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Abstract

Development of real-time in-situ monitoring techniques is crucial for a mechanistic understanding 
of the impacts of pollution on the marine environment. Here, we investigate how different 
nanopollutants impact the vulnerable hatching process and early-stage development of marine 
organisms, by observing real-time oxygen consumption and morphological changes using a 
microfluidic platform. We compare the effects of polystyrene (PS) and silver (Ag) nanoparticles 
(NPs) at environmentally relevant NP doses from 0-1 mg/L on the hatching process and nauplius 
stage of Artemia. The four stages of Artemia hatching - hydration, differentiation, emergence, and 
hatching - are distinguished by both metabolism and morphology. NP exposure altered the 
hydration duration at the lowest dose, prolonging differentiation, and slowing emergence from the 
cysts resulting in a shortened hatching period. NPs also increased oxygen demand in every 
hatching stage except differentiation. Overall hatchability rose with NP concentration, while 
survivability showed an inverse trend. This might be attributed to increased NP aggregation in 
saltwater at higher concentrations which decreases bioavailability during hatching but not post-
hatch consumption. Overall, Ag NPs had a greater impact on hatching and mortality than PS NPs. 
Both NPs significantly affected swimming speed, however, while PS NPs decreased speed, Ag 
NPs increased it. 
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Environmental significance

Aquatic nanopollution from terrestrial sources including plastics and heavy metals is a growing 

environmental concern. These pollutants threaten aquatic ecosystems, especially during critical 

reproductive and early life stages, potentially affecting their distribution. While traditional end-

point assessments offer broad insights into these impacts, the need for a mechanistic understanding 

is paramount. Real-time monitoring on a microfluidic platform can be a key. Using such a 

platform we investigated how plastic and metal nanoparticles affected Artemia's stage duration 

and respiration, causing hatching inhibition, altered swimming, and mortality. This study not only 

offers detailed insights on the consequences of nanopollution for aquatic species but also 

demonstrates the potential of this setup for evaluating the impacts of other aquatic pollutants, 

thereby promoting environmental protection measures.

1. Introduction

Rivers, runoff, and direct discharges transport contaminants from human activities into oceans, 

with plastic being the dominant marine pollutant, making up 80-85% of marine litter (1–3). 

Annually, nearly 8 million tons of plastic enter the ocean(2), mostly from land-based sources (4), 

breaking down into micro and nanoparticles (MNPs) through various processes (5,6). Macro-sized 

plastics or macroplastics (5-100 mm) fracture over time in marine environments, forming 

secondary micro (<5 mm) and nanoplastics (<100 nm) (7). It is estimated that the size distribution 

of these is with 70–80% secondary microplastics (7–9), and only 15-30% are primary 

microplastics (7,9). Information on the quantity of marine nanoplastics content is still scarce in the 

literature. Meanwhile, nanotechnology has boosted metallic nanoparticle (NP) production, posing 

new marine pollution concerns (10,11). This study used two types of model nanoparticles: 

polystyrene (PS) and silver (Ag). PS, accounting for 23 million tons of annual global plastic 
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production (12), contributes significantly to marine debris (13–15) . Ag NPs are widely used in 

medical applications (16), biosensors (17),  electronics (18), textiles (19), and more, posing water 

contamination risks due to their high toxicity 35, 

While a large number of studies have focused on microparticles (MPs) (21–24), NPs may pose 

greater harm (25) due to size-related properties, enabling wider dispersal (26,27), mistaken 

ingestion by marine life (28,29), and prompt toxin release (30,31). Vulnerable reproductive and 

early life stages of marine species are at risk (32,33), potentially impacting ecosystems (34,35). 

The diversity of nanopollutants may have modified effects (36,37) and thus necessitates 

comparative analyses of the effects at relevant concentrations. It is important to note that MNPs 

behave differently in freshwater and saltwater, with saltwater promoting agglomeration (38), 

potentially impacting MNPs' bioavailability and aquatic organisms differently from freshwater 

environments (39–41). Previously, PS and Ag NPs have been studied on Brachionus plicatilisi 

(42), and Oryzias latipes (43), revealing that both types of NPs are toxic. Here, a zooplankton 

species, commonly used as live feed in marine finfish larviculture due to its small size and rich 

nutrient content (44,45), Artemia franciscana, was used to examine the toxic effects of these two 

NPs on both the hatching process and nauplius stage. Artemia are found in inland saltwater lakes 

and coastal lagoons characterized by a hypersaline environment (46,47), which serves as their sole 

means of defense against predators (47,48). Nevertheless, they possess the ability to adapt to a 

broad spectrum of salinity (49), making them suitable candidates for investigating the comparative 

toxicity of nanoparticles in water with salinity comparable to the oceanic environment. Previously, 

this species has been widely used as an aquatic model animal in ecological, ecotoxicological, 

genetic, biochemical, and physiological studies 33–35. The ISO/TS 20787:2017 standard proposes 

that the hatching rate of Artemia can be used as the outcome for acute nanomaterial environmental 
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toxicity tests (50). Previous comparative studies on the impacts of different NPs on Artemia 

focused primarily on the larval or adult stages (51–57) with few studies evaluating the impacts of 

different NPs on hatching rate (HR) (58–61). These studies demonstrated a significant decrease in 

hatching rate in the presence of NPs, using conventional endpoint toxicity assessment along with 

survival and mobility. 

The current work employs a microfluidic platform with an integrated optical oxygen sensor to 

provide real-time information on the hatching process and early-stage development to understand 

the mechanisms that inhibit hatching and cause mortality and altered swimming. This platform 

allowed real-time tracking of Artemia respiration during hatching, correlating physical changes 

observed under a microscope with sensor data to assess their impact on hatching (62). Automatic 

handling and counting on the microfluidic platform enhanced hatchability estimation accuracy 

(62). Prior studies have employed micro and milli-fluidic platforms for live animals (63–65), 

including zebrafish (66–68), and various respirometry techniques have measured oxygen 

consumption in marine species exposed to contaminants (69–71). This microfluidic system, 

compact and capable of temperature control, minimizes sensor noise (72–77)  and provides 

consistent hatching conditions. In a previous study by our group (62), a similar setup was used to 

evaluate optimal hatching conditions for Artemia, where it was observed hatching stage could be 

identified through metabolic rates and morphology and both the temperature and salinity affected 

the duration of hatching stages, metabolic rates, and hatchability. It is anticipated that the present 

approach could be employed to shed light on the effects of different environmental conditions and 

marine nano-pollutants on the hatching and early development of a variety of other marine species. 

2. Experimental
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50 nm red fluorescent PS NPs in a 1% solids (w/v) aqueous suspension (Fluoro-Max, Cat. No. 

R50) and 40 nm citrate-capped Ag NPs in a 0.02 mg/ml sodium citrate-stabilized aqueous buffer 

(Cat. No. J67090.AE) were purchased from Thermo Scientific Chemicals and used in this study 

without any modification. The morphology, size and aggregation behavior of the NPs were 

evaluated using scanning electron microscopy (SEM), dynamic light scattering (DLS) and 

photographs, respectively, as described in Text S1, Supporting Information (SI). PS NPs were 

spherical, and Ag NPs were irregularly shaped [Figure S1(A&B), SI]. PS and Ag NPs had Z-

average sizes of 50.43 ± 0.24 nm and 45.83 ± 0.13 nm, polydispersity index (PDI) of 0.02 ± 0.01 

and 0.23 ± 0.00, and Zeta potential of -23.8 ± 0.96 mV and -34.07 ± 1.86 mV [mean ± standard 

deviation (SD)], respectively.

The Artemia cysts utilized in this study are from the Artemia franciscana species and were 

procured from Brine Shrimp Direct. These as-received cysts were mixed at a concentration of 5 g 

cysts/L with artificial saltwater (ASW) (control) or ASW containing NPs of varying concentrations 

without any prior treatment. These cysts were then allowed to hatch for 24 hours using a 

microfluidic platform under a continuous LED light (1W, Amscope) at 25°C and 25 ppt salinity. 

In this study, four different NP concentrations were used: 0.01, 0.1, 0.5, and 1 mg/L. Marine 

pollutants, including plastics in oceans, vary by location (78,79), with some regions reporting 

concentrations as high as 1.26 mg/L (80). Hence, these tested NP concentrations cover a wide 

range of environmentally relevant doses. ASW was made with Fluval Marine Salt mixed with 

deionized water according to specified concentration (see SI). The platform's design, fabrication, 

and operation were detailed in our prior work (62) and briefly discussed in Text S2, SI and 

presented in Figure S2, SI. 
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At each NP concentration, hatching experiments were performed in triplicate. The test conditions 

are described in detail in Text S2, SI. Furthermore, in this study, Artemia cysts were hatched not 

only in saltwater with the initial types of NPs (PS: 50 nm and Ag: 40 nm), but also in DIW with 

various sizes of PS (50 nm, 2 µm, 10 µm) and Ag (40 and 100 nm) NPs and MPs. This was done 

to avoid salt crystal formation from ASW evaporation obscuring cyst morphology, simulate 

geometric interactions with nanoparticle aggregates and solely for the purpose of imaging. This is 

explained further in Text S2, SI.

The morphology of the as-received cysts, cysts hatched under distinct NP conditions (either in 

ASW or DIW) and the distribution of NPs on the surface of those cysts are evaluated by SEM and 

energy dispersive X-ray spectroscopy (EDS), as described in Text S2, SI, and illustrated in Figure 

S3 and S4, SI. NP conditions, unless otherwise stated in this manuscript, refer to the combination 

of NP types and NP concentrations. As-received cysts displayed a cup-shaped structure with 

porous inner walls (160-900 nm pores, Figure S3, SI). 

During hatching, morphological alterations in cysts from optical photomicrographs and depletion 

in dissolved oxygen concentration (DDOC) in the hatching media (ASW or ASW with NPs) (from 

DDOC vs. hatching time, as illustrated in Figure S5, SI) were utilized to determine different 

hatching stage durations (details provided in Text S3, SI). The overall rate of oxygen consumption 

(oROC) was determined to assess the overall impact on oxygen consumption over the 24-hour 

hatching experiment, by normalizing with the weight of the initial dry cysts used for hatching. 

Meanwhile, the average rate of oxygen consumption (aROC) was calculated separately for the pre-

hatching stages (aROC1-3) and the post-hatching stage (aROC4) to compare the effects of NPs at 

each individual hatching stage. Hatching rate (HR) and fraction of live Artemia (FLA) were also 

calculated.  The calculation methods for all these parameters are described in Text S3 and Text S5, 
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SI. Mortality rate and swimming speed of newly hatched Artemia were also evaluated as 

conventional endpoint toxicity tests (81,82) and the calculation method is described in detail in 

Text S4, SI. Briefly, the mortality rate was calculated based on the rate of nonmotile nauplii after 

15 sec of manual agitation. This method was utilized in several prior studies to calculate mortality 

rate (60,81), although in some studies it was also regarded as the immobilization rate (54,55). 

Moreover, NP uptake by the Artemia nauplii was studied using bright field images (Axioscope 5, 

Zeiss) (Ag NP-exposed), fluorescence images (Nikon eclipse Ti2-E) (PS NP-exposed), and ImageJ 

for intensity measurement. For this, photographs were captured of live Artemia that were collected 

from the hatching chip after 24 hours of exposure to NPs, placed on glass slides, which were later 

immobilized because of evaporation of water layer and insufficient water for swimming. 

The statistical analyses were performed by one-way analysis of variance (ANOVA), followed by 

Tukey post-hoc. Additionally, multivariate analyses were also performed for assessing correlations 

between different studied factors. If p<0.05, the results were considered significant. The details 

are provided in Text S6, SI.

3. Results and Discussion

3.1 Aggregation behavior of PS and Ag nanoparticles in saltwater

High ionic strength reduces the thickness of the electric double layer (EDL), and decreases 

electrostatic repulsion, leading NPs in saltwater to interact, agglomerate, and settle (83,84), a 

phenomenon exacerbated by higher temperature (25 ⁰C) (85). This agglomeration significantly 

affects NPs' uptake due to changes in their effective radius (86,87).  Figure S1 (C&D), SI illustrate 

this behavior, depicting the hydrodynamic size (Z-average) and polydispersity index (PDI) of 

different concentrations of PS and Ag NP suspensions in ASW after 1 and 24 hours. Remarkably, 
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PS NPs aggregate more than Ag NPs, forming larger aggregates even within just one hour (Figure 

S1(C), SI), and exhibiting higher PDIs than Ag NP suspensions [Figure S1(D), SI], indicating 

broader size distributions. After 24 hours, both NP suspensions show increased Z-average sizes 

with concentration, but PS NP suspensions consistently maintain larger aggregates than Ag NP 

suspensions (24.73 ± 9.75 vs. 2.56 ± 0.56 µm at 1 mg/L concentration). This disparity is also 

evident in images of the NP suspensions in ASW after 24 hours [Figure S1(E)], with PS NPs 

showing more substantial sedimentation and larger aggregates. Differences in aggregation 

behavior can be attributed to the presence of a citrate capping agent in Ag NPs (39,88,89) and 

variations in particle morphology (90), with PS particles being spherical and Ag particles irregular, 

influencing aggregation kinetics and PDI trends.

3.2 Hatching stages of Artemia, real-time monitoring and interaction with nanoparticles 

during hatching
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Figure 1. Photomicrographs and O2 sensor data of the four stages of hatching process. (A) 
Photomicrographs at different hatching stages (scale bar = 500 µm) [the inset depicts the 
morphology of the cysts and nauplii (scale bar= 200 µm)]. (B) Depletion in dissolved oxygen 
concentration (DDOC) and average rate of oxygen consumption (aROC) of Artemia cysts during 
hatching without NPs (control) measured using on-chip sensors. (Bold lines represent averages 
with shaded regions showing SD (triplicate or more experiments at each NP condition). The black 
line/shaded area corresponds to DDOC, the red to aROC1-3 (aROC of any of the 1st three stages of 
hatching), the blue to aROC4 (aROC of any of the hatching stage), and green triangles in Figure 
1B indicate DDOC at corresponding Figure 1A time points.)
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The hatching process of Artemia consists of four distinct stages, encompassing the encysted state 

to swimming nauplii (91). Figure 1 illustrates photomicrographs of hatching cysts' morphological 

changes at different stages (Figure 1A) and corresponding oxygen consumption (Figure 1B) while 

not exposed to NPs (control). In addition to physical change, each hatching stage can be identified 

by energy metabolism (91–93), which is directly related to oxygen consumption and quantified by 

DDOC via an on-chip oxygen sensor (Text S3, SI) (Figure 1B). Figure 1B also depicts the aROC 

for each stage. Hydration stage (1st stage) initiates when a dormant cyst is immersed in saltwater 

at favorable conditions (62), causing it to absorb water through osmosis and shift from a cup-

shaped to a nearly spherical form [Figure 1A(i)] (94). Cellular energy metabolism is then 

reactivated along with RNA and protein synthesis (92,95), resulting in an increase in aROC [Figure 

1B(i)] (62). During differentiation (2nd stage), the spherical shape of the hatching cysts remains 

unchanged [Figure 1A(ii)] and there is no internal cell division or DNA replication (92,95) leading 

to an unchanged oxygen demand and a lower aROC [Figure 1B(ii)] (62). During emergence (3rd 

stage), the embryos emerge from the cysts [Figure 1A(iii)] due to increasing internal turgor 

pressure from glycerol synthesis (93), demanding more energy, and elevating aROC [Figure 

1B(iii)] (62). Finally, during hatching stage (4th stage), embryos leave the cyst shells within a 

hatching membrane and start swimming [Figure 1A(iv)], expending energy for swimming activity, 

but requiring less oxygen than during emergence, resulting in a reduced aROC compared to that 

stage [Figure 1B(iv)] (62).

Understanding cyst-NPs interaction during hatching is critical, as penetration of NPs into cyst shell 

fracture and interior 3D porous structure (Figure S3, SI) can disrupt the hatching process. Since 

both PS and Ag NPs aggregated in saltwater (Figure S1, SI), it is also critical to understand how 

NP aggregates interact with cysts during hatching. These interactions were observed by SEM 
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imaging (Figure S4, SI) of cysts hatched in varying sizes of PS and Ag NP and MP suspensions in 

DIW, as briefly mentioned in Section 2 and elaborated in Text S2, SI. SEM images revealed that 

NP and MPs of varying size penetrated these cysts through cracks formed during cyst 

expansion/emergence due to hydration and internal turgor pressure. This penetration was 

facilitated further by the cysts' 3D honeycomb structure as evidenced through a comparison of 

cysts hatched in NP-mixed DIW with non-visible interior pores [Figure S4(B), SI] and those 

hatched in DIW alone, which exhibited void shell pores. Due to physical interaction between NPs 

and functional groups on cyst surfaces (96), such as amide, carboxylic, etc., the cysts were covered 

by NPs [Figure S4(C), SI]. Ag NPs were also found on cysts' inner porous structures by EDS 

[Figure S4(D), SI]. As PS NPs grow in size [in average, 1502.67 to 2558.67 nm in 1 h, depending 

on the NP concentration (see Figure S1(C), SI)], their infiltration capacity into the 3D inner porous 

structure (maximum pore size ~ 900 nm) decreases [Figure S4(B), SI]. We note that, the sizes of 

the Ag NPs utilized in this study (40 and 100 nm) are significantly smaller in size than the scale 

of the images presented in Figure S4(B-v) and Figure S4(B-vi) [scale bar= 1 µm]; these images 

simply demonstrate how the pores of the cysts are obscured as a result of the NPs penetrating the 

pores. In contrast, the EDS analysis (scale bar = 200 nm) [Figure S4(D), SI] reveals the uniform 

distribution of Ag NPs (initial size = 40 nm) on the interior surface of the cysts.

3.3 Effect of PS and Ag nanoparticles on the duration of different hatching stages and 

hatching rate

Figure 2A summarizes how PS and Ag NPs impact the duration of hatching stages.  Overall, PS 

or Ag NPs have different effects on hatching stage durations and oxygen consumption depending 

on the particle concentration. This is in line with size-dependent toxicity (97) and changes in NP 
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Figure 2. Effects of varying PS and Ag NP concentrations on- (A) durations of different hatching 
stages and (B) hatching rates. Data: mean ± SD (triplicate or more experiments at each NP 
condition). Statistically significant differences (p<0.05) denoted by distinct letters [within each 
stage in Figure 2(A)]. * and # highlight significant differences compared to control and the two 
NP treatments (PS and Ag) at the same concentration, respectively. "C" indicates NP 
concentrations.

aggregate size over time, which are affected by particle type and concentration, as shown in our 

study (Figure S1, SI).
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The hydration stage is significantly affected (Figure 2A, red bars) only at the lowest concentration 

(0.01 mg/L) for both NP types. Lower concentrations allow NPs to penetrate fractures formed 

during hydration (Figure S4, SI), disrupting the osmotic gradient and impeding water absorption. 

The lack of significant impact of NPs at higher concentrations on hydration duration may be 

attributed to the increased aggregation of NPs in ASW at higher concentrations within a very brief 

period of time [Figure S1(C), SI]; such that these NPs were unable to penetrate the pores of the 

cyst interior, as described in section 3.2. While the simulation of cyst hatching with large PS 

particles indicated that larger aggregates could adhere to the cyst surface [Figure S4(C)], this was 

likely not as detrimental to the hydration process as the penetration of NPs into the cysts, which 

occurred easily at lower NP concentrations. Variations in hydration duration between the two NP 

types may relate to their differential toxicity (Section 3.5).

In the differentiation stage (Figure 2A, blue bars), NP type and concentration exert distinct effects. 

With PS NPs, differentiation stage duration initially dropped at the lowest concentration, then 

fluctuated with rising NP concentrations. In contrast, the impact of Ag NPs was greater, as the 

duration increased at the lowest concentration, but decreased with increasing NP concentrations. 

During differentiation, as cysts progress to the emergence stage, their shells fracture due to 

increasing turgor pressure. NPs may penetrate these fracturing cysts (Figure S4, SI), disrupting 

cellular differentiation and potentially causing genetic damage (98), thus elongating differentiation 

stage duration as compared to the control. The reduction in effects at higher NP concentrations 

was likely due to lower bioavailability from aggregation induced sedimentation (Figure S1), in 

line with previous NP studies (99) 90. Nevertheless, we note that the presence of PS and Ag NPs at 

concentrations of 0.01 and 1 mg/L, respectively, resulted in a significantly reduced duration of the 

differentiation stage compared to the control, necessitating further investigation.
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Both NP types significantly extended the emergence stage at all tested concentrations (Figure 2A, 

orange bars). This may result from NPs causing a bicarbonate ion deficit, impacting cytoplasmic 

membrane transport, and reducing osmotic potential (101). In this case, the cyst shell would break, 

but the inner cuticular membrane's elasticity would hinder emergence, prolonging the process 

(101). Notably, Ag NPs have a more significant effect on emergence duration compared to PS 

NPs. Being a heavy metal, this could be attributed to their higher toxicity. Previously, it has 

been shown that when Ochromonas danica, a type of algae, was exposed to both PS NPs and Ag 

NPs, the presence of Ag NPs resulted in a significantly higher inhibition of cell growth rate 

compared to the presence of PS NPs (102). In addition, another study conducted on Danio rerio 

(zebrafish) involved their exposure to both PS and the heavy metal Cadmium (Cd) (103). The Cd 

exposure led to greater growth suppression, decreased activity of antioxidant enzymes (e.g., 

superoxide dismutase, catalase, and glutathione peroxidase), elevated levels of reactive oxygen 

species, and tissue damage, in comparison to the PS exposure.

Finally, the hatching stage duration is the remaining time after the first three stages within the 24 

hours of the experiment (Figure 2A-green bars). Cumulatively, both NPs significantly altered the 

durations of the hydration, differentiation, and emergence stages, affecting the time for the 

hatching stage. Specifically, the hatching stage was significantly shorter in the presence of Ag NPs 

compared to PS NPs and the control.

Figure 2B demonstrates the Artemia cyst hatching rates (HR) with PS and Ag NPs after 24 hours 

(calculated using Equation 3, SI). Previously, we demonstrated correlation of hatching duration 

with hatching rate (62). Both NP types inhibited hatching, but at higher concentrations, the effect 

decreased, resulting in a higher HR, consistent with duration findings (Figure 2A). The observed 

phenomenon may be attributed to the increased aggregation of NPs in ASW as the concentration 
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increases, as illustrated in Figure S1. This leads to a decrease in the bioavailability of the NPs due 

to their sedimentation. A similar reduction in toxicity with reduced bioavailability was observed 

when marine microalgae Chlorella sp. was exposed to TiO2 NPs (99). The hatching chip material, 

polydimethylsiloxane (PDMS), has been extensively used in microfluidic devices for its excellent 

transparency, biocompatibility, and easy moldability (104,105). However, the bioavailability of 

NPs may be also influenced by the adsorption of NPs on PDMS surface (106), with a potential 

increase at higher NP concentration. Furthermore, the use of a very small volume (~563 µL) of the 

NP suspension in the hatching experiment on a hatching chip with a large surface area could 

amplify this impact. Hence, the underlying mechanisms of the observed decrease in toxic effects 

on the hatchability with increasing NP concentration in this study need further investigation. 

Overall, Ag NPs inhibited hatching more than PS NPs, except at the highest concentration of 1 

mg/L, where HR was not significantly different. The lowest hatchability (34.42 ± 1.66%) was 

observed at 0.01 mg/L Ag NPs, 59.44% lower than the control. This mirrors the effects on different 

stage durations (Figure 5A), where Ag NPs had a more pronounced impact than PS NPs on 

hatching stages, notably the emergence stage, and hence had a confounding impact on the 

remaining time for the hatching stage during the 24 h of experiments. Specifically, interference 

with cellular differentiative process (98), reactive oxygen species (ROS) formation (107), damage 

in DNA moieties (108), cuticle damage (109), and perturbed osmotic gradient (110,111) may have 

contributed to the low hatching rate.

3.4 Effect of PS and Ag nanoparticles on oxygen consumption  

The overall rate of oxygen consumption (oROC) demonstrated an ascending trend with the 

increase in both PS and Ag NP concentrations, in comparison to the control group (Figure 3A). 

Notably, there was a significant increase from an average oROC of 1.45×10-5 at the control to 
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Figure 3. Effect of varying PS and Ag NP concentrations on Artemia oxygen consumption. (A) 
Overall rate of oxygen consumption (oROC) normalized based on the 24 h of hatching experiments 
and weight of initial dry cysts. (B) Average rate of oxygen consumption (aROC) during pre-
hatching stages [(i) hydration, (ii) differentiation, (iii) emergence] normalized by stage duration 
and hatching rate (HR)% and (iv) hatching stage normalized by stage duration, HR%, and fraction 
of live Artemia (FLA). Data: mean ± SD (triplicate or more experiments at each NP condition). 
Distinct letters indicate statistical differences within each data category. Significantly different 
data from control is marked with "*", and at the same concentration under PS, and Ag treatments 
is marked with "#". "C" represents NP concentrations.
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2.99×10-5 and 2.98×10-5 mg O2/h/mg dry cyst wt. at a concentration of 1 mg/L for PS and Ag NP, 

respectively.

Upon examining the individual hatching stage, it was observed that the hydration stage [Figure 

3B(i)] showed a significant increase in oxygen consumption with Ag NPs at all concentrations, 

except 0.5 mg/L, compared to the control. Conversely, PS NPs had no significant impact, except 

at 0.1 mg/L. While NPs didn't notably affect hydration duration (except at 0.01 mg/L) (Figure 5A-

red bars), the observed increase in oxygen consumption might potentially compensate for 

insignificant net change in hydration duration. During differentiation [Figure 3B(ii)], oxygen 

consumption remained relatively constant, despite longer durations in NP presence (Figure 2A-

blue bars), showing no significant change in aROC compared to the control, in line with our 

previous study (62). With delayed emergence in NP presence (Figure 2A-orange bars), the aROC 

during the emergence stage rose dramatically when PS NP concentration increased to 0.1 mg/L, 

but not further [Figure 3B(iii)]. As Ag NPs concentration climbed to 0.1 mg/L, the aROC increased 

and then decreased. Hatching stage oxygen consumption (aROC4), which incorporated FLA 

alongside HR unlike the previous hatching stages, as mentioned in Text S3, SI, increased 

significantly at higher PS and Ag (except at 0.5 mg/L) NP concentrations. The elevated oxygen 

consumption seen during hatching suggests that the cysts experience a greater metabolic burden 

to successfully complete the hatching process, likely due to the toxic effects of the NPs. The 

increased need for oxygen after hatching (during nauplii stage) may be attributed to the gill damage 

characterized by hypertrophy and hyperplasia, and mitochondrial-rich cell (MRC) proliferation 

due to NP accumulation (112). Gill structure damage can compromise respiratory gas exchange, 

increase energy demand for osmoregulation, and subsequently elevate oxygen consumption 

(112,113). Similar oxygen consumption increase was reported in other aquatic species exposed to 
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different NPs, e.g., Perca fluviatilis exposed to AgNO3 (114), Brachidontes pharaonic exposed to 

Ag NPs (115), Fundulus heteroclitus exposed to Cu NPs (116) and Apistogramma agassizii and 

Paracheirodon axelrodi exposed to Cu and CuO NPs (112).  

3.5 Bioaccumulation of PS and Ag nanoparticles, acute toxicity, and swimming speed 

alteration 

In newly hatched nauplii (Instar I), the inability to consume food or ingest nanoparticles is due to 

underdeveloped mouths and anuses (117). Nonetheless, NPs can be absorbed on their body surface 

and gills (118), negatively affecting metabolism and development. The transformation of Artemia 

nauplii Instar I into Instar II depends on temperature (119). At higher temperatures the 

transformation begins within an estimated time frame of 6-8 h (120–122). Upon hatching, all 

nauplii successfully complete this process within 24 h (119,123,124) and commence food 

ingestion via antennae sieving. However, this duration may also vary based on the strains of 

Artemia found in different regions, considering the variation in time required for their embryonic 

development (119). Artemia are nonselective filter feeders capable of consuming particles smaller 

than 50 µm (58), and the observed hatching stage duration of 7.74 to 12.56 h in this study under 

different NP exposures (Figure 2A) allowed time for beginning of this transformation. Figure 4 

presents fluorescence and bright-field images of Instar II Artemia nauplii hatched in various NP 

concentrations. While Ag NPs are not fluorescent, they were imaged in bright field. Artemia 

ingested a substantial quantity of NPs, primarily accumulating in their digestive tract [Figure 

4(B&D)]. Increased red fluorescence intensity (Figure 4B) indicates concentration-dependent NP 

uptake in the instar II stage of Artemia (Figure S7, SI). Bright-field images show empty digestive 

tracts in the control group (Figure 4C), while Ag NP-exposed Artemia exhibit dark areas, outlined 

by red arrows, indicating Ag NP presence (Figure 4D). Fluorescence images also reveal NP 
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Figure 4. Fluorescence and bright-field microscopy images of Artemia nauplii after hatching in 
different nanoparticle conditions for 24 h. Figures 4A and 4C represent fluorescence and bright-
field microscopy of control group (no NP). In Figures 4B (PS-fluorescence) and 4D (Ag-bright-
field), i, ii, iii, and iv depict 0.01, 0.1, 0.5, and 1 mg/L NP concentrations, with red arrows 
indicating the digestive tract (scale bar= 100 µm).
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aggregates on nauplii surfaces, especially at higher concentrations [Figure 4B(iv)]. However, this 

couldn't be confirmed via bright field microscopy for the Ag NPs.

Figure 5 displays the mortality rate and swimming speed alteration (SSA) of Artemia hatched with 

PS and Ag NPs over 24 hours. Figure 5A demonstrates that when NP concentrations increased, 

the mortality rate increased, which was the opposite of the trend observed in the hatching rate. 

This could be due to the NPs' reduced bioavailability during hatching due to aggregation, 

sedimentation, and probable adsorption by the PDMS, while their bioavailability increased after 

hatching, as the free-swimming Artemia may be more exposed to NP aggregates, via NP aggregate 

ingestion (Figure 4), particularly at the second instar stage when they have an open mouth and 

even through direct contact with the external surface (125). NP uptake, can impair digestive tract 

(55,58,126), infiltrate body tissues (118,127), increase reactive oxygen species (55,128,129), 

reduce body defense mechanisms (55,56), and cause tissue (58), DNA and mitochondrial damage 

(58,118), contributing to mortality. At the maximum NP concentration (1 mg/L), Artemia mortality 

for PS and Ag NPs was 28.47 ± 3.41% and 40.66 ± 4.48%, respectively, comparable with literature 

(52,53,58). Ag NPs exhibited higher toxicity, aligning with studies (130,131) indicating poorer gut 

health, increased oxidative stress, and DNA damage caused by Ag compared to PS, which could 

be due to the release of different Ag ions from Ag NPs (132,133), especially at higher salinities 

(57). Depending on the redox state of the ions, they adsorb on the Artemia cuticle structural 

component, chitin, via physisorption, causing significant cellular deformation (125). Among these, 

Ag3+ was reported to have higher interaction energy with chitin (125). Ag ions also interact with 

biomolecules found within cells, such as nucleic acid (134).

Besides mortality, NPs significantly altered Artemia's swimming speed, measured by swimming 

speed alteration (SSA) (Figure 5B). Overall, positive SSA indicated significantly slower 
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Figure 5. Effect of nanoparticle concentrations on hatched Artemia based on-(A) Mortality rate 
and (B) swimming speed alteration. Values were presented as mean ± SD (triplicate or more 
experiments at each NP condition). Distinct letters indicate statistical differences within each data 
category. Significantly different data from control is marked with "*", and at the same 
concentration under PS, and Ag treatments is marked with "#". "C" represents nanoparticle 
concentrations.
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swimming compared to the control, similar to other marine animals exposed to PS NPs (135–138). 

However, with PS NP concentration higher than 0.1 mg/L, swimming speed comparatively 

increased, leading to a decreased SSA value with concentration. In contrast, swimming speed 

increased with Ag NP concentration, leading to a more negative SSA. Reduced swimming 

(positive SSA) may signal a protective response to stressors (e.g., environmental (139), oxidative 

stress (138,140), etc.) and impairments (e.g., visual (141), neuromotor deficits (142), etc.). 

Conversely, increased swimming speed (negative SSA) may indicate escape reactions from 

hazardous environments (139,143), psychostimulant action, or anxiety-like behavior (142). With 

greater acute toxicity (Figure 5A), Ag NP stimulated more to compensate for a homeostasis 

imbalance (144), encouraged faster swimming to escape a dangerous environment (143), or caused 

hyperactivity as observed in aquatic invertebrate larvae, including Daphnia magna (145).

3.6 Multivariate analysis 

In a multivariate analysis, we explored associations between parameters involving hatching 

process and the nauplius stage, irrespective of NP type and concentration, categorized as pre-

hatching and post-hatching (Figure S8, SI).

Hydration stage duration was negatively correlated with durations of differentiation and 

emergence stages but positively with the hatching stage. Differentiation and emergence stages 

extended at low NP concentrations and shortened at higher ones (Figure 2) due to NP toxicity and 

aggregation. Very low NP concentrations led to longer hydration correlating with shorter 

differentiation and emergence, explaining negative correlations. As NP concentration increased, 

differentiation and emergence stages shortened, allowing more time for hatching within 24 hours. 

Hydration aROC negatively correlated with hydration and hatching stage durations but positively 

with emergence stage duration. Emergence stage aROC negatively correlated with hydration and 
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hatching and positively with differentiation and emergence durations. Hydration aROC positively 

correlated with emergence aROC. NPs prolonged differentiation and emergence but shortened 

hydration and hatching, increasing oxygen consumption during hydration and emergence, 

adversely affecting hatchability. Differentiation and emergence durations, hydration, and 

emergence aROCs negatively correlated with hatching rate, whereas a longer hatching stage 

positively related to higher hatching rates, in line with our previous study (62).

Post-hatching, NPs affected early-stage nauplii through acute toxicity and compromised 

swimming (Figure 5). Figure S8, SI showed correlations, including a positive link between 

hatching stage aROC and mortality rate, but no significant correlation with hatching rate. These 

results indicated NPs caused toxicity in newly hatched nauplii, reducing viability, and increasing 

oxygen demand. Conversely, SSA was associated only with hatching stage duration. PS NPs with 

longer hatching stages led to positive SSA, while Ag NPs with shorter hatching stages resulted in 

negative SSA.

4. Conclusion

This study investigated real-time oxygen consumption and morphological changes to understand 

the impact of various marine nanopollutants on the hatching process and early development of 

Artemia, a common zooplankton in ecotoxicology. In agreement with previous studies evaluating 

end point hatching rates, both NPs had detrimental impacts on the hatching performance (58–61). 

In this work, we were able to demonstrate a correlation between hatching stage progression and 

hatching rate. For example, dormant cysts that consumed less metabolic energy (lower oxygen 

consumption) in the hydration and emergence stages with less time needed for differentiation and 

emergence, leaving more time for hatching, had a higher hatchability. Throughout different stages 

of the hatching process and at the endpoint (hatching rate), a trend of diminishing toxicity with 
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increasing dosage was observed. However, the mortality rate increased dose-dependently, which 

is consistent with earlier studies (52,53,56,58,61). The observed phenomenon can be attributed to 

the increased NP aggregation, sedimentation, or adsorption by PDMS which decreases the 

bioavailability of NPs during hatching. After hatching, free-swimming Artemia nauplii became 

exposed to NP aggregates and likely Ag ions, and readily ingested aggregated NPs, increasing 

their bioavailability. Ag NPs had greater effects on hatchability and mortality rates than PS NPs, 

likely due to the higher toxicity of heavy metals (146,147), which was exacerbated by the 

interaction of their ions with the cuticle (125). In addition, while swimming speed increased with 

Ag NPs, it decreased with PS NPs, possibly due to varying coping mechanisms/effects in response 

to diverse environmental stimuli.

We anticipate that the controlled microfluidic environment developed here, coupled with 

integrated real-time sensing and microscopy could be used to advance the comprehensive 

assessment of a broad range of marine nanopollutants (nanoparticles, pesticides, fertilizers, 

detergents, sewage, industrial effluents, etc.), on biological processes and marine organisms 

ranging from zooplankton to fish larvae.
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