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Nonequilibrium structure formation in electrohydrody-
namic emulsions†

Jeremy I. Kach, Lynn M. Walker, and Aditya S. Khair∗

Application of an electric field across the interface of two fluids with low, but non-zero conductivities,
gives rise to a sustained electrohydrodynamic (EHD) fluid flow. In the presence of neighboring drops,
drops interact via the EHD flows of their neighbors, as well as through a dielectrophoretic (DEP)
force, a consequence of drops encountering disturbance electric fields around their neighbors. We
explore the collective dynamics of emulsions with drops undergoing EHD and DEP interactions.
The interplay between EHD and DEP results in a rich set of emergent behaviors. We simulate
the collective behavior of large numbers of drops; in two dimensions, where drops are confined
to a plane; and three dimensions. In monodisperse emulsions, drops in two dimensions cluster or
crystallize depending on the relative strengths of EHD and DEP, and form spaced clusters when EHD
and DEP balance. In three dimensions, chain formation observed under DEP alone is suppressed by
EHD, and lost entirely when EHD dominates. When a second population of drops are introduced,
such that the electrical conductivity, permittivity, or viscosity are different from the first population of
drops, the interaction between the drops becomes non-reciprocal, an apparent violation of Newton’s
Third Law. The breadth of consequences due to these non-reciprocal interactions are vast: we show
selected cases in two dimensions, where drops cluster into active dimers, trimers, and larger clusters
that continue to translate and rotate over long timescales; and three dimensions, where drops form
stratified chains, or combine into a single dynamic sheet.

1 Introduction
Soft matter systems exhibit fascinating collective dynamics as
their individual constituents are driven out of equilibrium via
an external forcing1–7. It is desirable to control such dynam-
ical behavior to enable stimuli-responsive, reconfigurable ma-
terials, with potential applications including drug delivery and
medicine8–10; separations for environmental remediation and
material extraction11–15; and microrobotics16. Active agents,
such as particles, drops, or micro-organisms, can move via a
number of physico-chemical mechanisms, such self-diffusio- and
self-electro-phoresis17–19, surface-driven flows20–23, and hydro-
dynamic locomotion24,25. Recent work has focused on active
drops that spontaneously move via Marangoni flows20,21. These
drops exhibit net motion with no external forces applied; rather,
the drops move due to interfacial stresses that drag the surround-
ing fluid. Such motions bear resemblance to those of microscopic
living systems, with characteristic interactive behaviors such as
predator-prey dynamics. As a result, active droplets are an attrac-
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tive synthetic model system for studying the collective behavior of
living organisms20, and the development of designer materials26.

The nonequilibrium motion of active drops requires the con-
sumption of a fuel source, which could be the solubilization of
the drop itself in a micellar surfactant solution, or a precursor in
a reaction that produces surfactant20,21. Observation of the in-
dividual and collective behavior of active drop systems can thus
be difficult at long timescales, due to finite limitations in the fuel
available27. Effort has also been made to design systems that un-
dergo collective motion via external energy input, such as with
electric and magnetic fields28–32, light33, or acoustics34. How-
ever, using external fields to drive force-free motion of drops, as
opposed to rigid particles, has received less attention. It is thus of
interest to examine drop-based systems that exhibit emergent col-
lective behavior under an externally applied field, which thereby
overcome the limitations of a finite fuel source, in order to pre-
dict dynamical structure formation order an extended duration.
Here, we introduce electrohydrodynamic (EHD) emulsions as a
new system to study collective dynamics in field-driven soft mat-
ter, where drop interactions are driven by application of an ex-
ternally applied electric field. The use of an external electric field
would, in principle, overcome the limitation of a finite fuel source
that occurs in other active drop systems.

Electrohydrodynamics was first analyzed by Taylor35,36, who
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demonstrated that an electric field applied across the interface of
two immiscible fluids with low, but non-zero, electrical conductiv-
ities, results in sustained fluid flow. We will refer to the velocity
field of this flow as an electrohydrodynamic (EHD) flow. While
the EHD flow around a single drop, which induces deformation
and potential breakup of the drop, is well understood37,38, the
interactions between drops due to EHD flows has, until recently,
received less focus. These interactions are rich because in ad-
dition to interaction due to EHD flow, a pair of drops will also
interact due to dielectrophoresis (DEP)39,40. The latter occurs
because of the disturbance of the ambient electric field cause by
the presence of the drops. That is, the total interaction between
drops is a combination of EHD and DEP41,42. Under DEP alone,
particles and drops arrange into chain-like structures, where the
electrostatic energy of interaction is minimized43. This effect is
of interest in: (i) electrorheology, where Brownian particles can
be toggled between a chained state, with increased resistance to
shear, and a homogeneous state44,45; and (ii) directed assembly,
where arrangement of particles at high concentrations gives rise
to a host of accessible crystal structures46,47. EHD flow compli-
cates the interactions of drops compared to DEP alone, introduc-
ing a hydrodynamic interaction that depends on the electrical and
fluid properties of the system, and influencing the pairwise dy-
namics of drops in tandem with DEP48. The hydrodynamic EHD
flow results in a longer-range interaction compared to the elec-
trostatic DEP, giving rise to a rich set of distance dependent be-
haviors for a drop pair. For a pair of identical drops, the interplay
between EHD and DEP results in parallel or perpendicular align-
ment of the pair relative to the field axis (compared to just parallel
for DEP only); attraction and repulsion parallel to the field axis
(compared to just attraction for DEP only); and a critical separa-
tion distance at which EHD and DEP balance and the drop pair
ceases to attract or repel. Surfactant at the drop interface weak-
ens the EHD interaction due to an opposing Marangoni flow49.
When a pair of drops are dissimilar in either electrical conductiv-
ity, permittivity, or viscosity, the EHD interaction between them
ceases to be “equal and opposite"50,51, an apparent breaking of
Newton’s third law52,53. Pairs of dissimilar drops interacting via
EHD can exhibit predator-prey interactions, and the emergence of
“swimming" drop pairs has been predicted. These non-reciprocal
interactions arise due to non-conservative nature of the hydrody-
namic interaction due to the EHD flows around each drop. For a
pair of dissimilar translating drops, labeled A and B for this ex-
ample, this manifests as the velocities UUUA ̸= −UUUB (in constrast,
for identical drops interacting under EHD and DEP, UUUA = −UUUB)
and the center of mass of the pair need not be constant in time.
Out of equilibrium, non-reciprocal interactions are have been ob-
served in active droplet systems54, as well as in broader contexts,
such as in neural networks55 and social dynamics56. In EHD
emulsions, the emergence of non-reciprocal interactions offer a
promising alternative to fuel-limited active drop systems27, and
thus it is of interest to analyze the collective dynamics in EHD
emulsions, which is the central goal of the present work. Notably,
the works mentioned above focused on the combined EHD and
DEP interactions between a pair of drops, with some extension to
three and four drops50. We present dynamic simulations of large

numbers of drops interaction via EHD and DEP, and characterize
the collective behavior observed due to the richness of the interac-
tions described above. In section 2, we introduce and describe the
interactions between drops due to an externally applied electric
field, and walk through the methodology of our simulations. In
section 3, we present results for the simulation of emulsions that
are monodisperse in material properties in both two and three
dimensions, and discuss the effect of material property choices
on the bulk structures observed. In section 4, we move to emul-
sions that are bidisperse in material properties, again in both two
and three dimensions, and show the effect of non-reciprocal in-
teractions and how they can be leveraged to observe a variety
of collective dynamics. In section 5, we offer some concluding
remarks.

2 Dynamical simulation of EHD emulsions

2.1 Field-driven interactions of drops

We consider an emulsion of N spherical drops of radius ai, elec-
trical conductivity σi, permittivity εi, and viscosity µi, suspended
in a surrounding fluid with properties σs, εs, and µs, under ac-
tion of an external uniform electric field EEE = EÊEE, where E is the
magnitude of the applied field and ÊEE is the direction. We allow
the possibility that drops can be dissimilar in material properties ,
such that in some cases σi ̸= σ j, εi ̸= ε j, and µi ̸= µ j. In this work,
all drops are assumed to be identical in size, such that ai = a j = a.
We assume that the conductivities of the drop and suspending
phases are small but nonzero35,37, and that surface charge con-
vection and relaxation can be neglected. We assume creeping
flow, a steady electric field, that the drops maintain a spheri-
cal shape, and that drops do not coalesce. Our previous work
has shown that predictions for the interaction of two, three, and
four drops based on these assumptions are in qualitative agree-
ment with experiments50. Via the Melcher-Taylor leaky dielectric
model36, drops with electrical properties distinct from the bulk
fluid exhibit a flow tangential at the drop interface with velocity
field

uuui(r = 1,θ) =
βi

2
sin(2θ)θ̂θθ . (1)

Equation (1) is akin to the surface velocity of the squirmer
model for a micro-organism that stirs the surrounding fluid with-
out undergoing locomotion57, where θ is the polar angle be-
tween the position vector and the electric field axis, such that
θ = arccos(r̂rr · ÊEE). Equation (1) is dimensionless, with lengths nor-
malized by the drop radius, a, and the velocity normalized by
εsE2a/µs, which arises from balancing the Maxwell and viscous
stresses at the drop interface. For a dielectric constant of εs = 2,
an electric field strength of E = 1 kV/cm, a drop size of a = 1
mm, and a viscosity of µs = 0.1 Pa · s, all reasonable values for an
electric field applied across oils, this would give a characteristic
velocity of U = 1.8 mm/s., which is comparable to that of drops
of similar size propelled by Marangoni stresses20. These normal-
izations will be applied throughout the remainder of the paper.
The relative strength of the EHD flow produced by any one drop
depends on the dimensionless material property ratios Ri = σi/σs,
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Fig. 1 Schematic of pair of drops. The vector ddd = dd̂dd points along the
line of centers of the drop pair, and the vector ΘΘΘ = ΘΘ̂ΘΘ is orthogonal to
ddd and denotes the angle between ddd and the applied field EEE, such that
Θ = arccos ÊEE · d̂dd.

Si = εi/εs, and Mi = µi/µs, such that

βi =
9
5

Ri(1−RiSi)

(1+2Ri)2(1+Mi)
. (2)

The interfacial velocity described by equation (1) propagates a
stresslet flow in the bulk fluid58,59, the direction of which is de-
termined by the sign of β . Here, β > 0 describes a flow from the
equator to the poles, and β < 0 describes a flow from the poles to
the equator, which are analogous to that of a pusher and puller,
respectively, in the squirmer model. A second drop, denoted j,
placed in the vicinity of drop i, then translates with the velocity

UUUEHD
j (d,Θ) = βi

[( 1
d2 − 2(1+3M j)

2+3M j

1
d4

)
P2(cosΘ)d̂dd

− 1+3M j

2+3M j

1
d4 sin(2Θ)Θ̂ΘΘ

]
+O(d−5), (3)

where the superscript UEHD indicates the EHD contribution to
the interaction velocity, P2(cosΘ) = 1

2 (3cos2 Θ− 1) is the second
Legendre polynomial; ddd = rrr j − rrri = dd̂dd is the vector connecting
the centers of drops i and j; Θ = arccos(d̂dd · ÊEE) is the angle made
between ddd and the applied field direction; and Θ̂ΘΘ is the direction
perpendicular to ddd; as shown in figure 1. A derivation of equation
(3) can be found in48,50. It can be seen from equation (3) that the
interactions between drops i and j are not reciprocal (UUU i ̸=−UUU j)
when drops i and j have different material properties. The first
term in equation (3) acts to repel or attract the drops along the
line connecting their centers, and depends both on the separation
distance between the drop centroids and the orientation of the
pair relative to the electric field direction. This component of the
interaction decays the slowest with separation, given the leading
order d−2 dependence. The second Legendre polynomial in this
term changes sign at the critical, or magic, angle Θ = 54.7◦, at
which orientation the drop pair will neither attract nor repel. The
second term acts to reorient the drop pair parallel or perpendicu-

lar to the applied field. The reorientation of the drop pair occurs
over a shorter range than the attraction/repulsion, as seen by the
d−4 dependence. The angular dependence of this term has zeros
at both Θ = 0◦ and Θ = 90◦, requiring that the drop pair aligns
parallel or perpendicular to the field at long times, depending on
the sign of βi.

In addition to EHD flows, each drop disturbs the ambient elec-
tric field around itself, which we assume to be spatially uniform
and steady in the absence of the particles. This gives rise to a
DEP force acting upon the neighboring drops, and vice versa. The
velocity of interaction of a drop j due to its DEP interaction with
drop i is43,48,50

UUUDEP
j (d,Θ) =−12(1+M j)

2+3M j
Ki j

1
d4

(
P2(cosΘ)d̂dd

+
1
2

sin(2Θ)Θ̂ΘΘ
)
+O(d−5), (4)

where Ki j contains the polarizability of each particle, and is de-
fined as

Ki j =
1−Ri

1+2Ri

1−R j

1+2R j
. (5)

The DEP force acting on a pair of drops is reciprocal, i.e. UUU i =

−UUU j and the center of mass of the drop pair remains stationary
(note Ki j =K ji), as it depends equally on the polarizability of each
particle. As shown in equation (4), DEP is a shorter-range interac-
tion (O(d−4)) compared to EHD (O(d−2)), however the angular
dependence for both attraction/repulsion and pair reorientation
are similar. In this case, the direction of attraction/repulsion, and
alignment parallel or perpendicular to the field direction, depend
on the sign of Ki j. When Ki j is positive, drops tend to align and at-
tract along the field direction, leading to the formation of chains.

The interactions described in equations (3) and (4) together
describe the total motion of a drop interacting with its neighbor
under a uniform applied electric field, and can be written as

UUU j(d,Θ) =

(
βi

1
d2 −Φi j

1
d4

)
P2(cosΘ)d̂dd

− Φi j

2
1
d4 sin(2Θ)Θ̂ΘΘ+O(d−5), (6)

where the factor Φi j contains the combined higher-order effects
of EHD and DEP, and is defined as

Φi j =
2(1+3M j)

2+3M j

(
βi +

6(1+M j)

1+3M
Ki j

)
. (7)

The drop motion described by equation (6) has been discussed in
detail for pairs of identical drops48 and dissimilar drops50,51.

EHD drives the long-range interaction, while the short-range
interaction depends on the combined influence of both EHD and
DEP. The relative velocity of a drop pair, UUU j −UUU i, depends closely
on the relative position of the drops, while the orientation of the
pair at long times, i.e. whether the pair aligns parallel or perpen-
dicular to the field direction, is governed by Φi j, which depends
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purely on the material properties of the drops and suspending
phase, as shown in equation (7). Experiments in50 demonstrated
that equation (6) accurately predicts the interactions of widely
separated drops, qualitatively predicts the interactions of drops
pairs even at close separations, and pairwise addition of equation
(6) qualitatively captures the dynamics of groups of three and
four drops.

2.2 Simulation of N drops

The three-dimensional interactions of many drops under a uni-
form, steady applied field are simulated using HOOMD-Blue60.
We study the dynamics of a dilute emulsion of N = 1000 spherical
drops at an area fraction of φA ≈ 0.05 when simulating interac-
tions in two dimensions, and a volume fraction of φ ≈ 0.005 when
in three dimensions. All computations are performed in three di-
mensions, with two-dimensional motions of drops simulated by
confining drops to the plane perpendicular to the applied field,
thereby resulting in drop translations only occurring within the
confining plane. Drops are contained within a square box with di-
mension L = 250, or a cubic box with dimension L = 96. Periodic
boundary conditions are employed. Drop motions are governed
by the overdamped equation of motion

dxxx j

dt
=UUU j +∑

i̸= j

1
γ j

∇φi j, j = 1,2, ...N, (8)

where φi j is an arbitrary interaction potential between drops, and
γ j = (1+M j)/(2(2+3M j)) is the Stokes drag coefficient for a drop.
The velocity of each drop is determined as the sum of all pairwise
interactions with the neighboring drops

UUU j =
N

∑
i̸= j

UUU i j(di j,Θi j). (9)

The coordinates di j and Θi j are determined using the minimum
image convention. By employing the minimum image conven-
tion, we are limiting this study to finite systems of drops, unlike
fully periodic simulations with methods such as Ewald summa-
tion61. This, however, is a reasonable treatment in our case due
to the low volume fraction studied and our focus on short-range
structure formation62,63. Given the O(d−5) error of equation (6),
which is of the same order as the leading three-body interac-
tions59, determination of the drop motions via pairwise addition
is a reasonable assumption for dilute systems.

Drop positions are computed by numerically integrating equa-
tion (8) with a forward Euler scheme. Time is scaled by τ =

µs/εsE2, and the timestep used is ∆t = 0.005τ. Drops are pre-
vented from overlapping via the interaction potential

φi j =
γ j

4∆t
(2−di j)

2H(2−di j), (10)

where H(x) is the Heaviside step function. This is effectively
an implementation of the potential-free Heyes-Melrose algo-
rithm64,65, wherein overlapping drops are equally moved to exact
contact. Due to the deterministic and anisotropic nature of the
interactions, the initial position has a non-negligible influence on
later states of the simulation. To mitigate the influence of a given

initial state on the observed emulsion behavior, we simulate five
different initial states for each set of material properties, and any
quantitative metrics shown are taken from averages of the five
runs.

3 Monodisperse emulsions
We first simulate the effect of EHD flow on structure formation
in monodisperse suspensions of drops. Here, all interactions are
reciprocal, such that the center of mass of a pair does not move
in the absence of other drops. The way in which EHD flow affects
the dynamics of the emulsion can occur via several mechanisms.
The direction and strength of the EHD flow depends on the pa-
rameter β ∝ 1−RS. The limit β → 0 corresponds to purely DEP in-
teractions, where chain formation occurs. When β > 0 (< 0), the
EHD flow acts to orient drops parallel (perpendicular) to the field
axis and repel (attract) in the field direction. Therefore, the EHD
flow will always compete with chain formation from DEP in one
way or another: repelling drops parallel to field axis but aligning
them, or attracting them in the field direction while aligning them
in the plane normal to the field. This indicates that both the rela-
tive signs and magnitudes of β and Φ control emulsion dynamics.
We discuss first the effect of EHD flow on the interactions of drops
confined to the plane perpendicular to the applied field axis, and
then move to monodisperse emulsions in three dimensions.

3.1 Two-dimensional interactions of drops perpendicular to
the field

The confinement of drops to a plane perpendicular to the appied
field axis removes a degree of freedom from equation (6); in this
case, the dependence of the interaction velocity on Θ. When the
field axis is perpendicular to the line connecting the centroids
of the drops (Θ = 90◦), the interactions between drops become
isotropic, and equation (6) is reduced to

UUU j(d) =−1
2

(
βi

1
d2 −Φi j

1
d4

)
d̂dd +O(d−5). (11)

Now, drops repel (attract) in the far-field when β < 0 (β > 0), and
repel (attract) in the near-field when Φ > 0 (Φ < 0). Intuitively,
when attractive interactions dominate at all separation distances,
drops will coarsen into clusters, shown in figure 2b. It is expected
that the clusters observed in figure 2b will, at long timescales, co-
alesce into a single cluster, however coarsening beyond τ = 5000
was not investigated due to long simulation times. In this case,
R = 1 and S = 0.1, such that only the EHD interaction is active,
and DEP is not. Inversely, when repulsive interactions dominate
at all separation distances, drops will repel and maximize their
separations, shown in figure 2c, forming crystal-like configura-
tions where the inter-particle spacing depends on the relative size
of the drops and the simulation box, here for EHD interactions
where R = 1 and S = 10. When both EHD and DEP are active,
the distance dependent interplay between the two effects will re-
sult in structure formation that lies between the two cases shown
above. Here, we show an interesting case where the interactions
in the plane perpendicular to the field are attractive at long-range
and repulsive at short-range, resulting in a stable equilibrium sep-
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a) b) c)

Fig. 2 Simulations of monodisperse EHD emulsion drops confined to the plane perpendicular to the field axis. a) The initial state (τ = 0) of the
simulations shown in b) and c). b) Snapshot at final timestep τ = 5000 for drops with R = 1, S = 0.1, M = 1. c) Snapshot at final timestep τ = 5000
for drops with R = 1, S = 10, M = 1.

aration distance of drop pairs that is larger than the separation re-
quired for contact but much smaller than the size of the box. This
equilibrium position is the separation distance where the leading
order EHD flow is balanced by the higher order flow and DEP
force, i.e. the critical separation distance,

dc =

√
Φi j +Φ ji

βi +β j
, (12)

which can be derived by solving for the separation distance at
which the relative velocity UUU i +UUU j = 048. In figure 3 we show a
simulation of drops with R = 0.1, S = 1, and M = 1, having started
at the same initial position shown in figure 2a. These material
properties result in a critical separation distance of dc ≈ 7. In
figure 3a, which is the final frame of the simulation (τ = 5000),
drops are observed to form static clusters, where the drops in
clusters are not in contact, yet are at a stable separation from
neighboring drops. We can compare the critical separation of a
pair of drops (dc ≈ 7) to the average separation distance between
drops in clusters, determined by the pair correlation function

g(r) =V
N −1

N
⟨δ (r)⟩, (13)

where V is the volume or area of the box, depending on the di-
mension, N is the total number of particles, and ⟨δ (r)⟩ is a delta
function indicating the presence of drops at a distance r from the
center of a neighboring drop, averaged over all drops. Here, we
discretize this delta function into bins of 50. Shown in figure 3b,
a peak is observed near r ≈ 6, which is smaller than the predicted
critical separation distance for a pair of drops in the absence of
any other drops. The decrease in stable separation of drops here
can be explained by the influence of the N −2 drops surrounding
the pair, which exert a long-range attractive interaction at separa-
tions of dc > 7. Therefore, while the distance that EHD and DEP
balance is approximately 7 for a pair, the added long-range at-
traction increases the weight of EHD interactions on the balance
between effects, effectively reducing the stable drop separation
for large numbers of drops. As shown, EHD interactions between
drops can give rise to interesting structure formation, tunable by
material property choice, when drops are confined to a plane,
suggesting that a rich set of collective behaviors for monodisperse

systems in three dimensions is possible.

3.2 Drops in three dimensions

In three dimensions, the interactions of drops are substantially
more complex. When only DEP interactions are present, drops
are known to form chains parallel to the applied field axis66.
Here, Φ > 0, such that drop pairs orient to align parallel to the
field direction (Θ = 0), and attract each other at orientations of
Θ < 54.7◦ and repel when Θ > 54.7◦. This chain formation is
a phenomenon of interest in electro- and magnetorheology, as
well as directed assembly, where imposition of a external field
across a suspension polarizes drops and gives rise to oriented
structures44,67. Given that DEP interactions are purely electro-
static, a minimum energy configuration exists for a collection of
spheres in a uniform applied field, similar to magnetically po-
larizable particles47. However, the microstructural arrangement
of drops into chains is considered a kinetic process, due to the
short-range interactions and the existence of kinetically arrested
states over long processing times68. Introducing longer-range,
and non-conservative, EHD interactions is expected to impact the
kinetics of chain formation and growth, and the addition of hy-
drodynamic interactions means a minimum energy configuration
is no longer available. An example of this for relatively weak EHD
flow compared to DEP (β < Φ) is shown in figure 4. Figures 4a-c
(Videos S1, S2, S3, ESI†) show side views of three-dimensional
snapshots at the last time step of the simulations (τ ≈ 7×105∆t).
The relative strength of the EHD flow is tuned between cases by
varying the parameter S, with R = 0.2 and M = 1 held constant.
In figure 4a, S = 4.9, β = 0.001, and Φ = 0.87, and drops interact
purely by DEP with negligible influence of EHD. Chain formation
is observed, as expected. When S = 0.1, β = 0.05 and Φ = 0.95,
and the EHD flow acts to align yet repel drops along the field
direction. This motion acts to oppose DEP, especially at large
separation distances where the O(d−2) EHD flow dominates the
O(d−4) DEP, resulting in the slowing of chain formation. This is
exemplified in figure 4b, where the presence of chains is less vis-
ible, and drop positions appear more or less still random at late
simulation times. The effect is reversed, however, at S = 16. Here,
β = −0.11 and Φ = 0.69, and the EHD flow is both opposite that
of the previous case and stronger. The long-range EHD flow then
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a) b)

Fig. 3 Simulation for R = 0.1, S = 1, M = 1 for drops confined to a plane, with the applied electric field pointing out of the page and normal to the
plane where the drops reside. a) Snapshot of the simulation at the final timestep τ = 5000. b) Radial distribution function g(r) averaged over five
simulations at the final timestep τ = 5000. Error bars indicate standard deviation of g(r) at each bin. A large peak is observed at r ≈ 6, and a softer
peak observed at r ≈ 11. Vertical dotted line corresponds to dc ≈ 7 for a pair of drops.

a) b) c) d)

Fig. 4 Simulations for R = 0.2 and M = 1 with varying S. a) Snapshot of chains at τ f inal for DEP alone when S = 4.9 (Video S1, ESI†). b) Snapshot of
chains at τ f inal for combined DEP and EHD when S = 0.1 (Video S2, ESI†). c) Snapshot of chains at τ f inal for combined DEP and EHD when S = 16
(Video S3, ESI†). d) Mean squared displacement of drops at early times in a), b), and c). In all cases drops are shown to undergo ballistic motion,
demonstrated by the square exponent of the displacement for each set of material properties.

acts to pull in far away drops along the field axis, where they then
align by the shorter-range orientation effect of Φ. This results in
longer chains on average, and increased depletion of drops not
involved in chaining compared to DEP alone, shown in figure 4c.
The effect of the EHD flow on the motion of the drops is shown in
figure 4d using the mean squared displacement (MSD). The MSD
is calculated as69

⟨|xxx(t + τ)− xxx(t)|2⟩=

1
N

N

∑
i=1

1
N∆t −m

N∆t−m−1

∑
k=0

(xxxi(k+m)− xxxi(k))2, (14)

where N∆t is the number of time steps. We limit evaluation of
the MSD to the first quarter of the simulation, i.e. τ ≤ 1250, in
the above three cases, where we assume drops move steadily to-
ward forming chains yet meaningful chain growth and depletion
of chain-forming drops has not started. Here, the motion of drops
undergoing chain formation and growth is expected to be a ballis-
tic process70. In cases a) S = 0.1 and b) S = 4.9, the displacements
are similar, yet the collective dynamics of the drops are markedly
different. It is likely then that while short-range chain formation
is mitigated by the competition between EHD and DEP for S = 0.1,
the increased long-range presence of the EHD flow induces more

motion of drops far away, making up for the slowdown in local
displacement. The impact of a strengthened EHD flow on the dis-
placement of drops is more prominent for c) S = 16. The motion
of drops in all cases as they approach chain formation is ballistic,
indicated by the square exponent in displacement; however, when
S = 16 the long-range EHD interaction has a larger influence on
drops more widely separated, increasing the total motion of the
drops and therefore their net mobility, shown by the upward shift
in figure 4d.

Further increasing S results in an increase in the strength of
the EHD flow. This corresponds to an increase in |β | with β < 0.
While this gives rise to an increase in attractive interactions in
the field direction, fewer chains are observed as S increases. An
example of this is shown in figure 5. Interestingly, the drops col-
lapse along the field direction into a wavy, sheet-like structure
that persists in time, shown in figure 5a (Video S4, ESI†) and b.
The location on the vertical axis of the wave-sheet vary with the
initial state, however the existence of the sheet occurs in all cases.
The structural characteristics of the wave-sheet here bear resem-
blance to the banding observed in electrokinetic suspensions of
particles in AC fields71, where particles in the bands dynamically
rearrange without changing the structure of the bands, and there
are visible kinks in the bands with angles of inclination between
50−70◦. We indicate the magic angle of Θ = 54.7◦ in figure 5 for
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a) b) c)

Fig. 5 Simulation for R = 0.2, S = 150, M = 1. a) Three-dimensional view of τ f inal , where drops are configured into a single, wavy, sheet-like structure
(Video S4, ESI†). b) Side view of τ f inal , with the electric field pointing in the vertical direction. Here one of the coordinate axes planes parallel to the
field is shown, however drop interactions are symmetric in the plane perpendicular to the field, such that similar structure is observed upon rotation of
snapshot about the field-axis. c) Top view of τ f inal , with the electric field pointing out of the page. Dynamic clusters are observed, with drops moving
within zones of higher density, yet with the macroscopic density distribution holding constant in time.

comparison. Within the wave-sheet, two “phases" coexist, with
regions of high and low local drop density, respectively. Drops
are not confined to these zones, however, with the drops con-
stantly moving throughout the course of the simulation. At short
times, decreasing β results in quickened chain formation, with
eventual collapse of the chains into the structures shown in figure
5. However, as β further decreases, chain formation is eventually
skipped entirely, and wave-sheet formation occurs immediately.
The effect of the interplay between EHD and DEP on chain for-
mation is determined more clearly by comparing the fraction of
drops that are in chain-like configurations with at least one other
drop, shown in figure 6. Drops are considered part of a chain if
they are in contact with another drop (d ≤ 2.05), and the pair is
oriented in the field direction (d̂dd · ÊEE ≥ 0.95). The fraction of drops
in chains at a given timestep are then averaged over five initial
states for the same material properties. This gives a clear sense
of how quickly drops join chains and the stability of chains over
time. The cases shown in figure 4, of a) S = 0.1, b) S = 4.9, and c)
S= 16, all exhibit monotonic growth in the populations of chained
drops, with the slight exception of S = 16, where the fraction of
chained drops plateaus and fluctuates about a maximum value of
around 0.6. These results match the intuition from discussing fig-
ure 4, where the addition of an EHD flow that repels neighboring
drops in the field direction inhibits chaining, compared to DEP
alone when S = 4.9. This further evidences the long-range effect
of the EHD flow, given the decrease in chain formation kinetics,
yet comparable overall displacements between S = 0.1 and S = 4.9
observed in figure 4d. For S = 16, when EHD is strengthened, but
now with an attractive flow in the field direction, drops quickly ar-
range in chains compared to DEP alone. In this case, initial chain
formation is relatively fast, and then levels off as chains no longer
take in new drops, but move relative to each other. This behavior
hints toward the collapse of drops into the wave-sheets observed
at higher S and more negative β . As seen in figure 6a, when S= 38
(β = −0.34), initial arrangement of drops into chains is fast, un-
til chains are destroyed and drops collapse into the wave-sheet
structures observed in figure 5. It is notable here that the leading

order EHD flow is in the same direction as DEP, however EHD and
DEP compete to orient drop pairs relative to the field direction,
which is quantified by equation (7). Via equation (5), the DEP
contribution to Φ is always positive for identical drops, while β

can change sign and decreases linearly with increasing S. Thus, as
β decreases, the overall attraction of drops in the field direction
strengthens, yet the orientational change of the drop pair contin-
ues to decrease, given that Φ is linear in S. We expect this to
contribute to the nonmonotonic chaining observed for moderate
values of S, where the initial chaining is due to local alignment
of drops to their nearest neighbors, at an increased rate due to
the EHD flow. However, as chains continue to form, the strong
attraction in the field direction continues to pull drops together,
causing the chains to coalesce and collapse onto each other. Thus,
the monodisperse emulsions exemplify two effects: i) that EHD
flow, for β < 0, drives drops into wave-sheet structures due to
long-range attraction in the field direction; and ii) that the inter-
play between EHD and DEP, given by the sign and magnitude of
Φ, determines whether accelerated chain formation occurs, even
at increasingly negative β , before structural collapse. We param-
eterize this interplay by comparing the relative magnitudes of β

and Φ as

Γ =
|β |− |Φ|
|β |+ |Φ| , (15)

plotted against S in figure 6b. Chain formation that appears stable
over long times occurs when |β | ≪ |Φ|, which corresponds to the
limit of Γ →−1. Note that β > 0 is constrained by the numerator
1−RS, and scales similarly with R as K in equation (5). Therefore,
for positive β , |β | ≪ Φ always, and EHD will inhibit chain forma-
tion but never fully overcome it. As β becomes more negative,
we see an increased rate of chain formation, with clear qualita-
tive differences in the chain-like structures observed, and collapse
of the chains toward a plane normal to the field axis. The case of
S= 38 corresponds to |β | ≈ |Φ|, corresponding to Γ≈ 0, with β < 0
and Φ > 0, where now the collapse of chains towards a common
plane also results in the destruction of chains and formation of a
wave-sheet structure. This continues to occur as Φ→ 0 and Γ→ 1,
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a) b)

Fig. 6 Effect of EHD versus DEP interactions on the proclivity for drops to form chains. a) Fraction of drops in chains versus simulation time, with
each curve corresponding to the number of drops in chains at each time step, averaged across five runs with varying initial states. b) Comparison
of the leading order radial EHD flow strength (given by β) to the rotational interaction strength (a combination of EHD and DEP given by Φ) as a
function of in the permittivity ratio, S.

albeit with drastically reduced chain formation to start with. As β

decreases further, drop pairs avoid alignment with the field direc-
tion entirely when Φ < 0 and Γ ≈ 0, the interactions of which are
analogous to those described by Park & Saintillan72 for particles
interacting via a combination of induced-charge electroosmosis
(ICEO) and DEP. Note that Φ varies linearly with β , and thus
large values of |β | require Γ → 0. They also do not observe chain
formation, as ICEO acts in a similar manner as EHD flow when
β ≪ 0, however instead of a dynamic wave-sheet structure, their
simulations show more homogeneous chaotic motion of particles
in three dimensions. We attribute this discrepancy to their use of
a fully periodic Ewald summation of particle interactions versus
our minimum image convention, which is again supported by the
formation of dynamic band structures similar to the wave-sheet
we observe in monolayer experiments in a finite domain of par-
ticles interacting under ICEO71. The effect of R, S, and M on Γ

is shown in a phase map in figure 7. Figure 7 shows that the
behaviors described by figure 6 occur for a variety of values of
R and S for equiviscous drops, meaning that variable chain for-
mation and wave-sheet observation is possible for more material
property ratios than just those considered in the present work.

It is clear from the results above that for monodisperse emul-
sions, the material properties of drops and the suspending fluid
are levers with which to tune the nonequilibrium structures of
EHD emulsions. Specifically, by varying the relative permittivi-
ties (S) and conductivities (R), the chaining commonly observed
in field driven suspensions can be either inhibited, enhanced, or
destroyed entirely.

4 Bidisperse emulsions
Recent work has demonstrated that two dissimilar drops may un-
dergo non-reciprocal EHD interactions27, via theoretical calcula-
tions50 and boundary integral simulations51. While pairwise DEP
interactions are always reciprocal, since the polarization of each
drop contributes equally to the relative motion of the pair, hy-
drodynamic interactions due to the EHD flow depend only on the
properties of the drop instigating the flow. As a result, the center
of mass of the drop pair can move in time, and the pair can un-

dergo tandem locomotion in certain cases, i.e. here it is as if the
pair “swims" as a single entity. The dynamics of bidisperse EHD
emulsions now cannot be described by a single set of two param-
eters β and Φ. We use “bidisperse" here to refer to dispersity in
the material properties of the drops, a convention we employ for
the remainder of the text. Instead, the interactions are governed
by six distinct property specific parameters βi, β j, Φii, Φ j j, Φi j,
and Φ ji, given by equations (2) and (7). A couple of cases in
two and three dimensions are examined to exemplify the impact
of non-reciprocal interactions on the dynamics and structure of
EHD emulsions.

4.1 Two-dimensional interactions of drops perpendicular to
the field

Given the complexity of non-reciprocal interactions between
drops just discussed, a simpler view of the effect of non-
reciprocity can be explored with only isotropic interactions in two
dimensions. Here, interactions are purely attractive or repulsive,
in similar fashion to simulations of chemiphoretic interactions
of particles, of which pairs can have variable mobilities (attrac-
tive/repulsive) depending on their relative properties62,63. The
crucial difference here is that the distance-dependent interplay
between EHD and DEP is expected to factor into the bulk behav-
ior of the emulsions. The direction and strength of these attractive
and repulsive interactions are determined by the combination of
the six β and Φ parameters mentioned at the beginning of the
section. Due to the material property dependence of β and Φ,
not all combinations of attraction and repulsion are possible. A
tiling of some expected simple cases is shown in figure 8. It is
worth noting that figure 8 does not represent the full phase map
of all types of non-reciprocal interactions, due to the fact that
the distance dependence of EHD versus DEP gives rise to a large
set of unexpected behaviors that are difficult to predict a priori.
We can develop an intuition, however, for how more complicated
dynamics will manifest by discussing the simplest cases, shown
in figure 8. In figure 8a, the interactions between A-type drops,
B-type drops, and A-B drops are all attractive. Here, the net inter-
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Fig. 7 Map of Γ for all values of R and S, with M = 1. Colors correspond to the magnitude of Γ, with bright yellow when Γ = 1 and dark blue when
Γ =−1.

action between A and B drops is attractive, but it is possible that
the EHD flow from A drops may push away B drops, but B drops
pull in A drops more strongly, for instance. The intuition, re-
gardless, is that composite clusters are formed consisting of both
types of drops. The opposite case is shown in the figure 8b. Here,
the net interactions between all species are repulsive, and drops
are expected to repel neighbors into nearly regularly spaced crys-
tal structures. When A drops repel, B drops attract, and A and
B drops repel, phase separation is expected, shown in figure 8c.
This occurs when βA > 0, βB < 0, and ΦAB +ΦBA > 0. An alter-
nate case, where both A’s and B’s cluster without mixing is not
possible, since this would require the following conflicting condi-
tions: (i) the EHD flows of both A and B drops are both attractive
(βA,βB < 0), and stronger than DEP interactions (ΦAA,ΦBB < 0),
and (ii) the DEP interactions of the dissimilar pair are repulsive
and stronger than the EHD interactions ΦAB+ΦBA > |βA+βB|> 0,
of which both cannot be simultaneously satisfied. The last case
presented is when both A and B drops repel drops of their own
type, yet A-B interactions are net attractive, shown in figure 8d.
This is the case shown in figure 10b & c of50, and figure 3 of51.
Here, drops are expected to pair with drops of the opposite type
while repelling drops of their own type, resulting in dimer “swim-
mers". Beyond two drops, we will show more exotic structure can
emerge, including stationary trimers where drops of one type are
equally spaced around drops of the opposite type.

The first case we present involves drop interactions that follow
the bottom left of figure 8. To achieve this, we use the mate-
rial properties RA = RB = 1, SA = 10, SB = 0.1, MA = MB = 1. The
condition R = 1 results in turning off any DEP interactions. This
corresponds to the interaction parameters βA = −0.9 (repulsive
when Θ = π/2), βB = 0.09 (attractive), ΦAA = ΦAB = 8

5 βA, and
ΦBA = ΦBB = 8

5 β2. From the parameters alone, it is expected that
A drops will repel themselves, B drops will attract themselves,
and A-B pairs will repel due to the stronger repulsion of A win-

ning out. This is shown in figure 9. The final frame of the simu-
lation is shown in figure 9a (Video S5, ESI†). A drops, shown in
blue, repel into a semi-regular pattern, while B drops, shown in
red, form small clusters in the interstices between A drops. The
repulsive EHD flow instigated by the A (blue) drops is an order of
magnitude larger than the attractive flow from the B (red) drops
(β1/β2 = 10), which results in the formation of clusters of B drops
that are then broken up by repulsive interactions with neighbor-
ing A drops. This effect is shown in figure 9b, which shows the
largest cluster size over time, averaged between five simulations
with varying initial conditions. At first, the B (red) drops are
dispersed, and cluster formation only occurs at the pairwise level.
After the A (blue) drops spread out to steady separation distances,
B drop clusters grow as the B drops travel through the isotropic
repulsive field around the A drops. Eventually, the B drops con-
nect and form larger clusters, however those clusters become too
large compared to the spacing between the A drops, and are then
broken up due to the repulsive flow from the A drops. The separa-
tion distance between the A drops decreases when surrounding a
cluster of B drops. Here, the attractive flow of the B drops draws
in the surrounding A drops. Evidence of this is found by comput-
ing g(r) for only the A drops, shown in figure 9c. The two peaks
indicate the spacing between A drops surrounding a cluster of B
drops (first peak), and the larger spacing between A drops when
there are no attractive B drops in the vicinity (second peak). A
suggested set of materials that may recover the above described
behavior is castor oil and water drops suspended in silicone oil.
The results here suggest that phase behavior can be tuned by drop
material properties to achieve desired structures; e.g. a compos-
ite can be made of evenly spaced dissimilar drops (repulsive and
comparable βA and βB), small clusters of one type surrounded by
the other (the present case), or even a single large cluster of one
type surrounded by a dispersion of the other (large, attractive βA

versus smaller, repulsive βB).
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a)

c) d)

b)

Fig. 8 Subset of non-reciprocal phase behaviors predicted by equation (6). Each quadrant corresponds to a different set of the directions of interactions
between types of drops. The letters and arrows in the corner of each quadrant represent the direction of the interactions for AA pairs, BB pairs, and
AB pairs.

We have just shown that structures in the plane perpendicu-
lar to the field axis can be designed and modified via choice of
material properties. Next, we show that a new set of material
properties, albeit in the same planar format, can give rise instead
to dynamic structures with distinct, motile “agents." This is shown
in figure 10 (Video S5, ESI†). Here, RA = 10, RB = 0.1, SA = SB = 1,
and MA = MB = 1, corresponding to βA = −0.18, βB = 0.056,
ΦAA = 0.59, ΦBB = 2.79, ΦAB = −1.83, and ΦBA = −1.45. The
A (blue) drops repel themselves by EHD flow at long-range, and
through a dominant DEP at short-range. The B (red) drops at-
tract at long-range through EHD and strongly repel at short-range
through DEP; this is the same case as figure 3. The non-reciprocal
A-B interaction is net repulsive at long-range (βA + βB < 0), yet
strongly attractive at short-range (|ΦAB +ΦBA| ≫ βA +βB), giving
an unstable equilibrium point where EHD and DEP balance51.
The combination of these interactions results in a variety of qual-
itative behaviors. The evolution from the initial state to dynamic
structure formation is shown in figure 10a & b, with 10a a view
of the initial state and 10b a snapshot at τ = 2500, or halfway
through the simulation. The inset of figure 10b gives a glimpse
of the variety of structures formed, with selected structures indi-
cated with dashed circles. At short-range, B drops attract A drops
more strongly than A drops attract B drops. This results in a de-
pletion of A drops into clusters with B drops, which have a larger
composition of A compared to B, leaving unclustered B drops re-
maining. This leaves small, spaced-out clusters of B drops, which
mimic the behavior of monodisperse drops of the same material
properties, shown in figure 3. Looking at the composite clus-
ters containing both A and B drops, dimer “swimmers" and n-mer
“snakes" develop and evolve, and then move in the direction of
the B drop head-group, which again are pulling A drops more
strongly than the A drops pull back. Trimers form obtuse trian-
gles with a B drop at the corner with the large angle, and “swim"
along the axis of symmetry. A quadramer can be seen in the mid-
dle of the inset, where three A drops are evenly spaced around
a B drops, thus preserving symmetry and therefore not translat-

ing. Below the quadramer and cluster of B drops in the middle, a
5-mer is observed, which has rotational symmetry but no mirror
symmetry, and rotates like a “rotor". Finally, in the bottom right
corner of the inset, a kinked, snake-like structure is observed.
This cluster undergoes no net motion, but acts as a “flapper",
with the three drops on each side of the central B drop undulating
back and forth such that the central B drop periodically translates
about some nearly steady position. Compared to the previous ex-
ample, shown in figure 9, the combination of non-reciprocal EHD
interactions and the distance dependent interplay between EHD
flow and DEP force give rise to a zoo of collective behaviors. An
analogy is readily made to active matter systems, where symme-
try breaking results in emergent collective behaviors54,73. How-
ever, unlike most active systems, the dynamics here are driven by
an external field as opposed to the consumption of a fuel source
(e.g. depleting solute while moving up a concentration gradient,
or co-solubilization between drops), which offers the ability to ex-
perimentally study the collective dynamics predicted here at very
long timescales. We analyze the motion of two types of clusters
in the “zoo," namely a “swimming" dimer and rotating quintamer
in figure 11. The motion of the clusters is captured through tra-
jectory maps and calculation of the velocity autocorrelation of a
drop within the cluster, with the velocity autocorrelation defined
as ⟨UUU(t + τ) ·UUU(t)⟩. The trajectory of the “swimming" dimer is
captured through the trajectory of the blue A drop propelling the
dimer, shown in the inset of figure 11a. Motion of the dimer is
analyzed over ∼ 30000τ (about 3/5 of the simulation time), the
range of time between formation of the dimer and collision of the
dimer with another cluster to form a larger cluster. The dimer is
observed to undergo linear directed motion over large distances
during this time period, with slight direction changes occurring
due to interactions with neighboring clusters. The speed of the
dimer remains nearly constant throughout its existence, since the
directed motion of the cluster is a result of the asymmetric inter-
actions between a connected pair of an A and B type drop, which
are at their strongest when the drops are in contact. This is re-
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a) b)

c)

Fig. 9 Simulation for R = 1, SA = 10, SB = 0.1, M = 1 of drops confined to the plane normal to the applied field (Video S5, ESI†). The field is pointing
out of the page. a) Snapshot at τ f inal , with the A drops shown in blue and the B drops shown in red. The inset shows a zoomed-in look at a subset
of the drops in the plane. b) Largest cluster size of red B drops over time, averaged between five runs with varying initial states. Error bars represent
standard deviation between runs. c) Average of radial distribution function g(r) over five runs for blue A drops at τ f inal . Error bars represent standard
deviation between runs.

flected in the velocity autocorrelation, shown in figure 11b, where
the velocity of the dimer persists over 4000− 5000τ, where after
the pair continues to move at nearly constant speed but ultimately
ends up translating in the opposite direction, demonstrated by a
Cv ≈ −1 at the largest timescales. Motion of the rotating quin-
tamer is also analyzed over a time period of ∼ 30000τ, where
now the motion of two drops are tracked to capture the full dy-
namics of the cluster. Figure 11c shows the trajectories of both
an A-type drop on the outside of the cluster (solid line) and the A
drop at the center of the cluster (dotted line). From the trajectory
map, it is clear that the “rotor" is rotating in a nearly consistent
fashion, while the cluster as a whole translates due to the net in-
teractions of the surrounding drops and clusters. The dynamics
of the rotation is captured in figure 11d, where the velocity au-
tocorrelation of the outside drop (solid line) is shown to oscillate
at a nearly constant period of ∼ 2000τ, consistent with the drop
rotating at a constant rate about the center of the cluster. In addi-
tion to rotating, the cluster, as mentioned, translates through the
domain, shown by the trajectory of the center drop (dotted line)
in figure 11c and the velocity autocorrelation of the center drop
(dotted line) in figure 11d. The velocity of the center drop persists
over a longer timescale, similar to that of the “swimming" dimer
shown in figure 11b. One such set of materials that could result
in the above described behaviors is castor oil and fluorinated oil
drops suspended in silicone oil, where castor oil and fluorinated
oils would have conductivities larger and smaller than silicone
oils, respectively, while having permittivities at a similar order to
silicone oils. Notably, we only consider steady fields, and it is pos-
sible that even more rich behaviors could be observed when the
field is scheduled in time.

4.2 Interactions in three dimensions

As shown in the previous section, a wide variety of qualitative
behaviors are observable with non-reciprocal, isotropic EHD in-
teractions. In three dimensions, the orientation of the drops rel-
ative to the field axis adds another layer to the already complex
non-reciprocal interactions observed in two dimensions. In this
section, we explore the same material property combinations sim-
ulated in the previous section, but now allow the drops to move in
all three dimensions. Having characterized the range of possible
structural behaviors for monodisperse emulsions, we now seek to
apply that intuition to bidisperse emulsions.

The first case we discuss is for populations of drops be-
tween which have equal conductivities and differing permittivi-
ties. Specifically, we consider the instance where RA = RB = 1,
SA = 10, SB = 0.1, and MA = MB = 1. Here, as with the same
system in two dimensions, the fact that R = 1 results in no DEP
interaction between drops; EHD only are operative. In three di-
mensions, the A drops form wavy sheets, similar to those observed
in figure 5. The B drops orient along the field axis, yet repel, and
therefore remain homogeneously dispersed over time. When the
two populations of drops are combined in equal proportion, all
drops become incorporated into a single wave-sheet, shown in
figure 12. Figures 12a & b show the monodisperse behavior of
each of the drop types, where S = 10 in figure 12a and S = 0.1 in
figure 12b. Here, as a reminder, βA = −0.9 and βB = 0.09. The
A (blue) drops clearly control the non-reciprocal interaction, a
consequence of |βA| ≫ |βB|. B (red) drops, which on their own
repel in the field direction, are instead drawn into the wave-sheet
formed by the A drops. With no DEP interaction, the interaction
between drops is purely hydrodynamic, and therefore the total
interaction is simply the superposition of monodisperse EHD in-
teractions. The formation of a single wave-sheet, even when half
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a) b) c)

Fig. 10 Simulation for R1 = 10, R2 = 0.1, S = 1, M = 1 of drops in the plane perpendicular to the applied field axis (Video S6, ESI†). Field points out
of the page. a) Initial state of one of the simulations. b) Snapshot of τ1/2 = 2500. Inset shows a zoomed in portion of the snapshot. c) Snapshot of
τ f inal = 5000.

of the drops do not form such structures on their own, shows
that the stronger EHD flow will dominate the interactions. It is
expected, then, that a bidisperse suspension of EHD drops and
passive tracers will exhibit the same behavior as that expected for
the EHD drops alone, albeit with slower dynamics on the route
to steady structure formation. This is exemplified in figure 12d.
In order to quantify the rate of sheet formation, the standard
deviation of the z−position of all 1000 drops is computed, then
averaged over the five initial conditions at each time step. The
monodisperse emulsion in figure 12a collapes to the wave sheet
twice as quickly as the bidisperse emulsion, a clear consequence
of the competitive interaction between the A and B drops.

Next we simulate the same system as figure 10, of drops with
equal permittivities and disparate conductivities. Again in this
case, RA = 10, RB = 0.1, S = 1, and M = 1. When this system is
confined to a plane perpendicular to the field axis, we observed a
rich set of behaviors, such as spaced clustering, and the formation
of “swimmers", “snakes", “rotors", and other dynamic configura-
tions. It is therefore of interest to observe how the interactions
that give rise to those behaviors will affect three-dimensional
structure formation and dynamics. Both A- and B-types in this
instance form chains parallel to the field axis in monodisperse
emulsions, however the balance of the EHD and DEP interactions
of the B drops (RB = 0.1) results in a critical separation distance of
dc = 7, as discussed in section 3. Here, however, alignment along
the field axis is the dominant orientational behavior, and now
the critical separation distance becomes an unstable equilibrium
point, where drops attract for d < 7 and repel for d > 7. The A-B
interaction was shown to be net attractive perpendicular to the
field, and therefore should be repulsive along the field axis. This
is observed in the three-dimensional simulations in figure 13a &
b, where chains of pure A and B, respectively, are formed, with-
out any inter-mixing of species (Video S7, ESI†). It is expected
that the repulsive (for d > 7) EHD flow will slow chain formation
for the B-type population, and this is shown to have a mild effect
on the fraction of chained drops in figure 13. The fraction of A
(blue) drops in chains increases more quickly initially than the
B drops (red), which follows intuition given that the EHD flow

for R = 10 acts to move drop pairs in the same direction as the
DEP force. However, by the final time point of the simulation,
there are roughly an equal number of drops involved in chains
between the different types. The acceleration of chain formation
and growth for the B drops could occur for a number of reasons.
For instance, although chain formation is slowed for the B drops
at wide separations due to repulsion above the critical separa-
tion, the net alignment and resulting attraction of opposite type
drops perpendicular to the field axis results in A drops pulling B
drops closer together, giving the B drops an opportunity to attract
each other that they would not have had if unassisted. Evidence
supporting this hypothesis can be seen in figure 13a & b, where
chains of A and B drops that are in contact are observed to be
of similar lengths, a qualitative observation made across multi-
ple runs with different initial conditions. This result suggests that
chain formation of species that may not form chains, or are slow
to form chains, can be accelerated by doping with a second drop
phase, which would then encourage chain formation of the de-
sired species.

5 Conclusions

We have shown that field-driven interactions between drops in
EHD emulsions give rise to a rich variety of collective behaviors.
Long-range interactions between drops are due to a combination
of EHD (O(d−2)) and DEP (O(d−4)). The structure of monodis-
perse emulsions is determined to closely depend on the interplay
between these two effects, quantified by the factor Γ =

|β |−|Φ|
|β |+|Φ| .

In the plane perpendicular to the applied field direction, the dis-
tance dependent interplay between EHD and DEP is shown to
give rise to dispersed clusters, where drops remain stably sepa-
rated away from contact, yet do not disperse evenly throughout
the medium. In three dimensions, when Γ →−1, DEP dominates
the interactions between drops, which assemble into chains, as
seen in electrorheological suspensions. When Γ → 1, EHD dom-
inates the interactions, and drops are observed to condense into
wave-sheet configurations, the structure of which are dynamic yet
stable over long times.

Simulations of bidisperse systems of drops were also per-
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a) b)

Fig. 11 Analysis of motion of two cluster types observed in the “zoo" of figure 10. a) Trajectory of a blue A-type drop (circled in solid pink in the
inset, with the arrows indicating the direction of motion of the entire cluster) in a “swimming" dimer over the course of ∼ 70000 time steps (3/4 of the
simulation), between when the dimer is formed and when it collides and joins another cluster. The solid circle indicates the initial position of the drop
and the cross indicates the final position. b) Velocity autocorrelation of the A drop in the dimer over ∼ 70000 time steps. c) Trajectory of two drops
in a rotating quintamer over ∼ 70000 time steps. The solid line corresponds to the trajectory of the blue A drop (circled in solid pink in the inset) and
the dotted line corresponds to the trajectory of the center A drop (circled in dotted pink). d) Velocity autocorrelation of the two A drops indicated in
c). The solid line corresponds to the trajectory of the blue A drop (circled in solid pink in the inset, with the arrow indicating the direction of motion
of the entire cluster) and the dotted line corresponds to the trajectory of the center A drop (circled in dotted pink). The solid circle indicates the
initial position of the drop and the cross indicates the final position.

formed. Results were shown for cases where drops with strong
repulsive flows break up small clusters of drops with weaker at-
tractive flows. In a specific case, net attractive interactions be-
tween drops of different material properties give rise to a mul-
titude of drop configurations, where “swimmers", “snakes", “ro-
tors", and “flappers" were observed, with a clear analogy to syn-
thetic active matter systems. In three dimensions, two cases were
explored. In the first, one drop type was shown to form wave-
sheets, while the other formed chains, in the absence of the other
type of drop. Here, the non-reciprocal interactions favored the
wave-sheet forming drops, and both types of drops were swept
into wave-sheet formation. In the other case, one drop type has
a stronger proclivity for chain-formation, yet the non-reciprocal
interactions between drops were shown to encourage chaining of
drops that had weaker interactions.

These results exemplify not only the impact of EHD interac-
tions on the structure formation of emulsions under an applied
field, but also the variety of structures and dynamics available
when considering this mechanism. These results suggest the op-
portunity for development of field-driven designer composites,
where structure can be controlled by selection of constituent ma-
terials. Additionally, the planar simulation results suggest ex-
perimental realization of synthetic active-matter analogs without
requirement of a consumable fuel source, allowing observation

of collective behavior at otherwise inaccessible timescales. Since
the systems considered here could be realized using oil drops im-
mersed in an oil suspending fluid, electrochemistry can easily be
avoided. The external application of the electric field also implies
a wide range of opportunities for control of the emulsion struc-
ture via scheduling of the field, in addition to the dependence on
material properties discussed previously.
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