0]non-5-ene (DBN, OC-24) as an organo-
catalyst (Scheme 34).102 The authors propose that the 
bifunctional character of DBN arises from its ability to 
simultaneously engage in dual hydrogen-bonding interactions 
with the diol substrate and promote acyl transfer through the 
formation of a reactive acyl–ammonium electrophilic 
intermediate. This dual activation mode facilitates 
regioselective acylation at the sterically less hindered hydroxyl 
group, ultimately affording the monoacylated product 60.
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3.2. Diamine Catalysis

N N
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R

OCOR

R
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R O X

R X

O

Electrophile
activation

Acyl transfer

R
RR

R

Schem 35. General mechanism of 1,2-diamine-catalyzed 
regioselective acylation of diols.

Diamine catalytic system features two nitrogen atoms whose 
electron-rich character imparts strong nucleophilic and Brønsted 
basic properties, enabling activation of electrophilic substrates or 
acidic protons.103 Leveraging their inherent nucleophilic character, 
diamines have been employed as effective catalysts in acyl transfer 
reactions. Notably, Chiral ethylenediamine frameworks have 
attracted considerable attention as asymmetric catalysts in the 
enantioselective acylation of diol substrates. A plausible mechanistic 
pathway involves the bidentate coordination of the diamine catalyst 
to the carbonyl carbon of the acylating agent, thereby enhancing the 
electrophilicity of the acyl donor and facilitating regioselective 
acylation at a specific hydroxyl group of the diol substrate (Scheme 
35).104 The resulting regioselectivity is governed by the steric and 
electronic properties of the diamine catalyst, providing a strategic 
platform for the rational design of highly selective diamine-based 
catalytic systems for diol functionalization.
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OBz
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OC-26: 85%, 94% ee

62b 62c

Scheme 36. Enantioselective benzoylation of meso-diol using 
chiral diamines (OC-25 and OC-26). 

A study conducted by Oriyama and colleagues demonstrated the 
enantioselective benzoylation of meso-diols utilizing the chiral 1,2-

diamine reagent OC-25, which was synthesized from (S)-proline 
(Scheme 36).105  Although this method requires a stoichiometric 
amount (1.0 equivalent) of OC-25, it illustrates that diamine-based 
systems serve as effective platforms for the acylation of diol 
substrates, and that high enatioselectivity can be achieved through 
the rational design of the diamine catalyst. To enhance economic 
feasibility, the same research group subsequently developed a 
structurally optimized chiral 1,2-diamine catalyst (OC-26), which 
exhibited significantly enhanced catalytic efficiency in the 
enantioselective benzoylation reaction when employed alongside 
triethylamine as a base.106  Remarkably, utilizing only 0.5 mol % of 
OC-26 resulted in benzoylation of meso-diols with selectivity 
comparable to the stoichiometric OC-25 system, while 
simultaneously increasing reaction efficiency and sustainability 
through substantial catalyst load reduction.  

OC-27
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O
+

64, 89%
99% ee

Scheme 37. Desymmetrization of meso-1,4-diol chromium complex.

Next, Kundig group explored their application in the 
desymmetrization of meso-1,4-diol complexes derived from 
[Cr(CO)₃(naphthoquinone)] while preserving metal coordination 
(Scheme 37).107 This transformation was achieved through 
enantioselective monobenzoylation, facilitated by a new quinidine-
derived chiral diamine catalyst (OC-27).  As illustrated in the 
proposed mechanism in Scheme 35, OC-27 interacts with the 
carbonyl carbon of benzoyl chloride, increasing its electrophilicity 
and enabling transfer of the benzoyl group to meso-1,4-diol 
complexes in an enantioselective manner.  This strategy enables 
access to highly enantioenriched planar chiral chromium complexes 
64, which serve as valuable chiral building blocks for highly 
diastereoselective transformations, such as chromium-mediated 
dearomatization reactions.108

66a, 84%,
77% ee

R

R OH

OH EtOAc, -60 oC
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65 66

O
OH

OBz

OH

OBz

Ph

O

Cl
+

Scheme 38. Enantioselective benzoylation of meso-1,2-diols 
using cinchona alkaloid-derived catalyst (OC-27).

To further explore the applicability of the chiral diamine 
catalyst OC-27, the same group extended its use to commonly 
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encountered meso-1,2-diols (Scheme 38).109 Employing OC-27, 
they successfully achieved the desymmetrization of various 
cyclic and acyclic meso-diols through benzoylation, obtaining 
monobenzoylated products with good to excellent yields and 
high enantioselectivities. This group study underscored the 
versatility of quinidine-derived organocatalyst (OC-27) in 
enantioselective benzoylation of meso diols.

3.3. Peptide Catalysis

Peptides have emerged as powerful catalysts in regioselective 
transformation of organic compounds due to their inherent 
structural flexibility, precise molecular recognition, and ability 
to engage in non-covalent interactions, such as hydrogen 
bonding and electrostatic forces.110 In the context of selective 
functionalization of diols, these properties enable peptide-
based catalysts to distinguish between two hydroxyl groups, 
thereby facilitating regio- and enantioselective transformations, 
including acylation and silylation reactions. 

Particularly, short peptide sequences containing proline, 
histidine, or other nucleophilic residues have been employed to 
catalyze diol desymmetrization, yielding regioselectively 
modified products with high enantiocontrol. Their catalytic 
activity primarily stems from functional groups, bearing amines, 
carboxylates, and hydroxyls, which participate in hydrogen bonding, 
Brønsted acid-base interactions, and steric control.111 These 
interactions play a crucial role in stabilizing key transition states and 
reactive intermediates, thereby minimizing activation energy 
barriers and precisely directing selective transformations at a single 
hydroxyl site. Such cooperative effects not only enhance reaction 
efficiency but also expand the scope of peptide catalysis in 
asymmetric diol transformation. 

*
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Scheme 39. Selective acylation of glycerol derivatives. 

In 2005, Lewis et al. disclosed desymmetrizative acylation of 
meso-glycerol derivatives 67, employing a chiral histidine-derived 
peptide-based organocatalyst (OC-28) (Scheme 39).112 The catalyst 
combines an imidazole moiety, which activates the acyl group, with 
a peptide chain that accepts a hydrogen bond from one hydroxyl 
group of the diol substrate. This interaction spatially orients the 
second hydroxyl group, guiding highly enantioselective acylation. 
Collectively, this approach enables access to enantioenriched 
products with excellent selectivity.

R

OHHO
Ac2O,
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R
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70a (R=tBu), 80%, 95% ee

70b (R=Et), 60%, 63% ee
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N

NH-Boc
O

R

OAcHO
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Scheme 40. Desymmetrization of remote meso-diol via 
enantioselective acylation.

Building on their earlier work, the same research group 
developed OC-29, a synthetic, miniaturized peptide-based 
organocatalyst that mimics enzyme function, for the 
desymmetrization of sterically and structurally challenging remote 
meso-diols 69 (Scheme 40).113 This transformation proceeds via an 
enantioselective desymmetrizing acylation reaction. Although the 
precise mode of asymmetric induction remains ambiguous, the 
authors propose that undefined, yet functionally significant, non-
covalent interactions between the catalyst and substrate contribute 
to the observed enantioselectivity. Notably, reducing the steric bulk 
of the alkyl substituents on diol substrate 69 led to a marked 
decrease in enantioselectivity, underscoring the reaction’s sensitivity 
to substrate sterics.
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Scheme 41. Enantioselective acylation of meso-1,2-diols using OC-30.

Schreiner et al. have introduced a novel approach for 
desymmetrizing meso-diols through enantioselective acylation, 
coupled with an in-situ oxidation step to protect the valuable 
product from racemization (Scheme 41).114 This strategy 
employs a highly lipophilic, histidine-derived peptide catalyst 
(OC-30), incorporating an adamantane-based amino acid motif. 
Their study demonstrated that the lipophilic peptide catalyst 
OC-30 effectively facilitates the desymmetrization of vicinal 
meso-diols via enatioselective acyl transfer from a chiral 
imidazolium intermediate. Furthermore, the subsequent 
TEMPO-mediated oxidation of the monoacylated product 
provided the corresponding α-acetoxy ketones in high isolated 
yields, with no loss of enantioselectivity.
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Scheme 42. Kinetic resolution of trans-cycloalkane-1,2-diols 
employing OC-30.

Building on their earlier work, the same group further 
advanced the field by reporting an enantioselective kinetic 
resolution of trans-cycloalkane-1,2-diols through a 
monoacylation process, employing their previously developed 
peptide-based organocatalyst OC-30 (Scheme 42).115 The 
reaction proceeds via a selective acyl transfer from a chiral 
imidazolium intermediate, wherein one hydroxyl group of the 
diol undergoes acylation while the other engages in hydrogen 
bonding with the peptide backbone, an interaction essential for 
precise chiral recognition. Notably, when the reaction was 
performed in more polar solvents such as acetonitrile, 

dichloromethane (DCM), or trifluoromethylbenzene, both 
enantioselectivity and reaction rate declined significantly. 
These findings highlight the pivotal role of solvent polarity in 
maintaining the non-covalent interactions necessary for 
effective substrate orientation and high stereocontrol within 
the catalytic system.
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Scheme 43. Enantioselective silylation of meso-1,2-diols 
utilizing amino-acid-based organocatalyst (OC-31).

Subsequently, the Snapper group designed a simple, amino-
acid-based small molecule as a chiral organocatalyst (OC-31) for 
the enantioselective silylation of meso-diols (Scheme 43).116, 117 
Structurally, OC-31 incorporates a Lewis basic imidazole group, 
which enhances the electrophilicity of the silyl halide reagent, 
along with a chiral amino acid moiety that engages in hydrogen 
bonding interactions with the diol substrate. These interactions 
facilitate the selective activation of one hydroxyl group, thereby 
enabling enantioselective silylation. In their initial investigation 
of meso-diol desymmetrization via silyl group transfer, the 
reaction required a high catalyst loading (30 mol%) and 
prolonged reaction times of several days.116 To enhance the 
efficiency of this catalytic system, the authors utilzed an achiral 
co-catalyst (Co-cat-4) as a nucleophilic promotor alongside a 
chiral catalyst (OC-31) as Brønsted base.117 This dual-catalyst 
system effectively accelerated the reaction, enabling 
completion within one hour while delivering the desired 
products in high yields and enantiomeric ratios with a reduced 
catalyst loading of just 5 mol % catalyst (OC-31). 
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Scheme 44. Oxidative desymmetrization of meso-1,4-diols using 
OC-32.

A landmark contribution from the Miller group introduced a 
pioneering strategy for the oxidative desymmetrization of 
meso-1,4-diols using a novel aminoxyl-functionalized, peptide-
based organocatalyst (OC-32). This elegant approach enables 
the enantioselective synthesis of enantioenriched lactones with 
remarkable efficiency and selectivity. (Scheme 44).118

Central to this transformation is OC-32, a bifunctional 
catalyst that integrates an oxidizing oxoammonium species with 
a chiral peptide backbone. The oxoammonium group serves as 
an oxidizing agent, while the peptide framework provides a 
well-organized hydrogen-bonding network that reinforces 
chiral induction. Mechanistically, the reaction begins by forming 
a stabalized hydrogen bond of one of the hydroxyl groups of 
meso diol with the peptide backbone, anchoring the substrate 
within a chiral environment followed by the site-selective 
oxidation of free hydroxyl group of meso-diol substrate, 
generating a transient aldehyde intermediate. Following initial 
oxidation, intramolecular cyclization occurs via nucleophilic 
attack of the unoxidized hydroxyl group on the newly formed 
aldehyde, resulting in the formation of a chiral lactol. This 
intermediate is then subjected to a second oxidation step, 

typically mediated by trichloroisocyanuric acid (TCCA), to 
furnish the corresponding enantioenriched lactone product.
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Scheme 45. Regiodivergent oxidation of unsymmetrical-1,4-
enabled by OC-33 and OC-34.

Recently, the same research group reported a 
regiodivergent oxidation of unsymmetrical diols (79) using 
structurally tailored, aminoxyl-containing peptide-based 
organocatalysts (OC-33 and OC-34) (Scheme 45).119 This 
approach enabled catalyst-controlled selective oxidation of 
either the less hindered or the more hindered hydroxyl group 
with high levels of regioselectivity.  According to their findings, 
OC-34 favors oxidation at the less hindered hydroxyl group. This 
preference arises because a nearby methyl group at the 
aminoxyl-core in the catalyst (OC-34) structure sterically blocks 
access to the more hindered hydroxyl group, making the less 
hindered site more accessible for oxidation. In contrast, OC-33 
features a bulkier, more sterically crowded peptide core. This 
design encourages binding of the less hindered hydroxyl group 
within a confined "pocket" of the peptide, thereby positioning 
the more hindered hydroxyl group near the reactive 
oxoammonium center. As a result, oxidation occurs 
preferentially at the more hindered site. As outlined in Scheme 
45, initial oxidation leads to the formation of a chiral lactol via 
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intramolecular cyclization, which undergoes further oxidation 
with TCCA to afford the final chiral lactone products.
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Scheme 46. Amino thiocarbamate (OC-35)-catalyzed 
bromocycliazation of diolefinic diols.

Inspired by the participation of the peptide’s carbonyl group 
in hydrogen bonding and secondary interactions, the Yeung 
group utilized a chiral amino-thiocarbamate catalyst (OC-35), 
featuring a thiocarbamate moiety analogous to the amide 
functional group, to promote an intriguing bromocyclization of 
diolefinic diols (82) with high diastereo- and enantioselectivity  
(Scheme 46).120 The selectivity observed in this transformation 
is governed by a combination of structural features of the 1,3-
diol substrate and noncovalent interactions induced by the 
catalyst. Specifically, an internal hydrogen-bonding network 
within the 1,3-diol enforces a pseudo-chair conformation 
resembling a six-membered ring. This conformation is further 
stabilized by a bulky substituent adopting a pseudo-equatorial 
orientation, thereby minimizing steric repulsion. 

Concurrently, the amino-thiocarbamate catalyst (OC-35) 
forms a bifunctional catalytic pocket. First, the quinuclidine 
moiety acts as a hydrogen bond acceptor, interacting with the 
acidic proton of the 1,3-diol. Second, it serves as a bromine 
transfer platform: the catalyst abstracts bromine from N-
bromophthalimide (NBP) and delivers it to the alkene substrate. 
This controlled delivery imposes a geometrical constraint that 
promotes selective bromonium ion formation. Subsequent 
intramolecular nucleophilic attack by the free hydroxyl group of 

the 1,3-diol onto the bromonium intermediate affords the cyclic 
ether product with high diastereo- and stereoselectivity. 

3.4. N-heterocyclic Carbenes (NHCs) Catalysis
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Scheme 47. General mechanism of NHC-catalyzed acylation of 
alcohols.

N-Heterocyclic carbenes (NHCs) represent a distinct class of 
stable carbenes, characterized by a divalent carbon atom 
embedded within a nitrogen-containing heterocyclic ring.121 
Unlike conventional carbenes, which are typically highly 
reactive and short-lived, NHCs exhibit remarkable stability due 
to electron donation from adjacent nitrogen atoms and steric 
protection provided by the ring system. Owing to their strong 
electron-donating properties, NHCs play a pivotal role in 
catalyzing the acylation of alcohols by facilitating the activation 
of aldehydes as acyl anion equivalents. Mechanistically, the 
reaction commences with the generation of an NHC carbene 
from the deprotonation of its corresponding azolium salt using 
base (Scheme 47).122 The carbene, functioning as a strong 
nucleophile, attacks the electrophilic carbonyl carbon of the 
aldehyde to generate a tetrahedral intermediate (IX), which 
undergoes proton transfer to yield the corresponding enaminol 
(X). This is followed by an internal redox process that generates 
the NHC–acyl intermediate (XI), which exhibits enhanced 
electrophilicity at the carbonyl center. This activation facilitates 
nucleophilic attack by the alcohol, leading to the formation of 
the ester product while simultaneously regenerating the NHC 
catalyst.
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Scheme 48. Enantioselective acylation of meso-hydrobenzoin 
using chiral carbene catalyst (OC-36).

Considering these mechanistic insights, the Rovis group 
investigated the enantioselective acylation of meso-
hydrobenzoin 84 using a chiral nucleophilic carbene catalyst 
(OC-36) and α-bromo-cyclohexane carboxaldehyde as an 
acylating source (Scheme 48).123 The catalytic cycle begins with 
the nucleophilic attack of the carbene on the aldehyde, 
followed by hydrogen transfer to generate an α-bromo enol 
intermediate (XIII) which undergoes leaving group elimination 
to form an enol intermediate (XIV), which tautomerizes to yield 
an active acylating species (XV) for the selective acylation of the 
diol. This approach offers a unique and efficient strategy for the 
enantioselective functionalization of diols, thereby expanding 
the scope of chiral carbene-catalyzed transformations in 
asymmetric synthesis.
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Scheme 49. Asymmetric monoacylation of cis-cyclohexane-1,2-
diol using OC-37.

In the following year, Scheidt et al. developed the 
enantioselective monoacylation of cis-cyclohexane-1,2-diol 
with cinnamaldehyde using a chiral triazolium salt (OC-37) as an 
N-heterocyclic carbene (NHC) catalyst (Scheme 49).124 The 
transformation initiates with NHC-catalyzed activation of 
cinnamaldehyde, yielding addition intermediate XVI, which 
undergoes oxidation to furnish the key α,β-unsaturated 
carbonyl–NHC species XVII. This chiral acyl transfer platform 
subsequently facilitates the enantioselective acylation of diol 
substrates.
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Scheme 50. Desymmetrization of 1,2-diol using chiral N-
heterocyclic carbene (OC-38) and a redox-active flavin (Co-cat-
5).

Subsequent study by Iwahana and his team disclosed a 
combination of a chiral N-heterocyclic carbene (OC-38) and a 
redox-active flavin (Co-cat-5) as an effective system for 
promoting the enantioselective benzoylation of cis-
cyclohexane-1,2-diol with benzaldehyde under ambient air 
conditions (Scheme 50).125 The reaction mechanism involves 
the generation of enol intermediate (XIX) by the nucleophilic 
addition of carbene to benzaldehyde. The riboflavin derivative 
(Co-cat-5) serves as the oxidant, facilitating the oxidation of the 
enol intermediate (XIX) to an NHC-acyl intermediate (XX), 
thereby directing enantioselective benzoylation of diol. This 
approach provides a straightforward and effective method for 
asymmetric functionalization under mild, air-tolerant 
conditions. 

4. Phosphorus-based Organocatalytic Systems

Phosphorus-based organocatalysts play a crucial role in modern 
organic synthesis, owing to their versatile reactivity profiles that 
encompass nucleophilic activation, Brønsted acid catalysis, and 
Lewis’s base interactions.126 This intrinsic tunability renders 
them particularly valuable in the selective functionalization of 
diols. Among the commonly employed phosphorus-containing 
catalysts are chiral phosphines, chiral phosphoric acids (CPAs), 
and phosphonium salts, each leveraging distinct mechanistic 
pathways to promote selective transformations of diols.127 Like 
chiral phosphines act as nucleophilic catalysts, enabling the 
activation of electrophiles for regioselective modifications of 
diol substrates. On the other hand, CPAs, typically derived from 
BINOL or SPINOL frameworks, serve as Brønsted acid catalysts, 
promoting transformations through hydrogen bonding and ion-
pair interactions.128 The versatility of phosphorus-based 
catalysts underscores their pivotal role in the development of 
selective diol functionalization strategies.
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Scheme 51. Phosphines catalyzed regioselective reaction of cis-
cyclohexane-1,2-diol.

In this contribution, Vedejs and co-workers initially 
developed a chiral phosphine organocatalyst (OC-39) catalyzed  
monobenzoylation of meso-hydrobenzoin (90, achieving 
moderate levels of conversion and enantioselectivity (Scheme 
51).129 To improve these outcomes, the same group 
subsequently developed a structurally refined phosphine 
catalyst (OC-40), which exhibited markedly enhanced reactivity 
and enantioselectivity in the functionalization of diol (90).130 It 
is assumed that chiral phosphines promote acylation through 
nucleophilic activation of the acyl donor, generating a reactive 
chiral P-acyl phosphonium intermediate. This intermediate 
facilitates enantioselective acyl transfer to the hydroxyl group, 
enabling high levels of stereocontrol during the transformation.
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Scheme 52. Enantioselective monobenzoylation of meso-diols 
via phosphinite derivatives (OC-41 or OC-42).

As a further advancement, the Fujimoto group developed a 
bifunctional phosphinite catalyst (OC-41), derived from 
cinchona alkaloids, which integrates a Lewis-basic phosphinite 
moiety with a Brønsted-basic tertiary amine to achieve the 
enantioselective desymmetrization of meso-1,2-diols via 
benzoylation (Scheme 52).131 Despite its effectiveness, this 
system required over 30 mol % catalyst loading. To make it 
more economical, subsequently the same group introduced a 
more practical and readily accessible amino-phosphinite 
catalyst (OC-42), synthesized from cis-aminoindanol.132 This 
improved catalyst enabled the enantioselective benzoylation of 
meso-1,2-diols using substantially lower loadings (2.5 mol%). 
Although the detailed reaction mechanism remains 
unelucidated, the authors propose that benzoyl chloride 
activation likely proceeds through coordination to the 
phosphinite Lewis base.
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Scheme 53. Desymmetrization of 1,3-diols employing chiral 
phosphoric acid (OC-43).

In 2014, Zheng and co-workers reported a noteworthy 
application of a BINOL-based chiral phosphoric acid catalyst 
(OC-43) for the highly enantioselective desymmetrization of 2-
substituted 1,3-diols. (Scheme 53).133 The reaction begins with 

dimethyldioxirane (DMDO)-promoted oxidation of a 1,3-diol 
benzylidene acetal 94, generating acetone and an ortho-ester 
intermediate. This intermediate subsequently undergoes chiral 
phosphoric acid (OC-43) mediated proton transfer reaction, 
delivering the final product 95 with efficient yield and 
selectivities. DFT calculations reveal that the oxidation of the 
acetal by DMDO is the rate-determining step, while the 
exceptional enantioselectivity arises from favorable aryl-aryl 
interactions between the substrate and catalyst. In subsequent 
studies, the authors demonstrated that this asymmetric 
desymmetrization strategy could be further utilized for the 
highly enantioselective synthesis of acyclic α-tertiary amines.134
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Scheme 54. Desymmetrization of serinol-derived ynamides 
using chiral phosphoric acid catalyst (OC-44).

Recognizing the potential of chiral phosphoric acids as 
Brønsted acids, Cui and co-workers developed a highly 
enantioselective desymmetrization of meso-1,3-diol bearing 
ynamide scaffold 96, employing a BINOL-derived CPA catalyst 
(OC-44) (Scheme 54).135 The reaction begins with protonation 
of the ynamide 96 by the catalyst OC-44, generating a 
keteniminium intermediate 97. This intermediate then 
undergoes intramolecular hydroalkoxylation to afford a chiral 
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oxazolidine intermediate 98, which serves as the enantio-
determining step. A subsequent proton transfer from the CPA 
(OC-44) to intermediate 98 generates a cyclic iminium species 
(98), which undergoes hydrolysis to deliver the chiral β-amino 
alcohol 100 with regeneration of the catalyst. The observed 
enantioselectivity arises from well-defined hydrogen-bonding 
and ion-pairing interactions between the keteniminium 
intermediate 97 and the chiral Brønsted acid catalyst.
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Scheme 55. Phosphonium ylide (OC-45) catalyzed regioselective 
acylation of diol.

Notably, Suga group employed a novel carbonyl-stabilized 
phosphonium ylide (OC-45) as an ionic nucleophilic catalyst for 
the selective acylation of primary alcohols in terminal diols 
(Scheme 55).136 The proposed mechanism initiates with the 
nucleophilic attack of the phosphonium ylide (OC-45) on the 
electrophilic carbon of isopropyl anhydride, resulting in the 
formation of an O-isopropylated intermediate is activated 
species subsequently undergoes acyl transfer to the diol 
substrate, selectively targeting the primary hydroxyl group. The 
observed regioselectivity is attributed to steric hindrance 
imposed by the bulky triphenylphosphine moiety, which 
disfavors nucleophilic attack at the more hindered secondary 
alcohol, thereby favoring acylation at the less hindered primary 
site.

5. Organophoto- Catalytic Systems
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Scheme 56. General mechanism of selective oxidation of diol via 
photocatalysis.

Traditional approaches to site-selective diol functionalization have 
primarily relied on two-electron pathways. In these systems, 
selectivity is often induced by the structural features of the catalyst, 
particularly in enantioselective transformations where chiral 
architectures play a central role. Alternatively, selectivity may result 
from the intrinsic steric or electronic properties of the substrate.

More recently, organophotocatalysis has emerged as a 
mechanistically distinct strategy, enabling site-selective modification 
of diol substrates through single-electron processes initiated by 
visible light. Upon photoexcitation, the excited photocatalyst (PC*) 
engages in a single-electron transfer with a redox-active additive (A), 
generating a radical species (•A) (Scheme 56). This additive radical 
species subsequently reacts with the diol substrate through 
hydrogen atom transfer (HAT), forming reactive intermediates, such 
as alkoxy, benzylic, or ketyl radical species. These reactive 
intermediates serve as branching points for various downstream 
reactions, including selective oxidation at specific hydroxyl groups 
and oxidative cleavage of vicinal C–C bonds. This section examines 
how such photochemical radical-based strategies have been 
harnessed to achieve site-selective transformations of diols through 
well-controlled single-electron pathways.
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Scheme 57. Blue light-mediated chemoselective oxidation of 1,3-diol.

A regioselective oxidation protocol targeting benzylic hydroxyl 
groups within diol substrates was developed by Rizvi, and Shah, 
employing Eosin Y (OC-46) as an organophotocatalyst and tert-butyl 
hydroperoxide (TBHP) as the oxidant under blue light irradiation 
(Scheme 57). 137 Underlying this transformation is a mechanism in 
which photoexcited Eosin Y initiates homolytic cleavage of TBHP to 
generate tert-butoxy and hydroxyl radicals. The former abstracts a 
hydrogen atom adjacent to the aromatic ring, forming a stabilized 
benzylic radical, which is subsequently oxidized by the latter to yield 
the carbonyl product. The observed selectivity stems from the lower 
bond dissociation energy and enhanced stability of the benzylic 
radical. In substrates such as 1,3-diol, oxidation occurs exclusively at 
the benzylic hydroxyl group, leaving the primary alcohol unmodified.
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Scheme 58. Photocatalyzed selective oxidation of 1,2-diols.
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Scheme 59. OC-47-catalyzed selective benzylic oxidation under 
visible light. 

Building on the utility of Eosin Y (OC-46) as an organo-
photocatalyst, Song, Xu, and Gao developed a blue-light-mediated 
protocol for the selective oxidation of hydroxyl groups located at 
benzylic positions, employing molecular oxygen as the terminal 
oxidant (Scheme 58). 138 OC-46 has been shown to promote 
aerobic oxidation at benzylic positions via a hydrogen atom 
transfer (HAT) mechanism under visible light irradiation. Upon 
photoexcitation, the Eosin Y catalyst reaches its excited state 
and abstracts a hydrogen atom from the benzylic C–H bond, 
generating a benzylic radical and the reduced form of the 
catalyst (Eosin Y–H). The benzylic radical is subsequently 
oxidized to furnish a benzyl carbocation, which undergoes 
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deprotonation to yield the corresponding carbonyl product 106. 
Under blue light irradiation, the reduced photocatalyst (Eosin 
Y–H) is reoxidized by molecular oxygen, thereby regenerating 
Eosin Y and closing the catalytic cycle. 

Ananthakrishnan and co-workers also developed a photoinduced 
oxidation protocol for benzylic hydroxyl groups using 
bromodimethylsulfonium bromide (BDMS, OC-47) and molecular 
oxygen, enabling the site-selective conversion of secondary alcohols 
to ketones (Scheme 59).139 In the proposed mechanism, OC-47 
undergoes photoactivation to generate bromine radicals, which 
initiate hydrogen atom abstraction from the benzylic C–H bond of 
diol 107, forming benzylic radical intermediates 108. These radicals 
subsequently react with molecular oxygen to produce a diol–peroxy 
radical adduct 109. The resulting peroxy radicals abstract hydrogen 
atoms from in situ generated HBr, thereby regenerating bromine 
radicals and forming hydroperoxide species 110,140 which are 
believed to be intermediates en route to the formation of ketone 
111. Notably, overoxidation beyond the ketone stage is not observed 
under the reaction conditions.
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Scheme 60. Photocatalyzed oxidative desymmetrization of meso-
1,2-diols.

Phipps and colleagues reported a catalytic system for the 
enantioselective oxidation of meso-diols via visible-light-driven 
radical generation (Scheme 60).141 This transformation utilizes 
4CzIPN (OC-48) as an organophotocatalyst in combination with 
a cinchona alkaloid-derived co-catalyst (Co-cat-6), which 
collectively enable the stereocontrolled formation of radical 
intermediates under mild conditions. Upon photoexcitation, 
OC-48 undergoes oxidative quenching with diisopropyl 
azodicarboxylate (DIAD), a sacrificial oxidant that generates the 
radical ion pair [OC-48]•⁺ and DIAD•⁻. The latter is protonated to 
afford a persistent DIAD• species capable of participating in 
downstream radical coupling. Meanwhile, the oxidized 
photocatalyst facilitates single-electron oxidation of 
quinuclidine moiety of Co-cat-6, producing a chiral 
quinuclidinium radical cation XXI that selectively abstracts a 
hydrogen atom from the meso-diol substrate 112. This enantio-
determining step breaks molecular symmetry to yield a 
stereodefined ketyl radical intermediate 113, which 
subsequently undergoes radical–radical coupling with DIAD• to 
form intermediate 114. Elimination of this adduct furnishes the 
enantioenriched hydroxyketone product 115. This strategy 
represents a mechanistically distinct approach for the de-
symmetrization of meso-diols, achieving high enantioselectivity 
through controlled generation and selective capture of ketyl 
radical intermediates.
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Kundu and co-workers reported a site-selective oxidative C–C 
bond cleavage of diol substrates under blue light irradiation, 
employing an acridinium-based photocatalyst (OC-50), Selectfluor as 
a HAT agent, and DMAP as a base (scheme 61).142 This 
transformation operates through a radical mechanism involving 
sequential single-electron transfer (SET) and hydrogen atom transfer 
(HAT) steps. In this system, photo-excited photocatalyst (OC-50*) 
facilitate a SET to oxidize the base-activated form of Selectfluor 
(XXII), generating the electrophilic radical cation species N-
(chloromethyl)triethylene-diamine (TEDA²⁺•, [XXII]2+•). This radical 
cation serves as an effective hydrogen atom abstractor, selectively 
removing a hydrogen atom from the benzylic position of the diol 116 
to form a resonance-stabilized benzylic radical intermediate 117. The 
benzylic radical species goes through oxidation by superoxide radical 
(O₂•⁻), forming a hydroperoxide intermediate 118. This species is 
subsequently converted into an α-hydroxy ketone intermediate 119, 
which is further transformed into the corresponding benzoic acid 120 
via a well-established oxidative pathway143, 144 The reaction 
showcases the role of [XXII]²⁺• as a potent photogenerated HAT 
species, driving selective benzylic oxidation through a multi-step 
cascade involving radical formation, oxygenation, and hydrolysis.
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Scheme 62. Photocatalyzed oxidative cleavage of C-C bonds in vicinal 
diol substrates.

Fu and co-workers demonstrated that mesoporous graphitic 
carbon nitride (mpg-C₃N₄, OC-50), a visible-light-responsive organic 
semiconductor with a high surface area and tunable nitrogen-rich 
structure, can efficiently promote the aerobic oxidative cleavage of 
1,2-diols under mild conditions. (Scheme 62).145 Under the visible 
light, the OC-50 promotes a photoredox-mediated activation of 
molecular oxygen. During this process, charge separation occurs to 
generate holes (h+) in the valence band and electrons (e-) in the 
conduction band. The photoexcited electron in conduction band 
reduces molecular oxygen to produce reactive oxygen species, such 
as superoxide radicals (O₂•⁻ or HOO•). Concurrently, the 
photogenerated hole facilitates hydrogen atom transfer from 
benzylic alcohol moiety of the diol substrate 121, furnishing an alkoxy 
radical intermediate. This radical undergoes β-scission146, yielding a 
benzaldehyde 122’ with  benzylic radical. The resulting benzylic 
radical can go through a second hydrogen atom transfer or couple 
with reactive oxygen species, ultimately forming an additional 
equivalent of aldehyde. In subsequent steps, aldehydes are proposed 
to be oxidized to carboxylic acids 122 through a well-established 
radical-mediated pathway.
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Scheme 63. Photocatalytic aerobic oxidative cleavage of C-C bonds 
in 1,2-diols. 

As part of ongoing efforts to design photocatalytic systems 
operable in aqueous media, a method employing nitrogen-deficient 
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carbon nitride (CN620, OC-51) was reported by Niu and Ni for the 
oxidative cleavage of 1,2-diols under visible light. (Scheme 63).147 
Photoexcitation of OC-51 generates electron–hole pairs, initiating 
redox processes in which the photogenerated electrons reduce 
molecular oxygen to superoxide radicals (O₂•⁻), while the holes 
oxidize 1,2-diols to form alkoxy radical intermediates. From this 
point, two distinct mechanistic pathways are proposed, depending 
on the nature of the substituent (R) on the diol substrate 123: 
Pathway A operates when R is a non-hydrogen substituent, while 
Pathway B proceeds when R is a hydrogen atom. In Pathway A, the 
alkoxy radical undergoes β-scission to cleave the adjacent C–C bond, 
generating a a-hydroxy radical and a carbonyl compound 124. The 
resulting carbon-centered radical is then oxidized via hydrogen atom 
transfer (HAT) from either the solvent or another alkoxy radical, 
affording a second aldehyde or ketone product 124’.148 In contrast, 
Pathway B involves direct oxidation of the alkoxy radical by a putative 
superoxide radical species, generating a peroxy anion intermediate 
and water. This intermediate undergoes hydrolysis to form a gem-
diol and desired aldehyde 124 which subsequently dehydrates to 
afford the carbonyl product 124’. 

6. Conclusions and Future Outlook

This review provides a comprehensive overview of recent advances 
in the organocatalytic functionalization of diols, with particular 
emphasis on methodologies that enable precise regio- and 
stereochemical control. The literature is categorized based on the 
nature of the organocatalyst, with particular attention to boron, 
nitrogen, and phosphorus-based systems, alongside emerging 
photoredox-catalyzed methodologies. Throughout, key mechanistic 
insights were highlighted, emphasizing their impact on reactivity and 
regio- and stereoselective outcomes.

In the domain of boron-based organocatalysis, representative 
classes such as boranes, borinic acids, boronic acids, and their 
heterocyclic derivatives (e.g., benzoxazaborine, benzazaborole and 
benzoxaborole) were introduced, with a focus on their characteristic 
activation modes in diol functionalization. For borane catalysts, the 
selective deoxygenation of diols using the BCF/hydrosilane system 
has been discussed, proceeding via either cyclic or acyclic 
intermediates. The nature of the intermediate is highly dependent 
on both substrate structure and reaction conditions, thereby 
influencing the transformation's efficiency and selectivity. In the case 
of borinic acids, boronic acids, and their derivatives, the electrophilic 
boron center engages in reversible interactions with the hydroxyl 
groups of diols, forming cyclic borinate or boronate ester 
intermediates. In this scenario, the selective transformation of the 
diol was achieved through careful tuning of the catalyst’s steric and 
electronic environment. 

In the context of nitrogen-based organocatalytic functionalization 
of diols, this review encompassed a diverse range of catalytic systems, 
including N-heterocycles, diamines, peptides, and N-heterocyclic 
carbenes (NHCs). These catalysts operate via diverse mechanistic 
pathways, such as electrophile activation, hydrogen bonding, 
Brønsted acid–base interactions, and steric modulation. Such 

interactions facilitate differentiation between hydroxyl groups and 
stabilize key transition states, ultimately enabling high levels of 
regioselectivity. 

For phosphorus-containing organocatalysts, systems such as chiral 
phosphines, chiral phosphoric acids, and phosphonium salts have 
been reviewed for their ability to promote the selective 
transformation of diols via mechanisms involving nucleophilic 
activation, Brønsted acidity, or Lewis base catalysis.

The last section highlighted recent advances in diol-selective 
organophotocatalytic oxidation, which typically proceed via redox-
additive mediated photoinduced single-electron transfer (SET) 
process that generates radical species. These radical species react 
with diol through hydrogen atom transfer (HAT), forming reactive 
intermediates that drive site-selective oxidation. Crucially, the 
selective generation of these intermediates is governed by 
differences in C–H bond dissociation energies, radical stability, and 
steric accessibility factors.  

Although selective transformations of hydroxyl groups in diols 
have been pursued for more than a century, several key challenges 
persist, offering compelling avenues for future research. A major 
limitation lies in the relatively narrow substrate generality, as most 
strategies discussed in this review have predominantly been 
developed for meso-diols or secondary-primary diols, underscoring a 
constrained chemical space. In contrast, the regioselective 
functionalization of more challenging motifs, such as unsymmetrical 
secondary–secondary diols, remote diols, and tertiary–secondary 
diols, remains particularly demanding due to their comparable 
reactivity profiles and lack of inherent differentiation.

Another significant challenge is the development of more 
economical and finely tunable catalytic platforms that minimize the 
use of sacrificial reagents, override steric biases, and enable reversals 
of inherent selectivity trend. The design of such catalysts may benefit 
from leveraging novel synergistic non-covalent interactions, which 
can provide the level of control required for broad substrate 
applicability and enhanced selectivity. Given that diols represent a 
valuable model system for developing functionalization strategies 
applicable to more complex polyol frameworks, advances in catalyst 
design for diol substrates are likely to translate effectively to polyols, 
governed by similar selectivity-controlling principles. Ultimately, 
such developments will open new avenues for the regioselective 
transformation of complex polyol architectures, thereby accelerating 
innovation in polyol building block synthesis.

We believe that the organocatalyzed methods for selective 
transformation of diol discussed in this review will serve as an 
attractive catalytic platform to achieve further exciting 
breakthroughs. We hope this contribution provides a succinct 
summary of the field and encourages exploration of related synthetic 
methodologies.

Data availability

No primary research results, software or code have been included 
and no new data were generated or analysed as part of this review.
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