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Abstract  

We generalize and apply the microscopic self-consistent cooperative hopping theory for activated 

penetrant dynamics in polymer melts and crosslinked networks to address the role of highly 

variable non-spherical molecular shape. The focus is on vastly different shaped penetrants that 

have identical space filling volume in order to isolate how non-spherical shape explicitly modifies 

dynamics over a wide range of temperature down to the kinetic glass transition temperature. The 

theory relates intramolecular and intermolecular structure and kinetic constraints, and reveals how 

different solvation packing of polymer monomers around variable shaped penetrants impact 

penetrant hopping. A highly shape-dependent penetrant activated relaxation, including alpha time 

decoupling and trajectory level cooperativity of the hopping process, is predicted in the deeply 

supercooled regime for relatively larger penetrants which is sensitive to whether the polymer 

matrix is a melt or heavily crosslinked network. In contrast, for smaller size penetrants or at 

high/medium temperatures the effect of isochoric penetrant shape is relatively weak. We propose 

an aspect ratio variable that organizes how penetrant shape influences the activated relaxation 

times, leading to a (near) collapse or master curve.  The relative absolute values of the penetrant 

relaxation time (inverse hopping rate) in polymer melts versus in crosslinked networks are found 

to be opposite when compared at a common absolute temperature versus when they are compared 

at a fixed value of distance from the glass transition based on the variable Tg/T with Tg the glass 

transition temperature. Quantitative comparison with recent diffusion experiments on chemically 

complex molecular penetrants of variable shape but fixed volume in crosslinked networks reveals 

good agreement, and testable new predictions are made.  Extension of the theoretical approach to 

more complex systems of high experimental interest are discussed, including applications to 

realizing selective transport in membrane separation.
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I. Introduction    

Understanding and controlling the permeation of atoms, molecules, and even nanoparticles 

(referred to as “penetrants”), in dense and cold polymer melts, crosslinked networks, gels, and 

glasses is a rich scientific problem [1-24]. It underpins many materials science applications, such as 

gas and organic molecule separations [5-10], barrier materials for coatings [11, 12], self-healing based 

on polymeric microcapsules [11, 12], ion and solvent transport in biological and macromolecular 

materials [8, 13] and drug delivery [14-16]. Generally, the permeation coefficient is a combined effect 

of penetrant solubility and diffusion rate [17-19], but the latter is generally much more sensitive to 

chemistry and thermodynamic state since it is typically a strongly activated process. However, 

even in the dilute penetrant limit studied here, existing theoretical models are mostly 

phenomenological and built on the difficult to quantify concept of “free volume”.[5, 8, 13, 20-24] 

Our recent work has aimed to create a microscopic force based predictive statistical 

mechanical theory for penetrant activated dynamics, focused to date on spherical penetrants in 

hard sphere matrices [25, 26], polymer melts [27], and crosslinked polymer networks [28, 29]. 

Quantitative comparisons with experiment and simulations have revealed rather good agreements 

[25, 26, 29-32]. However, the explicit role of penetrant shape, which can be highly variable in real 

systems, has not been addressed, and is of high fundamental and experimental interest. In this 

article we extend and apply the theory to treat non-spherical molecular penetrants over a wide 

range of shapes in both polymer melts and networks, and from weakly supercooled states to the 

kinetic vitrification temperature. The focus is on the explicit dynamical consequences of shape, 

and hence different penetrants are analyzed at fixed molecular volume. This is a subtle, but 

important, problem given that our prior recent theoretical work [25], experimental studies [26, 29, 31], 

and simulations of others [19, 30] suggest penetrant volume is the crucial leading order variable 

determining the rate of activated hopping in polymeric media corresponding to a surprising degree 
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of “self-averaging” of molecular shape on the long Fickian diffusion time scales,  at least for the 

limited class of penetrants studied. 

The foundational starting point is to understand polymer matrix activated structural 

relaxation, which has been achieved based on the Elastically Collective Nonlinear Langevin 

Equation (ECNLE) theory [33, 34]. This theory causally relates interactions, thermodynamic state, 

and packing structure as embedded in a dynamic free energy that quantifies kinetic constraints to 

predict activated relaxation in colloids [33, 34], molecular and polymeric liquids [32, 35-39], and 

crosslinked networks [40]. The polymer alpha relaxation process is a coupled local-nonlocal 

activated process at the Kuhn statistical segment level, involving a local cage barrier (FB) that 

quantifies the kinetic constraints from the surrounding segments and a nonlocal collective elastic 

barrier (Fel) that arises from correlated or facilitating small collective long-range displacements of 

all segments outside the cage that effectively dress the large amplitude hopping event [35, 36]. 

ECNLE theory has been extended to treat the activated dynamics of dilute hard sphere 

penetrants in a hard sphere matrix fluid, resulting in the Self-Consistent Cooperative Hopping 

(SCCH) theory [25, 26]. Recently it has been extended to semi-flexible polymer melts [27] and 

crosslinked network matrices [28, 29] for spherical penetrants. The penetrant barrier and mean 

hopping time, and the extent of coupling of its transport with the early, medium, and deeply 

supercooled stages of the matrix structural relaxation process, are predicted based on two coupled 

dynamic free energies [25-28]. The influence of various chemical and physical effects on the 

temperature/packing-fraction dependence of penetrant dynamics have been studied, including 

chain connectivity in polymers [27], degree of crosslinking in networks [28, 29]), attractive penetrant-

matrix interactions [27], external stress [41]  and penetrant size [26, 27, 29, 31].  Many of the theoretical 

predictions of SCCH theory agree well with simulations [19, 25, 29, 30] and experiments [29, 31].
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Our present work is strongly motivated by a recent combined experiment-simulation-

theory study [29] of the dependence of the alpha relaxation time and diffusion constant of dilute 

penetrants in crosslinked poly(n-butylacrylate) (PnBA) networks as a function of degree of 

crosslinking. It was found that the crosslinking fraction dependence of the penetrant diffusion 

constant (inverse alpha time) of the dye N,N’-Bis(2,5-di-tert-butylphenyl)-3,4,9,10-

perylenedicarboximide (BTBP) exhibits an almost identical temperature dependence of that of the 

significantly different shaped tert-butylated rubrene (TBRb) penetrant. This rather surprising 

finding was interpreted as due to BTBP having a nearly identical space filling volume as that of 

TBRb, suggesting a remarkable degree of dynamical self-averaging of penetrant shape. However, 

it was also observed that the absolute value of TBRb diffusion constant is larger by a factor of 

~3-5 at any fixed crosslink density and temperature than that of BTBP, which was attributed to the 

explicit penetrant shape effect.  Understanding this finding is obviously beyond the scope of 

models that adopt a spherical particle description of penetrants. Considering the shape effect on 

penetrant activated relaxation in polymeric media is a broad, open, and challenging scientific 

problem that is highly germane to difficult membrane separation applications.

Here, we extend and apply to experiment the SCCH theory to address how penetrant shape 

influences its activated hopping over a very wide range of temperatures from the matrix glass 

transition temperature Tg through the wide deeply supercooled regime, and into the high 

temperature rubbery regime of polymer melts and crosslinked networks. Beyond an in-depth 

theoretical exploration of the role of penetrant shape in glass forming polymer melts and networks, 

another goal of the present article is to make predictions that can be tested (or a minimum motivate) 

in new experiments and simulations. The latter is discussed in some depth in section VIA, and a 

preview is as follows. (i) Our first focus is on how molecular shape at fixed molecular volume 
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affects the penetrant relaxation time and diffusion constant over a wide range of temperatures, and 

how crosslinking changes the thermal behavior compared to polymer melts. This exploration of 

temperature dependence is presented in the two common manners analyzed experimentally: as a 

function of absolute temperature, and in a “normalized” Angell-like representation as a function 

of inverse temperature rendered dimensionless by the polymer matrix glass transition temperature. 

(ii) Prior theoretical studies based on representing molecules as effective spheres have shown 

penetrant size relative to a key length of dynamical importance in the polymer matrix plays a 

crucial role in activated penetrant relaxation and diffusion. Most recently, two regimes of “small” 

and “large” penetrants have emerged based on our theoretical approach associated with to what 

extent penetrant hopping is coupled to the longer-range collective elasticity of the polymer 

matrix.[25, 29, 31] This advance frames our study in this article of the effect of molecular shape based 

on a careful choice of two values of penetrant volume that fall into the small and large categories.  

(iii) We search for a scalar metric that can organize the effect of molecular shape and propose a 

“penetrant aspect ratio” variable that provides significant insight. (iv) The mechanistic manner that 

penetrant shape determines the extent of coupling between the penetrant activated hopping event 

and a correlated dynamic reorganization of the polymer matrix is explored at both a mean 

trajectory level, and in terms of the experimentally observable “decoupling” ratio defined as the 

ratio of penetrant hopping time to the polymer alpha relaxation time. (v) The penetrant shape 

effects on the predicted exponential variation of relaxation time or diffusion constant as a function 

of the crosslink density dependent glass transition temperature is also studied.

Our theoretical studies of melts and crosslinked polymer networks are carried out to 

explore the relative importance on penetrant diffusivity of shape versus molecular volume over a 

range of temperatures and crosslink densities. This analysis is relevant to the subtle problem of 
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creating polymeric media (or membranes) that can separate molecules of essentially identical 

volume but different shapes based on differences of their activated hopping dynamics. 

Experimental and most simulation studies of the penetrant dynamics problem is often focused on 

mass transport, i.e., long time diffusion constant of penetrants.[2, 4, 19, 29, 30] We note that for an 

activated transport problem, what we call the penetrant relaxation time is basically the inverse of 

the mean hopping time that plays the critical role in determining the activated diffusion constant. 

This point has been recently discussed in detail within our theoretical approach [28], and 

successfully tested against experiments and simulations [29, 30]. This includes most recently a 

quantitative comparison of the penetrant relaxation time deduced from the incoherent dynamic 

structure factor (self-intermediate scattering function) on a local scale with the long-time diffusion 

constant [30]. These studies also establish the extent to which a crosslinked mesh in networks can 

modify penetrant diffusivity [28-30]. In this article we focus mainly on the penetrant relaxation time 

(inverse hopping rate) but for the aforementioned reasons the results are directly relevant to 

penetrant mass transport.

Sections II and III briefly describe the molecular models and statistical mechanical theories 

adopted, and extends them to treat shaped molecular penetrant packing structure and activated 

dynamics. Readers not interested in these technical details can skip these two sections and go 

directly to the results sections IV-VI which also discuss connections to experiments and 

simulations. Shape effects at several fixed penetrant space filling volumes on the temperature 

dependence of the penetrant alpha relaxation time is presented and analyzed in section IV for 

polymer melts and networks. The dynamical effects of shape are proposed to be largely captured 

by an aspect ratio variable that quantifies shape anisotropy. How penetrant shape impacts the 

degree of decoupling of the polymer and penetrant alpha times and the degree of trajectory-level 
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cooperativity associated with the hopping process is analyzed in Section V. Section VI summarizes 

our most important predictions that are testable in future experiments and simulations. A 

quantitative application of the theory to the recent experimental study mentioned above [29] is also 

presented. The article concludes with a summary and future outlook in Section VII.  

Supplementary Information (SI) presents some relevant and well-known theoretical background, 

and also additional calculations and figures that further support the results and the scientific 

conclusions that we draw in the main article.

II. Structural Correlations

In this and the next section we provide a brief description of the relevant theoretical 

methods employed for the new work in sections IV-VI. We emphasize that most of the technical 

details, equations, derivations, numerical implementations, and discussion of limitations of the 

theory tools employed have been thoroughly documented previously, especially in Refs. [27, 35, 40, 

42, 43] for PRISM integral equation theory, [33-40] for ECNLE theory and [25-28] for SCCH theory; 

their detailed review is not repeated here and/or are briefly discussed in the SI. The primary 

technical novelty of the present paper is that it is the first to explicitly include penetrant shape 

effects in SCCH theory. In this section II we describe the molecular models and theory of structural 

correlations that enter the dynamic theories as input (discussed in section III).

A. Molecular models and structural correlations  

Interaction site models are employed to model polymer chains and molecular penetrants. 

Intermolecular site-site structural pair correlation functions are computed using the Polymer 

Reference Interaction Site Model (PRISM) integral equation theory [42-45]. Polymers are modeled 

as discrete Koyama semiflexible chains (SFC) composed of tangent spherical beads (diameter , �

bond length ) [27, 44, 45] to compute the intramolecular structure factor *m(q) required as input �b = �
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to PRISM theory. The chain bending energy is chosen to yield a ratio of the persistence length to 

bead diameter (a local chain backbone “aspect ratio”) typical of real flexible polymers, �p	� = 4/3

.[27, 28, 35, 40, 44] Polymer sites interact via pure hard-core repulsions, and are studied under melt-like 

packing fraction conditions, ,eff K -L.3(9)1"MN) = 0.56-0.67 , where MN is the site overlap 

correction in conformationally ideal Koyama model [44, 45]. The Percus-Yevick (PY) closure of the 

PRISM equations is adopted following prior work for the PnBA systems of present interest [28, 29]. 

The well tested mapping approach [36-38] for PnBA systems to convert packing fraction to 

temperature at 1 atm pressure is adopted (see SI). We note that within PRISM theory the 

elementary polymer unit is an interaction site (referred to as a monomer, subscript “m”), in contrast 

to the level of dynamical description which is at the Kuhn segment (indicated by subscript “K”) 

level as discussed below and elsewhere [27, 28, 30, 36, 40, 46]. The relationship between intermolecular 

pair correlation functions of a Kuhn segment and a site or monomer is presented in the SI. As done 

previously [27, 35, 40], we set the number of sites in a Kuhn bead NK equal to the ratio of Kuhn length 

 to bead diameter . corresponding to .�K 
K = �K	� = 2�p	� = 8/3

Rigid molecular penetrants of fixed geometry are described at the interaction site level 

where all interactions sites are tangent and taken to be identical with the same hard-core diameter 

( ), i.e., the bond length equals the hard sphere site diameter. All interaction sites are treated as �s

symmetry equivalent in applications of PRISM theory to predict intermolecular site-site pair 

correlations. The site-site molecule-polymer pair interaction is a pure hard-core repulsion. The 

penetrant intramolecular structure factor enters PRISM theory as input and is given by �p(�) =

 , where  is the known scalar distance between sites  and  within 
�1
p �


p

���= 1
sin (����)/���� ��� � �

a rigid penetrant molecule that contains a total of  sites. We define an equivalent hard sphere 
p

model for each shaped penetrant where  equals unity with an effective diameter chosen to �p(�)
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We study multiple examples of three classes of shaped penetrants (see Fig.1): (i) 1D-like 

rod models with  where is the pure hard sphere model; (ii) 2D-like planar 
p = 1 � 6 
p = 1 

models including the triangle, square, pentagon, hexagon, and triangle plate; and (iii) 3D-like 

globular models including the tetrahedron, triangular dipyramid, triangular prism, and octahedron. 

All models adopt the tangent model (site diameter equals nearest neighbor bond distance) to 

calculate their intramolecular structure factor. To analyze the dynamics of BTBP and TBRb 

molecules and compare with experiment, we also study several other special non-tangent 

(overlapping site) models as discussed in Section VI-B.

To elucidate the explicit consequences of penetrant shape, we enforce that different 

penetrant shapes have the same space filling volume; for context we recall that our prior 

comparisons of theory and experiment suggests penetrant volume is often the leading order effect 

[25, 26, 29, 31]. Given we know [25-27, 31] that larger volume spherical penetrants behave very 

differently than their smaller analogs due to collective elastic effects on their activation barrier for 

hopping, we choose two different values of fixed penetrant volume corresponding to effective 
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diameters of   and , where  determines the size or �eff	� ! 

1/3
p �s	� = 0.8 0.55 �eff ! (65p	6)1/3 

volume  of a penetrant. For the larger one, based on prior work [27, 29, 31] on spherical penetrants 5p

and our present analysis, we expect that both the penetrant local cage and elastic barriers are crucial 

for some of the shaped penetrants studied, while for the smaller one the elastic barrier is expected 

to be negligible. Thus, we address the physics of molecular shape for “large” and “small” 

penetrants in the sense of the importance of collective elasticity on their activated hopping.

As a metric of penetrant shape (versus space filling volume), we adopt the classic radius of 

gyration given as , with  the center-to-center distance between sites i and j "g !
1

2
2
p

�

p

7�8
�2
78 �78

within the same penetrant. As a measure of shape asymmetry, we define a “penetrant aspect ratio” 

as . Values of  and  for the shapes shown in Fig.1 are presented in $	� = (2"g + �s�	� "g/�s $	�

Table 1 for values of penetrant effective diameters studied,  and .�eff	� = 0.8 0.55

B. Shape effects on the penetrant-polymer packing correlation function

Our core idea is the leading order effect of non-spherical shape is the change of penetrant-

polymer packing at the elementary interaction site level of the real forces, and hence the kinetic 

constraints for penetrant motion. We describe the latter at a simplified center-of-mass (CM) 

trajectory level in analogy with how the dynamics of spherical penetrants are rigorously described. 

Thus, the explicit effect of rotational dynamics is ignored (treating this is in general an unsolved 

problem in the theory), a simplification that has had significant prior success work for the activated 

dynamics for one-component non-spherical molecular and colloidal fluids [47-50]. In this section, 

we briefly discuss representative examples of the penetrant-matrix packing structure, which 

provide physical insight for the dynamical results of subsequent sections. As discussed below and 

previously [28, 29, 40], since we assume the site-site packing structure of polymer melts to be the 
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same as that of polymer networks, we analyze only the cross radial distribution function of dilute 

penetrants in polymer melts.
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Fig.2: Penetrant� polymer site-site cross pair correlation function, , as a function of 9mp(�)

separation scaled by the polymer monomer diameter, using PRISM-PY theory for (a) 1D, (b) 2D, 

and (c) 3D shapes with the same molecular volume but different site numbers . (d) Same display 
p

as in (a) to (c) but for all  systems studied. The results shown are for a penetrant-to-matrix 
p = 6

effective size ratio  and a lower temperature ( , very close to the PnBA �eff	� = 0.8 ; = 237.5K

melt glass transition temperature ) where the basic structural characteristics are more obvious ;g

relative to that for smaller size penetrants or high/medium temperatures.

Given the variability of polymer-molecule packing with penetrant shape is larger for the 

bigger penetrants, we present illustrative results for the cross pair correlation function, , of 9mp(�)

 systems (the trends for the  systems are similar and not shown). Figures 2a, �eff = 0.8 �eff = 0.55

2b, and 2c show  of 1D, 2D, and 3D systems for penetrants of the same effective volume 9mp(�)

Page 13 of 50 Soft Matter



14

but a different number of sites, respectively. Overall, one observes that for all non-spherical 

penetrants the contact value  ( ) and its location decrease with 9mp(�mp) where �mp =
�s + �

2

increasing  , as expected since the effective diameter for each site, , decreases 
p �s ! �eff/

1/3
p

when keeping the total penetrant volume the same. However, each penetrant contains several sites, 

and  does increase as  grows. Since intermolecular forces on all sites of each 
p9mp(�mp) 
p

molecule contribute to its CM dynamics, one can expect the total forces on each molecule will be 

larger when  is higher even if penetrant volumes are identical. As confirmed below, this 
p

increases the difficulty of penetrant hopping, and both the penetrant local cage and elastic barriers 

increase, and the penetrant jump distance decreases with . We also find a weak peak beyond 
p

contact in the cross pair correlation function for all non-spherical systems, which arises from the 

connectedness (bonding) correlations of different sites in each molecule. As is well known from 

the classic theories of rigid molecular liquids [47-52], contact of a penetrant site with a monomer 

site determines the “contact value” , but the other sites in the same tagged penetrant are 9mp(�mp)

constrained by bonding to be at a fixed distance from it leading to a weak peak at a distance 

modestly longer than . However, we emphasize that this effect is not important for our core �mp

dynamical results presented below.

For fixed , several  for different shaped penetrants are also presented in 
p = 6 9mp���

Fig.2d. One sees that the contact value increases with aspect ratio (see Table 1). However, the 

value of the second weak peak decreases as the degree of asymmetry increases. These features 

suggest, at zeroth order, the penetrant relaxation time becomes smaller as the aspect ratio decreases. 

Finally, we note that the hexagon model is not maximally compact in that it contains a small void 

in its center that cannot be sterically accessed by polymer sites, which may have special 

consequences on its dynamics, as discussed below.  
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III. Dynamical Theories

We now briefly review the basic elements of the two dynamical theories employed: 

ECNLE theory for Kuhn segment relaxation in one-component polymer melts/networks [27, 35, 40], 

and SCCH theory for dilute penetrant dynamics for which ECNLE theory of pure polymer systems 

enters as input [27-29]. Additional background material is in the SI.

A. ECNLE theory for pure polymer melts and networks

As schematically indicated in the inset of Fig.3a, the polymer activated alpha relaxation 

process is described at the Kuhn segment scale corresponding to treating NK (here equal to 8/3) 

connected beads as a rigid unit, with chain connectivity constraints dynamically ignored beyond 

the Kuhn scale [35, 37, 38, 40]. Full chain connectivity at the elementary site level is retained for all 

equilibrium correlations functions that enter the dynamical theory to quantify kinetic constraints. 

The foundational dynamical quantity is the Kuhn segment CM scalar displacement dependent 

dynamic free energy,  (inset of Fig.3b). At the high melt-like packing fractions of present @dyn,K

interest, it has a localized form and a local cage barrier, . To achieve a sufficiently large particle @B,K

hop (jump distance of ), particles or sites outside the nearest neighbor shell (defines the local D�K

“cage”) must elastically displace in a collective manner by a small amount to create the required 

space for a large amplitude hop. This introduces as second contribution to the dynamic barrier 

called the elastic barrier . The total activation barrier is  . This is the core @el,K @total = @B + @el

physical idea of the ECNLE theory, corresponding to the alpha relaxation event being a coupled 

spatially local-nonlocal activated process. The magnitude of the elastic barrier and its dependence 

on thermodynamic state are controlled by the Kuhn segment jump distance MrK and harmonic 

curvature (or spring constant setting the energy scale for elastic fluctuations) K0,K, which are both 

predicted from the dynamic free energy and hence the structural packing correlations [33-35, 40]. 
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The Kramers mean first passage time [53, 54] is adopted to compute the mean Kuhn segment 

hopping time ratio, , from which the mean Kuhn segment alpha time follows as Ihop,K/Is,K I�,K =

, where  is the non-activated short length scale relaxation time [25, 34, 35] the formula Is,K + Ihop,K Is,K

for which is given elsewhere.[35, 40] To carry out quantitative calculations and compare with 

experiments, the elementary timescale of a Newtonian liquid, 20=16,.(3�(L*1/2 (typically of order 

~ 1 ps [25, 38-40]) is selected as the time unit; this can be adjusted to reflect any system-specificity, 

but has a weak effect since it enters as a prefactor with typical values in the range of 0.1-10 ps [38, 

39]. Figure 3a present the theoretical mean alpha time  , along with the experimental alpha I�,K /I0

time of a PnBA melt in units of ps [40]. As discussed previously [40], good agreement is found.

2 3 4
101

105

109

1013

� �
,K

 /�
0

1000K/T

 TH, melt
 TH, network

(c)

2 3 4
0

10

20

�
F

X

1000K/T

FB,K Fel,K fn
 |  0.0
 |  0.1

Fig.3. (a) Dimensionless polymer Kuhn segment mean alpha relaxation time  as a function I�,K/I0

of  (Angell style plot) at two crosslink densities for the PnBA melt ( ) and a heavily ;g	; Jn = 0

crosslinked network studied in experiments ( ) [40]. The experimental alpha times [40] of Jn = 0.1

the PnBA melt in picoseconds is also shown. The dynamically determined  from ECNLE theory ;g

is defined as requiring  equals  which corresponds to 100 s based on adopting  I�,K/I0 1014 I0 K 1
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ps, while the experimental  of the PnBA melt (226K) and network (286K) are determined based ;g

on the thermodynamic method [2, 40] using differential scanning calorimetry (DSC). Inset of (a) 

shows a schematic of the physical ideas of ECNLE theory, and the mapping of a polymer to a 

discrete chain of tangent bead (interaction sites) model that is described dynamically at the Kuhn 

segment scale. (b) Kuhn segment local cage and collective elastic barriers as a function of  at ;g	;

the two crosslink densities  and . The inset of (b) schematically illustrates the key Jn = 0 Jn = 0.1

features of the dynamic free energy as a function of Kuhn segment dimensionless displacement, 

and relevant length and energy scales are indicated. (c) Main and inset are the same theoretical 

results as in (a) and (b), respectively, but plotted as a function of 1000K/T.

For the crosslinked network, we previously [28, 29, 40] argued that at zeroth order chemical 

crosslinking does not change the site-site structural pair correlations. Hence, we adopt the 

previously validated [28, 29, 40] “neutral confinement” model defined as random pinning of a fraction 

of polymer sites to mimic the dynamical consequences of chemical crosslinking as a fraction [Jn =

] of immobile segments that are distributed in a regular manner Lcrosslink/(Lcrosslink + Lmonomer)

along a chain (see schematic in Fig.4). Here,  and  are the interaction site (bare Lcrosslink Lmonomer

bead) level number of crosslinked (pinned) and normal mobile (unpinned) beads, respectively. In 

our prior study for the PnBA networks [40], the comparison between experiment and theory 

suggests that  corresponds to the most heavily crosslinked network. Thus, we focus mainly Jn = 0.1

on the two extreme cases: the PnBA melt ( ) and the most heavily crosslinked network (Jn = 0 Jn

). The dynamic free energy of Kuhn segments in networks was shown previously [40]. The = 0.1

calculated mean alpha time for the most heavily crosslinked network is also shown in Fig.3a. The 

fragility of the PnBA network is only modestly larger than that of its melt, and a near collapse in 

the Angell representation is predicted, consistent with experiment and simulation [40]. 

Figure 3b presents the local cage and elastic barriers for the PnBA melt and crosslinked 

network as a function of . We note that the network  at  is 286K, significantly ;g	; ;g Jn = 0.1

larger than that in melts (226K), consistent with experiment and simulation [40]. The difference in 

absolute values of the alpha times between PnBA melts and networks in the Tg/T representation of 
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Fig.3a is mainly due to a difference in their local cage barriers (see Fig.1b). Relative to the weak 

difference in the  dependence of the cage barriers (i.e., the slope) in the deeply supercooled ;g	;

regime, the  dependence of elastic barriers for PnBA melts and networks differs significantly, ;g	;

which is the origin of their modest difference of fragilities. Fig.3c shows the same alpha time and 

barrier results but now as a function of 1000K/T. The melt local cage barrier is smaller than that 

its network analog at a fixed temperature due to the higher Tg of the network, and the elastic barrier 

in the melt is far smaller than that of the network at a fixed temperature [28, 40]. These different 

temperature dependences of the Kuhn segment alpha time of polymer melts and crosslinked 

networks will have a significant consequence on penetrant dynamics as shown in section IV.

B. SCCH theory for shaped penetrants.

We briefly recall the key physical aspects of SCCH theory, originally formulated for dilute 

spherical penetrants [25, 26, 33]. The penetrant dynamics is of a coupled local-nonlocal activated 

hopping process. The novel aspect is that penetrant hopping is self-consistently coupled with an 

activated dynamic “facilitation displacement” of the Kuhn segments, the details of which are 

determined by the Kuhn segment dynamic free energy. Thus, the penetrant dynamic free energy 

depends on both the penetrant and Kuhn segment displacements (  and ), as schematically �p �K

illustrated in Fig.4.
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Fig.4. Schematic of the physical ideas of SCCH theory (shown for visual simplicity for a spherical 

particle system, the green bead is the penetrant) based on coupled dynamic free energies for the 

penetrant and Kuhn segment displacements (relevant length and energy scales are indicated) with 

a trajectory coupling parameter defined as .  The introduction of crosslinks M = D�p�M�	D�K,c�M�

via the regular pinning of interaction sites along a polymer chain is also shown, where the blue 

beads represent the pinned monomers that mimic chemical crosslinks, while the orange beads are 

unpinned mobile monomers.

The mathematical formulation of SCCH theory has been discussed in great detail 

previously for a dilute spherical penetrant in a hard sphere fluid [25, 26, 33, 41] and also in a polymer 

melt [27] or network [28, 29]. The difference for multi-site shaped penetrants is technical and 

straightforward to formulate. It enters via the derivative of the penetrant dynamic free energy at 

the CM level which now has contributions from polymeric forces on all sites of the penetrant; see 

section II-C of the SI for technical details. At the dynamic free energy level, this is the only new 

feature when penetrant motion is described at the CM translation level. The explicit rotational 

dynamics of non-spherical penetrants is ignored (pre-averaged) to render the problem tractable, as 

previously done with significant success for 1-component molecular and colloidal fluids [47-50]. 

Generalization to explicitly treat coupled translation-rotation activated hopping is generally 

complex, though it has been achieved for the special geometry of uniaxial linear 1-component 

fluids [55, 56].

Finally, the penetrant alpha time is calculated as , where the I�,p = Is,p + Ihop,p

characteristic short-time scale  is slightly different from the previous work for Is,p = �2
eff/Os,p

spherical penetrants due to the influence of penetrant shape; see section II-C of the SI for technical 

details.

Semi-quantitatively, we estimate the penetrant hopping diffusion constant by using the 

Fick’s law relationship as done previously, .[25, 26, 57]. In the framework of SCCH theory Op =
(D�p)2

6Ihop,p

for polymer melts, the penetrant diffusion constant is dominated by the variation of the activated 
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hopping rate ( )  relative to small variations of the jump distance prefactor  (see 1/Ihop,p (D�p)2

Fig.S5a). Hence, we emphasize that our discussion below of the penetrant relaxation time is 

directly germane to the corresponding diffusion constant. A key prediction of SCCH theory is that 

the temperature dependence of the penetrant relaxation time in the dilute limit of interest is 

dominated by the matrix[25]. In our recent work[31], we confirmed this prediction based on 

analyzing experimental penetrant diffusion constant data for selected chemically complex 

penetrants and molecular and polymer melt matrices. This provides objective support for the 

formula   and the fact that  plays a minor role in determining the temperature Op =
(D�p)2

6Ihop,p
(D�p)2

dependence of diffusion constant.

The relationship,  works well for polymer melts, but for crosslinked polymer Op =
(D�p)2

6Ihop,p

networks an additional contribution to the slowing down of penetrant mass transport can emerge 

due to geometric mesh confinement. This issue has been recently addressed in detail based on 

theory, experiment, and simulation [28-30]. The relationship between the penetrant relaxation time 

and diffusion constant was proposed to be  , where  represents the mesh Op = J�P�
(D�p)2

6Ihop,p
J(P)

confinement effect that only depends on the confinement parameter  defined as the ratio of the P

penetrant diameter to mean mesh diameter which is a function solely of crosslink density.  At a 

fixed mesh confinement,  behaves as a constant when studying the temperature dependence J�P�

of penetrant diffusion or relaxation, and hence the temperature dependence of  is expected to be Op

the same as that of its inverse relaxation or hopping time, the same situation as in melts. When 

focusing on crosslinking effects at fixed temperature, we have recently confirmed based on 

experiment and simulation results [29] that  behaves (surprisingly) as an exponential function J(P)

with . This is effectively the same dependence as that of the inverse penetrant relaxation Tg(Jn�	;
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time, with differences only entering via prefactors [29]. Moreover, quantitatively the entropic mesh 

confinement effect on penetrant diffusivity for penetrants of typical size (even the relatively large 

aromatic dye molecules [29]) is a perturbation relative to the reduction of the polymer alpha 

relaxation rate which is the leading order effect on penetrant dynamics implying . Op Q
1

Ihop,p
K

1

I�,p

This finding motivates the neglect of the 2nd order explicit mesh confinement effects in our present 

study. Furthermore, we emphasize that dielectric experiments[2, 31] and simulations[30] have shown 

that the penetrant alpha relaxation time can be directly measured. Thus, for all the above reasons, 

we consider below mainly the penetrant relaxation time, where the found conclusions should also 

be applicable to inverse diffusion constant of the penetrant.

IV. Shape Effects on the Penetrant Alpha Relaxation Time

In this section we study how the penetrant alpha time is affected by its shape at fixed 

penetrant space filling volume over a wide range of temperatures and crosslink densities in PnBA 

systems for two choices of penetrant molecular volumes (representative of “small” and “large”). 

We also discuss the physical mechanism underlying shape effects in the theory, and propose a 

specific variable to organize the dynamical consequences of penetrant shape.

A. Shape effects in absolute temperature space

 We first analyze the shape effects on the penetrant alpha time 25,p in units of the elementary 

timescale 20 (of order ~1 ps in typical experiments) in absolute temperature space, i.e., as a function 

of . Figures 5a, 5b, and 5c presents calculations of  for 1D, 2D, and 3D like shaped 1000K/; I�,p/I0

penetrants in both polymer melts and networks at fixed effective penetrant diameter  �eff/� = 0.8

where collective elastic effects on penetrant hopping are relatively important. One sees from Fig.5a 

for rod-like penetrants that the temperature dependence of  in melts changes significantly I�,p/I0
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with , increasing by ~5 decades at the lowest temperature studied when varying  from 1 to 6. 
p 
p

However, the temperature dependence of  for the more globular 3D systems (Fig.5c) varies I�,p/I0

only a very small amount. We view this as a natural consequence of the studied 3D shapes being 

relatively globular and hence roughly isotropic and sphere-like (see Table 1, their aspect ratios  $

are all very close to that of sphere).

For 2D-like planar penetrants (Fig.2), the variability of  with specific shape is I�,p/I0

intermediate between that exhibited by the 1D and 3D systems. Specifically, the alpha times vary 

by ~2.5 decades total at the lowest temperature studied.

2.0 2.5 3.0 3.5 4.0 4.5
100

103

106

109

1012

� �
,p

 /
� 0

1000K/T

Np

  1

  2

  4

  6

solid: melt

dash: network

1D linear rod

dp,eff /� = 0.8

(a)

2.0 2.5 3.0 3.5 4.0 4.5
100

103

106

109

1012

� �
,p

 /
� 0

1000K/T

Np

  1, sphere

  3, triangle

  4, square

  6, hexagon

  6, triangle plate

solid: melt

dash: network

2D plane

dp,eff /� = 0.8

(b)

2.0 2.5 3.0 3.5 4.0 4.5
100

103

106

109

1012

� �
,p

 /
� 0

1000K/T

Np

  1, sphere

  4, tetrahedron

  6, triangular prism

  6, octahedron

solid: melt

dash: network

3D

dp,eff /� = 0.8

(c)

Fig.5. Alpha relaxation time of shaped penetrants, , for  in a polymer melt I�,p/I0 �eff/� = 0.8

(solid) and crosslinked network (dash) as a function of inverse temperature  over a wide 1000K/;
range of penetrant shapes but of identical space filling volume: (a) 1D, (b) 2D, and (c) 3D shapes.
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Fig.6. Ratio of penetrant alpha time of different shapes but identical volume ( ) �eff/� = 0.8

compared to a spherical penetrant, , in a polymer melt (solid) and crosslinked I�,p(
p)/I�,p(1)

network (dash) as a function of inverse temperature  for (a) 1D, (b) 2D, (c) 3D shapes.1000K/;

As a general trend in Fig.5, at fixed temperature we predict  in melts is always much I�,p/I0

lower than that in networks, as expected since crosslinking slows down segmental relaxation 
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significantly thereby strongly affecting penetrant dynamics. [28-30]. To analyze the net influence of 

crosslinking on shape effects, we show in Fig.6 the ratio of the penetrant alpha time  of different I�,p

shapes to that of the corresponding same volume spherical penetrant, . One sees I�,p(
p)/I�,p(1)

that in over the same temperature range, the thermal dependence of penetrant relaxation in melts 

is less sensitive to its shape relative to that in networks for all penetrant shapes.

B. Shape effects in  spaceRg/R

From a basic scientific perspective, analysis of the penetrant relaxation time in reduced ;g/

 space is also of interest, especially with regards to the role of crosslinking in networks compared ;

to melts. Figure 7 shows results for all the  data in Fig.5 but now plotted versus . We I�,p/I0 ;g/;

find that within the wide range of , the temperature dependent trends of  0.6 < ;g/; < 1.0 I�,p/I0

remains unchanged relative to the above analysis in  space for different shaped 1000K/;

penetrants, i.e., relaxation times are ordered as 1D > 2D > 3D. The reason is simply that  is a ;g

constant and does not change the temperature dependence. However, for polymer melts and 

networks, their  values are significantly different and thus within the same  range, the ;g ;g/;

relative temperature dependence of the penetrant relaxation time must be different from that 

observed in the same absolute temperature ( ) space. As shown in Fig.7, at the same 1000K/;

degree of supercooling, i.e., at fixed ,  in polymer melts is higher than that in networks, ;g/; I�,p/I0

which is opposite to the trend observed in Fig.5 at a fixed temperature.
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Fig.7. Same displays as in Fig.5 for the penetrant alpha time of different shapes, , at I�,p/I0 �eff/�

 in a polymer melt (solid) and crosslinked network (dash), but now plotted in the Angell = 0.8
representation, i.e., as a function of , for (a) 1D, (b) 2D, and (c) 3D penetrant shapes.;g/;

Since crosslinked networks have a modestly larger fragility relative to melts [40], they have 

a lower Kuhn segment alpha time (see Fig.3a) at a fixed degree of supercooling. Assuming at the 

same  (< 1.0) the degree of trajectory coupling of penetrants and Kuhn segments is identical, ;g/;

then the weaker Kuhn segment relaxation rate must result in a smaller  for the crosslinked I�,p/I0

network. This trend is reinforced by the fact the theory predicts that dynamical coupling between 

penetrants and Kuhn segments is smaller at fixed  for the crosslinked network than in the ;g/;

polymer melts as discussed below.
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Fig.8. Same displays as in Fig.6 for the ratio of the penetrant alpha time for different shapes relative 

to that of a spherical shape, , at  in a polymer melt (solid) and I�,p(
p)/I�,p(1) �eff/� = 0.8

crosslinked network (dash), but now plotted as a function of  for (a) 1D, (b) 2D, and (c) 3D ;g/;

penetrant shapes.

The ratio  as a function of  is shown in Fig.8 for both the 1D, 2D, and I�,p(
p)/I�,p(1) ;g/;

3D like penetrants (analog of Fig.6). Opposite to the temperature dependence at fixed absolute 

temperature ( ) range, the temperature dependence in melts over the same  range is 1000K/; ;g/;

more sensitive to penetrant shape than that in networks for all systems studied. 

C. Physical mechanism of shape effects

In order to clarify the rich behavior discussed in the previous two sub-sections, we now 

dissect our numerically obtained results based on an analysis of all the theoretical elements that 
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underlie the calculation of the penetrant alpha time. If the reader is not interested in this detailed 

theoretical analysis, they can skip to sub-section IV-D. Given the similarities in both the 1000K/

 and  space representations of the temperature dependence of penetrant alpha times or ; ;g	;

barriers, we only discuss the barriers in the  representation.;g	;

The underlying physical origin of the predicted trends emerges from the behavior of the 

penetrant local cage and elastic barriers which are shown as function of  in Fig.9. Results are ;g	;

shown only for the case of larger penetrants which are strongly coupled to matrix motions, which 

have major contributions to their activation barrier from both the local cage and elastic barriers. 

Figs.9a, 9b, and 9c show that the temperature dependence of local cage barriers is nearly 

identical for all penetrant shapes. This major finding establishes that the slope change in 

logarithmic alpha time versus inverse temperature (see Fig.5 and Fig.7) plots in the deeply 

supercooled regime arises almost entirely from the collective elastic barriers. This is further 

confirmed in Figs.9d, 9e, and 9f where we find the temperature dependence of the elastic barriers 

behave significantly different as penetrant shapes change. Moreover, it is remarkable that the 

nearly identical temperature dependence of the local cage barriers for different shaped penetrants 

of identical space filling volume suggests a type of dynamical averaging of shape on the time scale 

of penetrant hopping and relaxation. In fact, previously it has been shown that SCCH theory for 

spherical penetrants predicts a surprising factorization of the temperature and size ratio 

dependences of the penetrant activation barrier and alpha time [25, 31]. This prediction has been 

confirmed in experiments on chemically complex dilute penetrants in diverse molecular and 

polymeric liquids[31], suggesting that a type of shape averaging exists on long-time scales. Thus, 

our finding in Figs.9a-9c of a nearly identical temperature dependence of local cage barriers 
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confirms theoretically that shape averaging does exist on the time scale of penetrant hopping and 

long-time diffusion in matrices explicitly modeled as polymer melts and crosslinked networks.
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Fig.9. Penetrant local cage (a, b, c) and elastic (d, e, f) barriers (in units of thermal energy) as a 

function of  for the melt  (solid) and a heavily crosslinked network of  (dash) ;g	; Jn = 0 Jn = 0.1

over a wide range of penetrant shapes having the same effective molecular volume for (a, d) 1D, 

(b, e) 2D, and (c, f) 3D penetrant shapes.

The absolute values of the dynamic barriers is also of interest. At high temperatures, the 

penetrant elastic barrier is negligible since its jump distance and the relative stiffness of the 

polymer matrix are small. Thus, the variation of the penetrant relaxation time for different 

penetrants at high temperatures arises mainly from local cage barriers. However, as seen in Fig.9, 

the elastic barrier does change significantly in the deeply supercooled regime, to a degree that 

depends significantly on penetrant shape which is far larger than that of local cage barriers. This 

suggests the difference of absolute value of the penetrant relaxation time for different shaped 

penetrants at low temperatures is attributed mainly to the elastic barriers, a crucial insight for the 

difficult problem of selective transport based on penetrant shape at fixed space filling volume.
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Concerning the effect of network crosslinking, one observes in Figs.9a, 9b, and 9c that 

changes of the temperature dependence of local cage barriers is very limited with crosslinking over 

the whole range of  studied (only a slight decrease in slope for the network results relative to ;g	;

that of melts).  Moreover, the difference in absolute value due to penetrant shape effects remains 

nearly of the same magnitude for networks and melts, although within the same  range the ;g	;

absolute value of the penetrant local cage barrier in networks is less than that in melts by a factor 

of ~4.  Just like the cage barrier, the penetrant elastic barriers (see Figs.9d, 9e, and 9f) for melts 

are also higher in absolute value than in networks over all the range of  studied (in the ;g	; 1000K/

 space, an opposite conclusion is obtained as discussed above for the alpha times). However, the ;

difference between penetrant elastic barriers in melts and networks varies with temperature and 

penetrant shape, i.e., the temperature dependence of elastic barriers changes significantly with 

crosslinking and penetrant shape, in a manner that is different from the behavior of penetrant local 

cage barriers. We note for the 3D shapes studied, they are compact and roughly isotropic, and 

hence sphere-like, which delivers the negligible shape effects observed in Fig.9f.

D. Influence of penetrant size on shape effects

A striking prior prediction of SCCH theory for dilute hard spheres in a hard sphere matrix 

is that when the penetrant diameter is large enough, both the elastic and local cage barriers are 

important, while only the latter is important if the penetrant is “small enough” ( ).[25, �eff	� < 0.5

26, 31] When the hard sphere matrix is replaced with polymers, the penetrant elastic barrier becomes 

quantitatively less important due to chain connectivity effects, and the crossover boundary between 

these two behaviors increases from  ~0.5 to ~0.6-0.7.[29] In above work we focused on �eff	� �eff

 which is greater than the crossover value, and hence both local cage and elastic barriers 	� = 0.8

are important, particularly for some shaped penetrants like rods with high values of . Here, in 
p
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order to explore penetrant size effects, we study examples for smaller penetrant volume 

corresponding to  where only local cage barriers are important and the elastic barrier �eff	� = 0.55

is negligible.
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Fig.10 Same displays as in Fig.7 but for smaller penetrant size, : Alpha relaxation �eff/� = 0.55

time of penetrant of different shapes, , at  (solid) and  (dash) as a function I�,p/I0 Jn = 0 Jn = 0.1

of  for (a) 1D, (b) 2D, and (c) 3D penetrant shapes.;g/;

Figures 10a, 10b, and 10c present results for  at  in both melts and I�,p/I0 �eff	� = 0.55

networks for 1D, 2D, and 3D like penetrants, respectively. Relative to the significant changes 

discussed above for larger size penetrant ( ), changes with penetrant shape of the �eff	� = 0.8

temperature dependence of  (i.e., the slope) are very limited for , a trend that I�,p/I0 �eff	� = 0.55

physically arises due to the dominance of  local cage barriers. We do observe a slight change of 

the temperature dependence with variable penetrant shape due to its influence on the relatively 

small penetrant elastic barriers. Finally, for much smaller penetrants , we find (not �eff	� < 0.5

shown) the temperature dependence (the slope) of  with penetrant shapes does not change I�,p/I0

since the elastic barrier is always close to zero even for the  rod model.
p = 6

Upon crosslinking, the  results broadly behave qualitatively the same as the �eff	� = 0.55

corresponding  results: (i) the absolute value of  and the net impact of �eff	� = 0.8 I�,p/I0

crosslinking on the shape effects in  for the polymer melts is larger than that of crosslinked I�,p/I0

networks within the same range of  studied; and (ii) the absolute value of  and the net ;g/; I�,p/I0
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impact of crosslinking on the shape effects in  for the same range of absolute temperature I�,p/I0

(or ), however, is smaller or less obvious for the polymer melts than the crosslinked 1000K	;

networks (see results for  at   in the  space in Fig.S1).I�,p/I0 �eff/� = 0.55 1000K	;

E. Shape effects on the exponential relationship between penetrant alpha time and 

crosslink density

Recently, we [28, 29] and our simulation collaborators [30] found an exponential relationship 

between the penetrant alpha time and  (the variable here is crosslink fraction, ) at ;g(Jn)/; Jn

various fixed temperatures for dilute spherical penetrants in crosslinked networks. One may 

wonder if this exponential relationship continues to hold for the activated transport of shaped 

penetrants. Based on SCCH theory as previously applied to PnBA polymer networks of variable 

crosslink density [28, 29], we calculate the penetrant alpha times of three shaped models (sphere, 

hexagon, and rod with ) over the same wide range of  studied previously. Figure 11 shows 
p = 6 Jn

 as a function of the crosslinking dependent glass transition temperature  for the I�,p/I0 ;g(Jn)/;

 and 0.8 models at three fixed temperatures spanning the weakly to strongly �eff/� = 0.55

supercooled regimes. For all penetrant shapes, both effective penetrant sizes, and fixed 

temperatures studied, the linear relationship between  and  remains log (I�,p/I0) ;g(Jn)/;

qualitatively unchanged. Moreover, for the small penetrants, the slope even remains essentially 

identical for different shapes, indicating a significant degree of dynamical shape averaging. The 

physical reason this occurs is that only the penetrant local cage barrier is important and its 

temperature dependent changes with penetrant shape are highly limited, per the discussion above. 

On the other hand, for the larger penetrant, both local cage and elastic barriers are crucial, and the 

latter is more significantly affected by penetrant shape. This results in an increased slope of the log 

 versus  plot as the penetrant shape changes from sphere to hexagon to a 6-site (I�,p/I0) ;g(Jn)/;
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rod, as shown in Fig.11b in the deeply supercooled regime where the elastic barrier is relatively 

large. Additionally, at intermediate or high temperatures, the elastic barrier is not important and 

the local cage barrier again dominates, and thus the slope of the exponential relationship between 

penetrant alpha time and  are all similar regardless of the penetrant size.;g(Jn)/;
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Fig.11 Penetrant mean alpha relaxation time in PnBA polymer networks of variable degree of 

crosslinking as a function of  at various fixed temperatures and for three penetrant shapes ;g(Jn)/;

(sphere, hexagon, and  rod) with  equal to (a)  and (b) , respectively. Note 
p = 6 �eff/� 0.55 0.8

that the changing variable in  is  and hence , not the temperature. ;g(Jn)/; ;g(Jn) Jn

We note that if one vertically shifts down the data of  in Fig.11 for the two lower I�,p/I0

temperatures (331.9K and 281.6K) by separate multiplicative factors, a data collapse onto a master 

curve can be obtained for each shape (see Fig.S2). However, the required empirical shift factor is 

different from the short-time scale , and does not seem to have a clear physical interpretation. Is

Nevertheless, the ability to create a master curve is likely of practical experimental interest. 

F. Combined variable to organize the effect of shape on dynamical selectivity 

The above results have documented the importance of penetrant shape on their dynamics. 

A natural question is can one identify a single variable to organize shape effects on the penetrant 

relaxation time and hence diffusivity? The answer is likely not unique, but we have explored the 
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aspect ratio or degree of asymmetry variable  as a possible candidate. In this $	� = (2"g + �s�	�

section, we study whether  can organize the penetrant alpha times of different shapes.$	�

Figure 12a shows the penetrant alpha time as a function of  for all the shapes studied $	�

above (including several 3- and 5-site models not discussed above) at fixed  and . ;g/; �eff/� = 0.8

We find the alpha times can be organized very well according to the value of : when  is $	� $	�

low (smaller than ~1.5 ), a plateau appears, and with further increase of  the penetrant �eff	� $	�

alpha time grows exponentially. We view this finding as a minimal quantification of isochoric 

molecular shape-selectivity. Note that at fixed , the penetrant shape selectivity is stronger in ;g/;

melts than in networks, particularly at low temperatures, a prediction relevant to the design of 

separation membrane materials. Consistent with Figs.7 and 8 that at fixed  the penetrant alpha ;g/;

time in networks are always smaller than in melts, Fig.12a shows that crosslinking does not modify 

the exponential increase of penetrant alpha time with aspect ratio in the large  regime, nor the $	�

critical value of  (~1.5 ) that separates the plateau and exponential increase regimes. $	� �eff	�
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Fig.12. Penetrant relaxation time as a function of the dimensionless aspect ratio $	� = (2"g + �s

 at (a) fixed  and (b) fixed inverse temperatures in both a polymer melt (solid symbols) �	� ;g/;

and heavily crosslinked network (open symbols) over a wide range of penetrant shapes and 

temperatures for . From the left to right, the penetrant shapes are sphere, octahedron, �eff/� = 0.8

triangular dipyramid, triangular prism, tetrahedron, triangle, square, triangle plate, pentagon, rod  

 rod, hexagon,  rod,  rod,  rod, and  rod.
T = 2 
p = 3 
p = 4 
p = 5 
p = 6
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If one considers the problem in fixed temperature space, we find the plateau and 

exponential behaviors remain unchanged (see Fig.12b), although the penetrant alpha time in 

networks becomes larger than that in the analogous melts,  consistent with the findings in Figs.5 

and 6. We note the slight deviation of the hexagon data in Fig.12 from the master curve is attributed 

to the fact that it has a small “hole” in its center that is not sterically accessible by polymer 

monomers  which leads to some increase of its occupied volume and hence alpha time. Although 

different geometry-based ways can be envisioned to define the volume of a shaped molecule such 

that the “hole” effect (e.g., for a hexagon) can be better accounted for (e.g., inaccessible vs 

accessible volume of a penetrant to a polymer bead), its determination is a complex, system-

specific, and non-unique task. Hence, we have adopted the simplest and most straightforward 

approach to define the penetrant molecular volume based on the space filling volume of interaction 

sites.

For the smaller penetrant systems ( ) our conclusions remain the same (see �eff/� = 0.55

Fig.S3), including the critical value of  in distinguishing the plateau and exponential increase $	�

regime occurring at ~ 1.5 . �eff	�

We hope the proposed organizing variable  is of value in designing future (2"g + �s�	�

experiments and in membrane applications to achieve better penetrant shape selectivity at fixed 

molecular volume. Finally, we note that the defined aspect ratio  includes not only $ = 2"g + �s

the radius of gyration  , but also the site diameter . We have checked that adopting either "g �s

variable separately cannot organize the shape effects on penetrant diffusion selectivity numerically 

predicted by the theory.
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V. Shape Effects on Decoupling of Penetrant and Polymer Dynamics

We now consider penetrant shape effects on the degree of dynamic decoupling between 

penetrants and Kuhn segments. We first consider the ratio of the alpha times of the penetrant and 

Kuhn segment, which is measurable in simulations and experiments. In search of a mechanistic 

understanding, we then analyze the difference between a Kuhn segment displacement at the 

penetrant and at Kuhn segment alpha times, , and the trajectory coupling parameter, . �K � �K,c M

A. Alpha time ratio of penetrant to Kuhn segment 

As previously studied using SCCH theory for dilute hard spheres in a hard sphere fluid [25, 

26, 41], polymer melts [27] and networks [28, 29], the alpha time decoupling ratio  is especially I�,p/I�,K

sensitive to collective elasticity effects given that the hopping of penetrants and Kuhn segments 

couples to this longer-range effect in a highly system-specific manner. In prior work [25, 27, 41], I�,p/

 was plotted as a function of matrix packing fraction (analog of inverse temperature via the T-I�,K

density mapping [36-39]) and , and a weakly non-monotonic behavior was predicted. ;g(Jn)/;

Specifically, the alpha time ratio initially increases slightly in the weakly supercooled regime 

which corresponds to high temperature or low crosslink density regimes where barriers are rather 

small and the non-activated short time dynamical process timescale  matters. Upon entering the Is

deeply supercooled regime,  dramatically decreases indicating a strong decoupling I�,p/I�,K

between penetrant and matrix activated dynamics when the barriers become larger and dominate 

the alpha time. In the deeply supercooled regime, the crucial physical effect is the very different 

rate at which the penetrant and matrix elastic barriers grow with increasing the degree of 

supercooling, a difference significantly larger than that for their local cage barrier analogs. 
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Fig.13. Degree of coupling between penetrant and Kuhn alpha relaxation times quantified by the 

ratio, , as a function of  for  in the polymer melt (solid) and heavily I�,p/I�,K ;g/; �eff/� = 0.8

crosslinked network (dash) for various (a) 1D, (b) 2D, and (c) 3D penetrant shapes.

Figures 13a, 13b, and 13c show our theoretical predictions for the decoupling time ratio 

plotted versus  for  for 1D, 2D, and 3D like molecular penetrants, respectively, ;g	; �eff/� = 0.8

in both polymer melts and crosslinked networks. The results span a wide range of  values ;g	;

from the rubbery regime, through the deeply supercooled regime, down to the kinetic glass 

transition. One observes that for all shapes the time ratio behaves weakly nonmonotonically with 

the degree of supercooling parameter, , qualitatively consistent with the previous results for ;g	;

spherical penetrants [25, 27, 28, 41]. In the rubbery regime, tiny differences are observed for different 

shapes, while in contrast, in the deeply supercooled regime the time ratio exhibits significant 

differences with penetrant shape. By comparing the Kuhn segment barrier for the pure polymer in 

Fig.3b with the penetrant barriers in Fig.9, one can conclude that the local cage barrier for all 

shaped penetrants is not far from its Kuhn analog in the deeply supercooled regime. On the other 

hand, the absolute values of penetrant elastic barriers and their differences from the Kuhn segment 

analog are significantly dependent on penetrant shape. This provides the physical reason for the 

significant differences of  in the deeply supercooled regime for different penetrant shapes I�,p/I�,K

in Fig.13. For 3D compact penetrants, because the degree of asymmetry of all shaped penetrants 

are very close and their nearly collapsed elastic barriers are relatively limited, one sees essentially 

negligible variation of  with penetrant shape in Fig.13c. I�,p/I�,K
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We find all the above predictions in polymer melts qualitatively hold for crosslinked 

networks. Quantitatively, the decoupling time ratio is smaller for networks and decreases more 

sharply in the deeply supercooled regime within the same window of  or 1000K/T. These ;g/;

conclusions follow from our calculations of  presented in Fig.S4. I�,p/I�,K
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Fig.14. Same displays as in Fig.13 for the degree of decoupling between penetrant and Kuhn 

segment dynamics as quantified by the ratio of their alpha times, , as a function of  I�,p/I�,K ;g/;

in both the polymer melt (solid) and heavily crosslinked network (dash) for various 1D (a), 2D (b) 

and 3D (c) penetrant shapes, but now for the smaller penetrant size of   �eff/� = 0.55.

For smaller penetrant systems ( ) with negligible elastic barriers we find the �eff/� = 0.55

time ratio  has a very limited penetrant shape dependence (see Fig.14), consistent with I�,p/I�,K

Figs.9a-9c. Additionally, the decoupling time ratio results of the same penetrant shape in melts 

versus networks are nearly collapsed, in agreement with prior findings for spherical penetrants [28]. 

This collapsed behavior continues to hold for spherical models for the larger size penetrants 

studied here ( ), as shown in Fig.13a. However, it fails for the larger non-spherical �eff/� = 0.8

penetrants of high enough aspect ratios since their elastic barriers become very important. We 

expect that for large enough spherical penetrants where the elastic barrier is crucial, this collapsed 

behavior will not work as well, which we have confirmed (not shown for  cases).�eff/� > 1.1

We hope future experiments can test the above predictions in the deeply supercooled 

regime, especially the predicted strong decrease of the decoupling alpha timescale ratio.

B. Mechanistic aspects of decoupling: Evolution of  and  VK � VK,c W
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By dissecting the origin of the theoretical predictions for the activated relaxation times, we 

have determined the mechanistic origin of decoupling in SCCH theory as a consequence of the 

behavior of the penetrant jump distance , the facilitation displacement of Kuhn segments at the D�p

penetrant alpha time scale , the displacement difference of a Kuhn segment at its alpha time D�K,c

scale relative to that at the penetrant alpha time scale, , and the trajectory coupling �K � �K,c

parameter,  (see the definition of, and schematic for, these variables in Fig.4). These fundamental M

quantities underlie the physics of our alpha time ratio decoupling predictions and thus provide 

major insight, though they are difficult or impossible to directly measure. Given the latter fact, 

here we provide a compact summary of our analysis with all details documented in the SI. Readers 

not interested in these theoretical details can skip this subsection. For simplicity, we study these 

properties mainly by considering the 1D rod models.

As discussed above, the cross packing correlation quantity  increases as  
p9mp(�mp) 
p

grows, implying a more compact polymer packing around the penetrant leads to a decrease of the 

penetrant jump distance with , as documented in Fig.S5a for melts. In contrast to the behavior 
p

of , the Kuhn segment cooperative facilitation displacement at the penetrant alpha time,  D�p D�K,c

, increases with  (see Fig.S5b). The reason is that for a larger  or penetrant aspect ratio, the 
p 
p

multi-site penetrant can interact with more neighboring polymer monomers and hence is more 

coupled with their motion, which translates to a smaller value of the trajectory coupling constant 

 (a value of unity is a kind of “slaving limit” [25, 26]). It is the combined effects of penetrant shape M

on  and  that then leads to the increase of  with . Moreover, as a multi-site D�p M D�K,c = D�p	M 
p

penetrant interacts more with the surrounding polymer matrix, the influence of polymer matrix 

collective elasticity on penetrant hopping grows.
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As discussed previously [28], the displacement difference variable  reflects the D�K � D�K,c

magnitude of trajectory coupling between the penetrant and polymer. This quantity increases with 

inverse temperature (see Fig.15a), implying the degree of activated trajectory coupling decreases 

with cooling. This trend becomes less obvious as the penetrant aspect ratio grows.

Penetrants in crosslinked networks are predicted to move a larger distance before escaping 

their cage relative to in the analogous melt, and thus  in networks is higher than in melts (see D�p

Fig.S5a). Given  does not change much with degree of crosslinking at fixed temperature or  M ;g/;

(see Fig.15b and Figs.S7-S9), the Kuhn segment facilitation displacement  in D�K,c = D�p	M

networks is higher than in melts (Fig.S5b). Relative to the displacement at the penetrant alpha time 

scale , the Kuhn segment displacement at its alpha time scale, , is more significantly affected �K,c �K

by crosslinking (see Figs.S5b and S6b), resulting in a larger  for networks than in melts �K � �K,c

(see Fig.15a). This indicates the degree of trajectory coupling in networks is less than in melts for 

common values of  , consistent with our findings based on the decoupling time ratio . ;g/; I�,p/I�,K
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Fig.15. (a) The Kuhn segment displacement difference at its alpha time scale relative to that at the 

penetrant alpha time scale, , and (b) the self-consistently determined trajectory coupling �K � �K,c

parameter, , as a function of  in the polymer melt (solid) and heavily crosslinked network M ;g/;

(dash) for a wide range of 1D penetrant shapes and a penetrant size of .�eff/� = 0.8
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Example results for the trajectory coupling parameter  are shown in Fig.15b. Because of M

the coupled penetrant-matrix nature of activated in SCCH theory,  enters only via its effect on M

local cage barriers (see the SI and refs. [25-28]). Its evolution with temperature, crosslink density, 

penetrant shape, and temperature differ slightly from that of  or the alpha time ratio �K � �K,c I�,p/

. We find these behaviors are very similar for both penetrant sizes studied here, as confirmed I�,K

by comparing results in Figs.15b, S7, and S8. With decreasing temperature,  varies only slightly, M

suggesting the decoupling of the local cage dynamics of penetrant and polymer monomers is 

weakly dependent on temperature. However, interestingly, whether  increases, decreases, or M

remains constant with temperature does depend significantly on penetrant shape. Specifically,  M

increases as temperature decreases in the penetrant low aspect ratio regime and the increase of 

slope of the  versus  plot decreases with aspect ratio. On the other hand, as shown in Fig.15b, M ;g/;

increasing penetrant aspect ratio to a large enough value results in a variation of   with inverse M

temperature changing to a decaying behavior at high temperatures followed by a tendency to 

saturate at low temperatures. The physical reason is that as penetrant aspect ratio increases, the 

degree of trajectory coupling increases significantly, and eventually the penetrant dynamics is 

effectively dynamically slaved to its polymer neighbors leading to the quasi-plateau feature in 

Fig.15b in the deeply supercooled regime. These behaviors remain qualitatively the same when 

changing from polymer melts to networks, with only minor quantitative differences (see Fig.15b).

Finally, we note that our results for both  and  in Figs.15a and 15b imply that the �K � �K,c M

degree of decoupling decreases significantly as the penetrant  aspect ratio grows in melts and 

networks. However, a different temperature dependence is predicted due to the unimportance of 

collective elasticity in the self-consistent determination of , which provides further evidence that M
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the significant increase of decoupling with cooling of the alpha time ratios in the deeply 

supercooled regime is mainly originated from the effect of elasticity.

VI. Experimental Implications and Applications

A. Experimental and materials science significance

With the goal of stimulating new experimental and simulation tests of our theory, and 

potential exploitation in materials science applications, we briefly summarize key testable 

predictions based on our analysis of shaped penetrants in polymer melts and networks.

(i) Figures 5 to 8 predict significant shape effects at fixed molecular volume on the 

penetrant relaxation time over a wide range of temperatures and two crosslink densities (zero per 

melts, and very high per tight networks) in both absolute temperature and reduced inverse 

temperature  spaces. The penetrant alpha time (and inverse diffusivity) significantly increases ;g/;

with aspect ratio, particularly in the deeply supercooled regime. The shape effects in melts on 

penetrant dynamics is much weaker over the same temperature range in absolute temperature 

space, while the trend is opposite in  space over the same  range. The former trend is of ;g/; ;g/;

high practical relevance given applications such as membrane separations are generally pursued at 

a fixed temperature. Under this condition, a crosslinked network membrane can deliver a relatively 

larger selectivity between different shaped molecules of the same volume compared to a melt 

matrix. We note also that different solvation conditions can induce short flexible chain molecules 

(such as alkanes) to take on different conformations and statistical shapes. Hence, our results may 

be germane to how changes of penetrant shape at constant molecular volume affect the penetrant 

transport rate of such important molecules.
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(ii) Relative to larger sized penetrants, the shape effect on smaller size penetrants is much 

more limited, and their behavior is very similar in melts and networks. The reason is that for larger 

penetrants, both the elastic and local cage barriers are crucial and the shape effect on the penetrant 

elastic barrier is predicted to be much more pronounced, while for small penetrants only the 

relatively shape insensitive local cage barrier is important. Thus, the shape effect studied in both 

the weak and intermediate polymer supercooled regime is predicted to be not very important 

regardless of penetrant size, thereby suggesting membrane separation applications related to shape 

selectivity at fixed penetrant volume should be performed in the deeply supercooled regime. In a 

recent simulation work [19], ��	
�U et al. found evidence for an exponential law for the penetrant 

diffusion constant, , at the relatively high temperatures accessible in Op Q exp ( � YZ	$)

simulation and for small/medium sized penetrants of effective molecular diameter  (Stokes YZ

radius or radius of gyration) studied, where here  is a shape-dependent parameter using notation $

from ref.[19] (which is different and should be distinguished from  used above as the penetrant $

aspect ratio). This finding is in qualitative agreement with early SCCH theory studies [26] based 

on a spherical penetrant in a sphere matrix model. According to our more recent findings based on 

SCCH theory for dilute penetrants in explicitly polymer matrices[27, 29, 31], complementary 

computer simulations[31], and experiments on larger aromatic penetrants[29, 31], the penetrant 

diffusion constant follows such an exponential behavior when the penetrant has a relatively small 

or medium size and the system is not too deeply supercooled, in agreement with ��	
�U et al.[19]] 

However, for larger penetrants in cold matrices, a more power law like correlation appears [29, 31]. 

Taken together, these findings suggest that under the moderate supercooled conditions simulated 

and for not too large penetrants, elastic barriers play a minor role. We believe this is the reason for 

the predicted unimportance of shape effects at fixed molecular volume, and for our present finding 
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that shape effects at fixed molecular volume enter mainly via the collective elastic barriers. This 

deduction seems to be in accord with the finding by ��	
�U et al. that their parameter  varies $

weakly in their simulation data analysis[19].

(iii) A dimensionless length scale ratio, the “penetrant aspect ratio” variable $	� = (2"g +

, theoretically organizes quite well the numerically discovered trends related to the nature �s�	�

and magnitude of penetrant shape effects. We hope future experimental and simulation work can 

test this.

(iv) The alpha time decoupling ratio  can be measured. We predict it varies in a I�,p/I�,K

weakly non-monotonic manner with temperature, and is significantly size ratio and penetrant shape 

dependent. The microscopic displacement difference quantity, , is also important �K � �K,c

theoretically, but our predictions for it can likely only be tested in carefully designed simulations. 

B. Application to penetrant diffusion experiments  

Here we consider a testable prediction for how penetrant shape influences the magnitude 

and temperature dependence of the diffusion constant of specific penetrants in the crosslinked 

PnBA network studied experimentally previously [29].  Per our prior theoretical work on spherical 

penetrant dynamics in crosslinked networks [28, 30], and as discussed in section III-B above, we 

established that geometric entropic mesh confinement in crosslinked networks is a minor effect, 

and to leading order the penetrant diffusion constant is proportional to the inverse penetrant alpha 

time. Specifically, as found above in Fig.11, shape effects will not change the exponential relation 

between the penetrant alpha time and  , although the corresponding slope does change in Tg(Jn�	;

the deeply supercooled regime for larger size penetrants. Thus, we argue that the analysis of 

temperature dependence of inverse penetrant alpha time should be applicable both quantitatively 

and qualitatively to the penetrant diffusion constant. Indeed, prior experiments found in variable 
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crosslinked networks [29] an exponential relationship between the penetrant diffusion constant and 

 at fixed temperature, with systematic variation as a function of penetrant size and shape, ;g(Jn)/;

consistent with the predictions of SCCH theory.

Fig.16. (a) Log� linear plot of the experimental (EXPT) diffusion constants of dilute BTBP or 

TBRb in PnBA networks as a function of  over a wide range of crosslink fractions at  = ;g(Jn)/; ;

296.15 K (23[). (b) Theoretically predicted mean alpha time of dilute BTBP or TBRb in the 

PnBA networks as a function of  at  = 296.15K. For BTBP, we have considered two ;g(Jn)/; ;

shape models: (i) an effective sphere model of diameter [29]  with �eff = (65BTBP	6)1/3 = 1.12 nm

 the known experimental effective molecular volume of BTBP [58] and (ii) a 5BTBP = 0.736 nm3

four-site overlapped rod model as shown in the inset of (b) where the diameter of each site is �s

 and the distance between two neighbor sites is , which are calculated = 0.713 nm �s = 0.594 nm

based on the facts that  and the length ratio of long-axis to short-axis is ~3.5 5BTBP = 0.736 nm3

[58]. For TBRb, we also consider the spherical model with  and �eff = (65TBRb	6)1/3 =  1.14 nm

. Two non-spherical shape models are considered for TBRb as shown in the 5TBRb = 0.776 nm3

far-right panel of (b): (i) the six-site rectangle model with  and (ii) the �s = �eff/ 6 = 0.627 nm

seven-site hexagon-like (Hex7) model with .�s = �eff/ 7 = 0.596 nm

Fig.16a re-plots the experimental diffusion constant [29] as a function of  for ;g(Jn)/;

BTBP and TBRb in PnBA networks. Recall that these two penetrants have significantly different 

shapes but essentially identical molecular volumes. It is experimentally observed that both 

diffusion constants decrease exponentially with  with a nearly identical slope over the ;g(Jn)/;

range of  . Such behavior is consistent with our theory predictions in 0.76 < ;g(Jn)/; < 0.88

Fig.11 over the range   for both penetrant sizes (  and 0.8). 0.76 < ;g(Jn)/; < 0.88 �eff/� = 0.55
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To pursue a quantitative analysis, we evaluate the effective diameter of BTBP and TBRb 

based on their reported volumes [29] (see caption of Fig.12). We find the ratio  of BTBP and �eff	�

TBRb (diameters of 1.12 nm and 1.14nm, respectively) to the PnBA bare bead size (given in 

section IIIA, ) is 1.088 and 1.107, respectively, virtually identical. Employing these � = 1.03 nm

numbers in the spherical penetrant model in SCCH theory delivers nearly the same values of alpha 

time and diffusion constant for BTBP and TBRb. However, as shown in Fig.16a, the diffusion 

constant of TBRb is experimentally larger than that of BTBP by a modest factor of ~5, in contrast 

to treating these penetrants as spheres (see red and black data in Fig.16b). Hence, these 

measurements clearly show a non-negligible shape effect at fixed penetrant volume [29].

BTBP [58] is roughly rod-like with an aspect ratio (long-to-short length scales) of ~3.5. 

This motivates us to model it as a four overlapping site rod where the site bead diameter  is not �s

the same as the site-site bond length . As shown in the inset of Fig.16b, for this model one can �s

then calculate  (also identified as the short-axis length), the long-axis length as �s = 0.713 nm

2.495 nm, and the bond length as 0.594 nm based on an aspect ratio of 3.5 and . 5BTBP = 0.736 nm3

In contrast, TBRb has a planar-like shape and higher symmetry compared to BTBP. We have thus 

constructed two special model shapes for TBRb: a 6-site rectangle model and a 7-site hexagon-

like (Hex7) model (see schematic in the far-right panel of Fig.16b). For simplicity, for the rectangle 

and Hex7 models we use tangent sites with  and , respectively.�s = 0.627 nm 0.596 nm

Figure 16b presents the theoretical predictions of the alpha time for the three model 

penetrants (4-site overlapped BTBP, 6-site rectangle TBRb, and Hex7 TBRb) and also for the two 

spherical penetrant models of the same space filling volume; the temperature is fixed to the 

experimental value of 296.15K. One observes that for the two spherical models,  of TBRb I�,p/I0

is only slightly higher than that of BTBP because the molecular volume of TBRb is very close to, 
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but slightly larger than, the BTBP volume. When changing from the effective hard sphere 

description of BTBP to the 4-site overlapped rod model, an approximately 1 decade increase in I�,p

 is predicted, while within the experimental temperature range of  a /I0 0.76 < ;g(Jn)/; < 0.88

linear relationship between  and  still applies. However, in the deeply log (I�,p/I0) ;g(Jn)/;

supercooled regime this linear relationship, which is theoretically predicted and confirmed in the 

weakly supercooled regime, is theoretically predicted to fail when the significantly bent-upward 

behavior appears as seen in Fig.16b corresponding to a “non-Arrhenius” like growth. The reason 

for this upturn is that the effective diameter ratio of BTBP (and TBRb) to polymer site diameter 

(1.03 nm) is large enough that the elastic barrier is highly important in the deeply supercooled 

regime which enhances the slowing down of penetrant hopping. 

For TBRb, when changing from a hard sphere model description to the rectangle or Hex7 

model, the predicted  is increased by a factor of ~5-6. This modestly smaller factor than I�,p/I0

predicted for BTBP seems intuitive based on the theory given TBRb is a more compact planar or 

2D-like molecule versus the rod-like or more 1D-like nature of BTBP. In terms of our more refined 

models, the absolute value of  thus becomes smaller than that for the 4-site overlapped rod I�,p/I0

model of BTBP by a factor of ~2 in the window of  where the linear 0.76 < ;g(Jn)/; < 0.88

Arrhenius-like relationship remains valid and has the same slope as that of BTBP 4-sites rod 

model, as shown in Fig.16b. 

The above theoretical predictions are consistent with the experimental results in Fig.16a 

with regards to (a) the linearity of the log-linear plot, (b) the same slope, and (c) the alpha time 

(diffusion constant) of BTBP is higher (lower) than that of TBRb. However, the precise absolute 

value of the difference in diffusion constants is experimentally a factor of ~5-6 between TBRb and 

BTBP, while the difference in theoretical alpha times is a smaller factor of ~2. This difference may 
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be (at least partially) a consequence of the vagaries of how to model the non-spherical shapes of 

the two molecules within the class of coarse-grained models we have adopted. But overall, we find 

our results to be encouraging and consistent with experiment, and provide further support for the 

proposed zeroth order idea of significant self-averaging (at fixed molecular volume) importance 

of shape at fixed molecular volume for activated penetrant transport, but with non-negligible 

quantitative differences due to shape. 

Finally, we emphasize that in the deeply supercooled regime not yet probed 

experimentally, both the rectangle and Hex7 models for TBRb display an upwardly curved growth 

of their hopping or relaxation time, with   vs  roughly of a parabolic form. log (I�,p/I0) ;g(Jn)/;

This is an experimentally testable prediction, and is consistent with that of the 4-site rod model of 

BTBP due to the dominant role of penetrant elastic barriers in the deeply supercooled regime.

Considering the similarity within our theory of the temperature dependence of the penetrant 

diffusion constant and the inverse penetrant alpha time, one can combine the results in Fig.11 and 

Fig.16 to deduce qualitative scaling law forms as a function of . From Fig.11 for a small ;g(Jn�	;

and medium size penetrant, we find to leading order an exponential relationship between inverse 

diffusion constant or relaxation time and , per , ;g(Jn�	; log (1/Op)`�log (I�,p) = Y + a;g(Jn�	;

with the prefactor “ ” increasing with cooling and being shape-dependent. The shape-dependent a

trends are particularly important in the deeply supercooled regime for the larger size penetrant 

where the slope  changes dramatically with molecular shape. This is a predicted consequence of a

the importance of the collective elastic barrier for relatively large penetrants under cold conditions. 

For the  calculations in Fig.16, we note that the experimental penetrants are larger than both Op

sizes studied in Fig.11. Here we find a scaling law between  and  again of an Op ;g(Jn�	;

exponential form in the smaller  (i.e., more weakly supercooled) regime where the local ;g(Jn�	;
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cage barrier is dominant, . In contrast, in the more deeply log (1/Op)`�log (I�,p) = Y + a;g(Jn�	;

supercooled regime [larger ], we predict a roughly parabolic form  or ;g(Jn�	; log (1/Op)

, where the parameters , , and  are shape-log (I�,p) = Y + a;g(Jn�	; + b[;g(Jn�	;]2 Y a b

dependent (see Fig.16b, the difference in magnitude between purple star and green diamond 

symbols but with nearly the same slope).

VII. Summary and Discussion   

We have carried out a detailed statistical mechanical theory study (the first of its kind to 

the best of our knowledge) of how molecular shape influences the activated hopping driven 

relaxation and diffusion of dilute penetrants in polymer melts and crosslinked networks over a 

very wide range of temperatures and penetrant shapes. The key new methodological aspect is a 

general extension of the SCCH theory of penetrant activated hopping previously formulated for 

spherical penetrants to address the dynamic consequences of non-spherical penetrant shape on 

translational motion. As penetrant shape becomes less globular or compact (increasing aspect ratio 

or degree of asymmetry), its solvation packing by the dense polymer matrix changes and the 

penetrant can contact more surrounding monomers, which results in a rich behavior of penetrant 

relaxation time as a function of temperature, crosslink density, and penetrant shape.

The penetrant local cage barrier is predicted to vary in only a very limited manner with 

penetrant shape, while its collective elastic barrier increases significantly with penetrant shape 

asymmetry in the deeply supercooled regime. We believe this is a key insight in the search for how 

to successfully separate molecules of the same space filling volume but different shapes. For a 

relatively small size penetrant or at high enough temperatures, the penetrant local cage barrier is 

far larger than its corresponding essentially negligible elastic barrier, and penetrant shape effects 
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are very weak.  On the other hand, for a larger size penetrant at low temperatures, the penetrant 

hopping process has a strong shape dependence due to the importance of collective elasticity.  

We have compared the penetrant shape effects on temperature-dependent activated 

penetrant relaxation in polymer melts and crosslinked networks, and find opposite trends in the ;g/

 and  representations. In  space, the shape effect on the penetrant alpha time is ; 1000K/; ;g/;

stronger and its absolute value is higher in melts than that in the heavily crosslinked network over 

the same range of . However, in  space, the shape effect on the penetrant alpha time ;g/; 1000K/;

is weaker and its absolute value is smaller in melts than that in networks over the same temperature 

range, mainly due to slower polymer monomer relaxation under crosslinked network conditions.

Different microscopic variables were explored to describe the relaxation time decoupling 

and trajectory-level coupling between the activated dynamics of penetrants and polymer Kuhn 

segments. We find that penetrant shape does play a significant role in the deeply supercooled 

regime for these quantities for relatively large penetrants because of the importance of penetrant-

shape dependent elastic effects. The elastic barrier is also relevant to how penetrant shape affects 

the crosslinking dependence of the penetrant alpha time or diffusion constant. For example, in the 

weak or intermediate supercooled regime, the exponential relationship (including the slope) 

between penetrant diffusion constant and crosslink density remains unchanged with varying 

penetrant shape. However, in the deeply supercooled regime where collective elasticity becomes 

crucial, the exponential relationship between penetrant diffusion constant and crosslink density is 

significantly penetrant-shape dependent. Considering the importance of shape effects on penetrant 

dynamics, we also proposed a dimensionless “aspect ratio” variable  to $	� = (2"g + �s�	�

organize the penetrant dynamics behavior with shape, and showed that it works well.  
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Finally, there are several possible extensions of the present theoretical approach and 

modeling strategy. Given many non-spherical penetrants have a more open, non-globular structure 

compared to their spherical analog, introducing chemistry-specific penetrant-polymer attractive 

interactions (as done theoretically for spherical penetrants [27]) for non-spherical penetrants may 

provide a promising direction to improve selectivity. Another topic is the role of external stress 

[41], which decreases the elastic effects significantly while the local cage barrier is affected much 

less. Other possible directions include how to control the selectivity of non-spherical penetrants in 

dynamic bond forming vitrimers and associating polymer matrices [59-62], and whether dynamic 

heterogeneity [63-67] effects can modify penetrant shape effects on diffusion selectivity. Work is 

underway in these directions.
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