
Curvature screening in draped mechanical metamaterial 
sheets

Journal: Soft Matter

Manuscript ID SM-ART-08-2023-001108.R1

Article Type: Paper

Date Submitted by the 
Author: 06-Oct-2023

Complete List of Authors: Roy, Sourav; Syracuse University, Physics
Santangelo, Christian; Syracuse University, Physics

 

Soft Matter



Curvature screening in draped mechanical metamaterial
sheets†

Sourav Roy, Christian Santangelo

We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces.
Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing
an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the
stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial
sheet and specialize to the cases of dilational metamaterials and shear metamaterials conforming
to positively and negatively curved substrates in the Föppl-Von Kármán limit of small strains. We
perform numerical simulations of these systems and obtain good agreement with our analytical
predictions. This work provides a framework that can be easily extended to explore non-linear soft
modes in metamaterial elasticity in future.

1 Introduction
The geometrical structure of mechanical metamaterials endow
them with effective mechanical properties that can differ greatly
from the materials from which they are fabricated1–3. A paradig-
matic example can be constructed from counter-rotating, elastic
polygons joined at nearly freely-rotating corners, which exhibits
either a negative or positive Poisson ratio that is determined by
the polygon geometry4–7. Understanding and characterizing the
mechanical response of such materials has important applications
in achieving advanced functionalities via topological protection,
geometric frustration, non-linear responses and so on8,9.

Here we consider mechanical metamaterials whose elastic
properties arise from a single, global soft mode. For sufficiently
large structures, however, generic arguments suggest a suite of
additional modes with small elastic energies6,7. These deforma-
tions look locally like the global soft mode of the metamaterial
and dominate much of the global response of the structures to
inhomogeneous forces. One might think of this in analogy to the
Nambu-Goldstone modes in thermodynamic systems and gauge
theories with global symmetries10,11. For example, systems with
a global, isotropic dilational mode exhibit universal deformations
that approximate conformal transformations6,7 but there is still
little known about how other metamaterial designs respond.

One of the novel features of mechanical metamaterial sheets
comes from their properties under bending12–17. When confin-
ing an elastic plate to a curved surface, the Gaussian curvature
of the underlying substrate induces inhomogeneous stresses in
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Fig. 1 Example of wrapping a conformal metamaterial onto a sphere or
saddle of varying radii of curvatures. The internal displacements of the
squares give rise to a screening effect

the bulk of the sheet which is governed by the interplay between
elasticity and geometry through Gauss’ theorema egregium.18 In a
metamaterial, some of these stresses can be partially absorbed by
the in-plane soft modes of the system (for example, Fig 1 shows
the soft in-plane displacements). Indeed, one expects that Gaus-
sian curvature should be screened, much in the same way that
disclination densities screen Gaussian curvature in curved crys-
talline membranes19,20.

To better describe how geometry and elasticity of a metama-
terial interact, we develop an approach to understand the low
energy excitations of mechanical metamaterials confined to rigid,
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curved surfaces. We assume that the confinement is perfect but
that the metamaterial is free to slide along the surface and that
the sheet’s boundaries are free. Instead of starting from a micro-
scopic description of a particular metamaterial architecture, we
employ a continuum description in terms of a prescribed metric,
and introduce an auxiliary field to describe the soft mode. As a
result, we obtain an effective elastic model describing the soft de-
formations of a metamaterial sheet that is easily applied to curved
geometries.

We apply this approach to the deformations of dilational meta-
materials as well as shear metamaterials which are metamaterials
with zero energy uniform shear modes while they are kept con-
fined to surfaces with positive and negative Gaussian curvature.
Although we focus on structures that are well-approximated by
Hookean elasticity, we will discuss how to generalize our meth-
ods to encompass nonlinear soft modes.

2 The elastic energy of a metamaterial sheet

2.1 Mathematical formulation

Our approach to the elasticity of metamaterial sheets is rooted in
the relationship between global symmetries and their associated
Nambu-Goldstone modes. Recall that a Nambu-Goldstone mode
arises when a global symmetry, parameterized by a constant φ for
example, is lifted to a slowly-varying, inhomogeneous field. De-
formations that can be absorbed by changing φ have a particularly
small energy cost that scales with gradients of φ . And that energy
cost can be made arbitrarily small by making φ vary slowly. For
example, φ could measure the angle between two polygonal el-
ements in a metamaterial that meet at a vertex, or represent a
degree of freedom . Thus, we generically expect these soft defor-
mation modes to dominate the elastic response of these materials.
This is precisely the approach taken by Zheng et al.7,21 to explore
the soft deformations of mechanical metamaterials in 2D.

We represent the periodic metamaterial as a smooth surface
indexed by coordinates (x1,x2) with 3D positions R(x1,x2). The
induced metric of the surface, gi j(x1,x2) = ∂iR · ∂ jR, where ∂i =

∂/∂xi, determines the local distances and relative angles between
adjacent unit cells. The precise changes in the effective geom-
etry of the metamaterial sheet are then encoded by a family
of prescribed metrics, ḡi j(φ), which we also use to raise and
lower indices22. For a given, fixed value of φ , the elastic strain,
γi j = [gi j − ḡi j(φ)]/2, measures how the sheet deforms relative to
its prescribed metric22. This form of the strain contains a com-
ponent that can be directly absorbed by a spatially-dependent
change in φ – the metamaterial soft mode – and an orthogonal
component that cannot. To extract the portion associated with
changes along the soft mode, we first consider a small change in
the parameter φ to φ + δφ , which leads to a change in the pre-
scribed metric, Gi j ≡ ∂φ ḡi j(φ). Thus, any strain can be written
as γi j = γ Gi j + γ⊥i j , where γ⊥i j is a part of the strain associated to
deformations orthogonal to the soft modes and γ is ∝ δφ . The
scalar part in the first term, γ = H i jγi j is the “soft” strain where,
H i j = Gi j/GklGkl and H i jγ⊥i j = 0.

More generally, we can also consider metamaterials with local
prescribed curvature tensor h̄i j(φ). This can arise, for example,

when the global soft mode of the metamaterial acts to change its
curvature as well as the in-plane geometry. In this paper, we will
assume that h̄i j(φ) = 0 and, in fact, that the thickness of our ma-
terial is sufficiently small that bending stresses can be entirely ne-
glected compared to in-plane stresses23. This allows us to isolate
the behavior we want to study, how the internal soft mode re-
sponds to Gaussian curvature, without additional complications.

Since the deformation represented by γ and that represented
by spatially varying δφ are redundant, we make the essentially
arbitrary choice to fix φ to a given constant value and retain all
deformations in terms of the strain. A general elastic energy can
be written as

E1 =
∫

dS W (γ,∂iγ,γ
⊥
i j ), (1)

where dA is the area measure determined by the prescribed met-
ric. Note that, while the energy density, W , depends explicitly
on the portion of the strain directed along the metamaterial soft
mode, the assumed softness of the global mode suggests includ-
ing a dependence on the gradient as well.

2.2 An auxiliary field represents the soft mode

In principle, we can proceed directly with Eq. (1). However,
working with the orthogonal projection of the strain, γ⊥i j , proves
challenging. It can be avoided if we introduce an auxiliary field,
A. We then consider the elastic energy

E2 =
∫

dS
[
W (γ,∂iγ,γi j −AGi j)+

1
2

cA(γ −A)2
]
. (2)

To understand the role of the auxiliary field A, consider the simul-
taneous transformations γi j → γi j +δφGi j and A → A+δφ , which
leave γi j −AGi j and γ −A invariant. This ensures that E2 trans-
forms identically to E1 and, as we will see below, results in the
same equilibrium.

To demonstrate their equivalence, we introduce the following
notations for derivatives of W : ∂W indicates a derivative with
respect to the first argument, ∂ iW is a derivative with respect to
the vector-valued second argument, and ∂ i jW is a derivative with
respect to the tensor valued third argument. Then the equilibrium
equation for the field A reads

−Gi j∂
i jW (γ,∂iγ,γi j −AGi j)+ cA(A− γ) = 0. (3)

The second derivative of the energy with respect to A is
Gi jGkl∂

i j∂ klW + cA, where the arguments of W have been sup-
pressed. This is positive-definite if cA is sufficiently large. While
the precise value of cA is irrelevant to the physics, its largeness
ensures that the solution A to Eq. (3) gives the minimum of the
energy.

We compute the stress tensor next by varying E2 with respect
to γi j and substituting the result of Eq. (3). We obtain

σ
i j = ∂

i jW −H i jGkl∂
klW +H i j

(
∂W −Dk∂

kW
)
, (4)

where Dk is the covariant derivative with respect to the prescribed
metric. This is precisely what one obtains directly from E1, show-
ing that E1 and E2 are equivalent.
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Finally, we consider further simplification of the elastic energy,

E3 =
∫

dS
[
W (A,∂iA,γi j −AGi j)+

1
2

cA(γ −A)2
]

(5)

in which we have replaced almost every instance of γ with A. A
similar model was introduced in Ref.4 to describe the twisted,
kagome lattice in two dimensions. As we will see, Eq. (5) will
allow us to apply the Föppl-von Kàrmàn limit to a curved meta-
material in a fairly straightforward way.

However, it turns out that E3 is not exactly equivalent to E1 and
E2. We can see this from the equilibrium equation for A,

A = γ − 1
cA

[
∂W −Di∂iW −Gi j∂

i jW
]
. (6)

For large cA, Eq. (6) can be interpreted as a recursion relation
from which one obtains A in terms of γ and its derivatives as a
series in 1/cA. Eq. (6), becomes asymptotically exact as cA → ∞

and the stress tensor of E3 approximates that of E1. Since physical
quantities do not depend on the precise value of cA and since the
limit cA → ∞ leads to analytically tractable regimes, we will adopt
this limit in the remainder of the paper.

Our approach has been quite general up to this point, but now
we expand the energy density W assuming that γi j −AGi j and ∂iA
are small. This leaves

W ≈ W0(A)+
1
2

κ1ḡi j
∂iA∂ jA (7)

+E i jkl(γi j −AGi j)(γkl −AGkl),

where the elastic tensor E i jkl is assumed to have no dependence
on A at lowest order. For a metamaterial with a global zero mode,
W0(A) = 0, though more generally, we may expect W0(A) to be a
nonlinear function of A. In what follows, however, we will assume
that W0(A) = κ0A2/2 where κ0 is small.

3 Examples and Results

3.1 Dilational Metamaterial

To see how Eq. (5) works in practice, consider a 2D, isotropic di-
lational material, for which Gi j = ḡi j. We obtain an elastic energy
of the form

E ≈
∫

dS
[

1
2

E i jkl(γi j −Aḡi j)(γkl −Aḡkl)

+
κ0

2
A2 +

κ1

2
ḡi j

∂iA∂ jA
]
. (8)

where E i jkl = cAḡi jḡkl +µ(ḡikḡ jl − ḡi jḡkl) and µ is the shear mod-
ulus of the material. Varying this elastic energy with respect to A
yields

γ =

(
1+

κ0

cA

)
A− κ1

cA
△A (9)

and can be inverted to

A =
cA

cA +κ0
γ +

κ1cA

(cA +κ0)2 △γ +O(△2
γ). (10)

Fig. 2 The undeformed canonical square metamaterial (left), upon
extensive loading, deforms by counter-rotation of the squares (right). The
red and blue arrows show the direction of rotation of adjacent squares as
the metamaterial dilates.

As expected, the limit cA → ∞ implies A → γ. The stress tensor is

σ
i j = (κ0A−κ1△A)ḡi j +E i jkl(γkl −Aḡkl). (11)

Using Eq. (10), we obtain

σ
i j = (c0γ − c1△γ) ḡi j +E i jkl

γkl , (12)

where

c0 =
κ0cA

cA +κ0

cA→∞−−−−→ κ0 (13)

c1 =
κ1c2

A
(cA +κ0)2

cA→∞−−−−→ κ1.

To understand how such a sheet conforms to a weakly curved
surface, we now specialize to the Föppl-Von Kármán limit. Dis-
placements in the xy−plane are given by a vector ui and displace-
ments in z are given by a function ζ , so that γi j ≈ (∂iu j +∂ jui)/2+
∂iζ ∂ jζ/2. In this limit, we write σ i j = ε ikε jl∂k∂l χ in terms of an
Airy potential χ. From Eq. (12), we obtain

△χ = κ0A−κ1 △A (14)

In addition to this, the geometric compatibility equation, required
for χ to be expressed in terms of a displacement ui, is

1
Y
△2

χ =−G−∆A, (15)

where G is the local Gaussian curvature and the effective Young’s
modulus for the metamaterial sheet is Y = 4µ(cA +µ)/(2µ + cA),
where Y → 4µ as cA → ∞.

Eq. (15) shows that the motion along the soft mode of the
metamaterial screens the elastic stresses induced by the Gaussian
curvature, in a manner similar to how disclinations in a 2D crys-
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Fig. 3 Coefficient a2 found by fitting the conformal factor, A = a0 +a2r2

as a function of radius of curvature Rs is consistent with a2 ∝ R−2
s ∝ |G|,

from the analytical prediction.

tal screen Gaussian curvature. We can better understand the form
of Eq. (15) by considering an isothermal coordinate system on a
curved surface. Recall that, in an isothermal coordinate system,
the metric of a surface is proportional to the Euclidean metric, i.e.,
gi j = (1+2 δΩ(x,y))δi j, where (1+2δΩ(x,y)) is the local confor-
mal factor18. In such a coordinate system, the Gaussian curvature
takes a particularly simple form, G =−△δΩ to first order in δΩ.
Thus, it appears that the auxiliary field A plays precisely the role
of δΩ in the conformal factor, as one might expect in a dilational
metamaterial.

To understand Gaussian curvature screening, we can eliminate
χ to obtain the screened Poisson equation,[

κ1

4µ
△−

(
κ0

4µ
+1
)]

△A = G. (16)

where G acts as a source and the screening length is lsc =√
κ1/(4µ +κ0). Equivalently, one can eliminate A and obtain

a screening law for χ by introducing a geometric potential Ω24

such that △Ω = G. Then one obtains

1
4µ

△χ =−Ω−A+h1 (17)

where h1 is a harmonic function determined by boundary condi-
tions on χ, A, and the geometric potential. Thus, we find[

κ1

4µ
△−

(
κ0

4µ
+1
)]

△χ =−κ1G+κ0Ω−κ0h1. (18)

so that the dilational stress, △χ, satisfies the screened Poisson
equation with a source κ1G−κ0Ω+κ0h1 and screening length lsc.
A key point to note here is the contrast between Eq. 18 and that
of a Hookean elastic sheet where we have simply △2χ ∝ G. In
the case of Eq. (18) stresses are relaxed by the soft mode over a
length scale lsc, in marked contrast to a Hookean elastic sheet. To
obtain an explicit solution, we assume the metamaterial is a disk
of radius R adsorbed to a surface of constant Gaussian curvature
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Fig. 4 a2R2
s as a function of torsional stiffness of rotating square meta-

material. The blue curve is a best fit of b1 and b2 to the theoretical
prediction a2R2

s ∝ b1/(1+b2kT ) for the largest radius sphere, where kT is
the torsional spring constant. Inset shows curves of a0R2

s

G. Then we obtain

A = a0 +a2r2 +abI0(r/lsc)

χ = d0 +d2r2 +d4r4 +dbI0(r/lsc)

subject to free boundary conditions ∂rχ|r=R = 0, and ∂rA|r=R =

0. The choice of boundary conditions and constant Gaussian
curvature G gives, Ω = G

4 r2 and the h1= constant. When κ0 ̸= 0,
this is sufficient to determine all coefficients up to constant d0

(SI). In the limit cA → ∞, we find

A =
µG(R2 −12l2

sc)

3(4µ +κ0)
− µGr2

(4µ +κ0)
(19)

+
2µG Rlsc

(4µ +κ0)

I0(r/lsc)

I1(R/lsc))
.

To test the resulting prediction for A, we performed numerical
simulation of a metamaterial built from counter-rotating squares
shown in Fig.2 . The edges of each square are springs with spring
constant kS (Section 2 in SI). To prevent the squares from bend-
ing, we add an additional hidden vertex above and below the
centroid of each square and connect them to the square’s vertices
(these are sometimes called “blocks”; see25,26). The spring con-
stant of the additional springs, kB ≤ kS, sets the bending stiffness
of the squares. We also incorporate a torsional spring on every
other joint between adjacent squares. The elastic energy of the
joint is E j = kT (θ −π/4)2/2, where θ is the angle between adja-
cent squares. On a flat surface, the equilibrium angle of the tor-
sion joints, π/4, ensures that the sheet can express both compres-
sion and extension relative to when draped on a curved surface as
necessary. All the lengths in the simulation are defined relative
to two times the square edge spring equilibrium length. Finally,
we confine the vertices of the square panels to a surface of shape
x2 + y2 +(z− r)2 = R2

s (sphere) or x2 − y2 +(z− r)2 = R2
s (saddle),

but otherwise allow the vertices to slide along the surface.
Fig. 1 illustrates the model and the geometries formed when
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Fig. 5 The dilational area strain of the squares, (α −α0)/α0, measured
by comparing the area of each square, α, to its equilibrium area α0
for (a) a floppy (kT = 0.01) metamaterial and for (b) a stiff (kT = 10)
metamaterial. (c, d) The fractional angular deformation, (θ −θ0)/θ0 of
the torsional springs in both the floppy (kT = 0.01) and stiff (kT = 10)
metamaterials, as seen from above. This shows the trade-off between
curvature-induced stresses and the metamaterial soft mode. The area of
the spherical surface is Rs = 15.

draping over both a spherical cap and a saddle. The field A is
computed by directly mapping the spring angle θ to the corre-
sponding unit cell size on a flat geometry. We fit the measured
A to functional form A = a0 + a2r2 obtained from our analytical
theory for both saddle and sphere geometries in Fig. 3, showing
good agreement with the expected dependence of A ∝ G. In Fig.
4, we plot a0R2

s and a2R2
s as a function of the torsional stiffness,

kT , on spheres with several values of radius R. At larger kT and
smaller curvatures, we see that the corresponding curves collapse
into a universal curve, though we note some deviations at smaller
kT that depend on the sphere radius. In Fig. 5, we plot the stress
distribution along with the corresponding soft modes to verify the
screening effect predicted in Eq. 18.

Generally, we expect that κ0 is proportional to kT so we com-
pute the best fit to the theoretical prediction a2R2

s = b1/(1+b2kT )

(blue curve) to the data from largest sphere. While the results
of the simulations fit the theory at the smallest curvatures, as the
curvature increases we see systematic deviations at small kT . This
may be explained by the failure of the Föppl von Kármán limit at
high curvatures or the increased relative importance of bending
energy in the simulation at the smallest values of κ0.

3.2 Shear metamaterials
Here we study a simple shear mechanism based metamaterial.
As a concrete example, we may consider a square grid of cross-
linked, stiff fibers, where we assume the angle at which the fibers
meet is flexible. The schematic for this is shown in 4 (inset),
where the material is wrapping curved substrates. These have
been called elastic gridshells in literature and their non-trivial
geometries upon buckling from a planar grid of fibers have been

Fig. 6 Simulations for A at the center of a simple shear metamaterial
on sphere (open circles) and saddle (triangles). The value of |a1| is
determined by the best fit of the π/2− θ to a0 + a1xy. The results are
consistent with the formula |A| ∝ R−2

s ∝ G.

studied in detail17, showing that the inextensibility of the cross-
linked fibers play a key role in the final shapes of these materials.
In the continuum, for a simple shear mechanism, we have

Gi j =

(
0 1
1 0

)
. (20)

Minimizing the elastic energy with respect to A yields

−1
2

Gi jσ
i j +κ0A−κ1△A = 0. (21)

The corresponding geometrical equation can be found by noting
that, in the Föppl von Kármán limit, ε ikε jl∂i∂ jγkl = −G+ ∂x∂yA.
After some algebra, we obtain

B+µ

4µB
△2

χ +
µ − cA

µcA
(∂x∂y)

2
χ =−G+∂x∂yA. (22)

where, B is the elastic bulk modulus. It is easy now to take cA →∞

in Eq. (23) to obtain

B+µ

4µB
△2

χ − 1
µ
(∂x∂y)

2
χ =−G+∂x∂yA. (23)

Eq.(23) is similar in spirit to Eq.(15) and thus captures how meta-
material soft modes screen out the stress sourced by the Gaus-
sian curvature of the substrate. To understand the form of the
auxiliary field entering the geometric equation, we can consider
a coordinate system on the surface called a Tchebyshev net27,
which has metric ds2 = du2 +dv2 +2sinω(u,v) dudv. This can be
thought of as precisely the deformation of inextensible but bend-
able fibers that meet at local angles, ω. The Gaussian curvature
is given by G = −∂u∂vω/sinω. Writing ω = π/2− δθ , we obtain
G ≈ ∂u∂vδθ . Thus, we can identify A with the change in angle at
which intersecting fibers meet. A similar analysis for a pure shear
metamaterial instead yields the geometric equation,

1
4B

△2
χ +

1
µ
(∂x∂y)

2
χ =−G+

1
2
(∂ 2

x −∂
2
y )A, (24)
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and
1
2
(∂ 2

x −∂
2
y )χ +κ0A−κ1△A = 0. (25)

Despite the superficial difference between simple and pure shear
metamaterials, a straightforward calculation shows that these
equations are identical provided one rotates the coordinate sys-
tem by π/4, which recovers the relationship between simple and
pure shear from the 2D elasticity of uniform media.

Eq. (23) is difficult to solve since it mixes hyperbolic and ellip-
tic operators in an unusual way. However, for constant and small
G, we obtain a solution when κ1 is small by dividing the sheet into
bulk and boundary parts. We replace Y = 4µB

B+µ
in the equations

below. In the bulk of a rectangular domain where x and y both
span from −L to L, we look for a solution of the form Abulk = a1xy
and χ = b1x2y2, finding

a1 =
GY µ

2κ0µ +Y (µ −κ0)

b1 = −κ0

4
GY µ

2κ0µ +Y (µ −κ0)
.

To match the boundary conditions, these solutions must be aug-
mented by a boundary layer of width lshear =

√
κ1/κ0. While find-

ing the exact form of this boundary layer is difficult, to lowest
order in κ1 and Gκ0 we obtain an approximate solution,

A = Abulk +Aboundary (26)

≈ µY G
Y (µ −κ0)+2κ0µ

[
xy+

+lshear
x sinh(y/lshear)+ y sinh(x/lshear)

cosh(L/lshear)

]
and

χ = χbulk +χboundary (27)

≈ µY G/4
Y (µ −κ0)+2κ0µ

[
L2(x2 + y2)− x2y2

−4Y l4
shear

cosh(x/lshear)+ cosh(y/lshear)

cosh(L/lshear)

]
.

We also perform numerical minimization of a shear metamate-
rial built from a square net of filaments. The bending resistance
of the filaments are enforced by torsional springs with stiffness
kb, however we also include torsion springs with modulus k ≪ kb

on each square to resist the soft shear mode. Conjugate gradient
energy minimization of this shape on both the sphere and saddle
are performed and the internal mechanism is measured from the
angle filaments when they cross. The resulting angle, measured
with respect to the equilibrium angle π/2, is fit to A = a0 + a1xy,
which accurately reflects the measured values of A away from the
boundary. In Fig. 6, we see that a1 ∝ |G| as expected.

In Fig. 7, we plot a1R2
s as a function of the torsional stiffness,

k, for both positive and negative Gaussian curvatures, showing
that the curves collapse for different curvatures and are consistent
with the functional form expected from our theory.

Fig. 7 Dependence of a1R2
s on the torsional modulus k for Rs = 6, 10,

20 and 40 with both a spherical and a saddle geometry.

4 Conclusions
In this paper, we have developed a continuum model for mechani-
cal metamaterials confined to but able to slide on curved surfaces.
Our approach has two steps. The first step introduces an auxil-
iary field, A, which is used to separate the soft mode from the
stiffer deformation modes. In the second step, we rewrite the
elastic energy in terms of A, gradients of A and orthogonal strains
γi j −AGi j. We explicitly considered both dilational metamateri-
als, which have a soft deformation mode under isotropic dilation,
and shear metamaterials, which are soft under simple shear. In
both cases, the metamaterial, through its internal soft mode, can
absorb some of the Gaussian curvature of the surface upon which
it is draped and, consequently, screen the Gaussian curvature. To
our knowledge, this is the first generalized elasticity approach to
metamaterial sheets on curved surfaces. Our approach is basi-
cally phenomenological in that we are unable to easily determine
the relationship between microscopic parameters and the elastic
moduli in the energy. It would be interesting to supplement this
approach with a more detailed calculation in the vein of Ref.6.

In our theoretical analysis, we have neglected bending energy
contributions and we find reasonable agreement between simu-
lations and theory in this limit. It would be quite interesting to
further explore the balance between bending and the soft defor-
mations of the metamaterial sheets. We expect this will play an
important role in geometrically-frustrated metamaterial sheets, in
which bending and stretching are inherently incompatible. The
balance between stretching and bending in a traditional elastic
sheet is controlled by the Föppl-von Kàrmàn number, which dic-
tates when stretching modes are expelled in the bulk of a sheet.
In a metamaterial, one expects additional dimensionless num-
bers associated with the soft deformation that competes with the
Föppl-von Kármán number. How this idea plays out in more com-
plex geometries than flat domains remains unclear.

Finally, we note that our general approach can be extended
readily in two ways. First, we can consider metamaterials with
more than one soft deformation by extending A to a multi-
component field. Second, a metamaterial sheet with nonlinear
soft modes can be represented through the function W0(A) in Eq.

6 | 1–7Journal Name, [year], [vol.],
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(7). A bistable unit cell, for which W0(A) would be quartic, might
naturally exhibit domain walls and solitons. Thus, our approach
opens the door to exploring how nonlinear deformations couple
more broadly to elasticity in metamaterial sheets.
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