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Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiff-
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ness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable,

i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be under-

stood as due to the fact that deformability increases the effective duration of collisions. In addition,

the dense regions become increasingly disordered as deformability increases. Our results contextual-
ize the applicability of MIPS to biological systems and have implications for how cells in biological

systems may self-organize.

1 Introduction

Self-propelled particles! have been used as a simple model for
synthetic active swimmers and biological systems, and can de-
scribe collective phenomena such as flocking2->, aggregation®’
and sorting®10. Although biological systems often have complex
physical interactions, it has been shown that motility is sufficient
to induce phase separation of purely repulsive particles. This phe-
nomenon is known as motility induced phase separation (MIPS)
because, unlike in equilibrium systems, the phase separation can
occur without attractive interactions. MIPS has been extensively
studied in the context of self-propelled repulsive spheres, known
as active Brownian Particles (ABPs), and it has been described
in terms of the suppression of the effective motility due to crowd-
ing 11718 the kinetics and mechanics of the phase-separated inter-
face19? | and an effective attractive interaction°. The phase be-
havior of rigid, repulsive active particles has been mapped out as a
function of motility and density2!, and the effects of other proper-
ties like polydispersity22, particle shape?3, friction between par-
ticles24, and interaction softness2°~27 have also been studied.
One shortcoming, however, is that studies have focused on rigid
particles, even though the cells that make up biological systems
can change their shape. Therefore, we study here a system of de-
formable active particles to better understand the applicability of
MIPS to biological systems, or to cell suspensions. We find that,
at a given density, more deformable particles are more prone to
phase separate than less deformable ones. This result can be ex-
plained by an increase in the duration of two-body collisions with
increasing deformability. We also find that deformability funda-
mentally affects the structure of the dense phase, which is crys-
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talline at low deformability and becomes glassy with increasing
deformability.

In the remainder of the paper we first introduce the phase field
model in Section 2. The results are presented in Section 3, in-
cluding the numerically evaluated phase diagram, a phenomeno-
logical argument that relates the deformability-induced enhance-
ment of phase separation to the duration of binary collisions, and
an analysis the structural properties of the dense phase. We con-
clude with a brief summary and outlook in Section 4.

2  Model

We model N cells as deformable particles, each described by a
phase field ¢;(r)28-37. The phase field model allows us to describe
arbitrary cell shapes and to vary the cell edge tension. Phase field
models have been shown to capture many mechanical properties
of tissue monolayers30-31:3436.37 ' The free energy of the system
is
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The first term sets the field ¢; to be 1 in the interior of the cell and
0 in the exterior. The second term penalizes gradients in the field
with a stiffness proportional to k. The third term sets the pre-
ferred cell area to that of a circle of radius R. An isolated cell will
be circular, as in Fig. 1 (a). The resulting ¢; profile interpolates
from O outside the cell to 1 inside the cell, as in Fig. 1 (b), with
interfacial thickness £. The last term incorporates steric repul-
sion by penalizing overlap between different cells with strength
€. When two cells interact, they may overlap or they may change
their shape to avoid overlapping. We define the deformability d
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Fig. 1 lllustrations of the model features (a)-(d) along with snapshots of the particles in the full simulations (e)-(h). (a) shows an isolated cell, which
is circular. (b) shows a typical profile for the phase field of a cell. (c) depicts how cells at a low d will tend to overlap while maintaining a circular
shape, while at a high d cells will change shape to avoid overlapping. (d) illustrates sample trajectories for isolated cells whose Pe differs by a factor
of 5. The snapshots in (e)-(h) show the full system at low and high d and Pe as indicated.

as the ratio of the characteristic energy of overlap to the char-
acteristic energy of shape deformation: d = ﬁ(séR) /(oR) = .
o = k& /3 is the cell-edge tension and the factor of - brings this
definition in line with previous work32, in which d ~ 1 was shown
to result in a qualitative change in the cellular interactions. Fig-
ure 1 (c) qualitatively illustrates how varying d changes the in-
teractions between cells. We also define the cell compressibility
x = A /€, which we keep fixed at y = 50. This value of the com-
pressibility allows for polydispersity while preventing cells from
collapsing.

We model cells crawling on a substrate, which leads to the fol-
lowing evolution equation for the fields

99, 187
7+V1'V¢l*_}6¢i >

at
where 7 is the inverse mobility. We incorporate the cell motility
via the advection term in the field equation. The advection veloc-
ity is determined by self-propulsion and interaction terms arising
from passive forces, which arise from the gradients of the chemi-
cal potential 38,

2
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where p; = (cos 6;,sin ;) is the cell polarity which determines the
direction of isolated cell motion. The passive forces are given by

Vi = vopi +

N
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cell’s area, aﬁd I" a friction per unit area. We assume that all
cells have the same self-propulsion speed vy. The direction 6;
diffuses at a rate Dy, i.e., d6;(t) = v/2D,dW;(t), where dW;(t) is a
Wiener process. We quantify the activity via the Péclet number
Pe = vy/(RD,), which is the ratio of the cell’s persistence length
£, =vo /D, to its size. The effect of varying Pe on cell trajectories
is illustrated in Fig. 1 (d).

with y; = &Z the chemical potential of cell i, Ai = [d’r¢? the
Hj= 54 p b Aj = ;

In the following we take R as our unit of length, R/vy as unit
of time, and eR? as unit of energy. In these units vy = 1 and we
fix the interfacial thickness & = 1/8. Our equation then contain
a dimensionless substrate friction per unit area I' = 'Rvg/¢ and a
dimensionless inverse mobility ¥ = yvy/(€R). In the following all
quantities are dimensionless and we drop the tilde. All results are
for I' =4.375 x 1072 and y = 4.375 x 10~2. The model parameters
and their values are summarized in table 1.

3 Phase separation of deformable particles

To study motility-induced phase separation, we simulate 2,000
cells in a square simulation box of length L = 112.125, giving a
packing fraction ¢ = foz =0.5. At fixed packing fraction, we
vary both d and Pe. We vary Pe by varying D, (see Table 1).
Since we work at a fixed interfacial thickness &, we vary d by
changing the cell edge tension o. We show snapshots from several
of these simulations in Fig. 1 (e)-(h). At low Pe the system does
not phase separate regardless of the value of d. Fig. 1 (g,h). As Pe
is increased, phase separation occurs for both values of d Fig. 1
(e,f). One qualitative difference is that the dense phase in the
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high d system takes up less area because the deformable cells can
pack closely, while the rigid disk-like cells in the low d system
cannot pack as tightly.

3.1 Deformability enhances phase separation

We find that, like in studies on rigid particles, phase separation oc-
curs above a critical Pe. To quantify the onset of phase separation
we divide the system into square subsystems of size 10R and cal-
culate the local density p;, defined as the area fraction of the sub-
system where the local phase field is greater than 0.5. Examples
of the distributions of p;, are shown on the left side of Fig. 2. This
particular definition of the local density captures the fraction of
the area that is excluded by steric interactions. It also allows the
most accurate comparison between low and high d systems be-
cause the values are restricted between 0 and 1, even if the fields
in tightly compressed cells reach values above 1. We have veri-
fied that varying the subsystem size does not qualitatively change
the distributions, as long as the subsystem size remains signifi-
cantly larger than R but smaller than L. When the system phase-
separates, the local density distribution changes from unimodal to
bimodal. To quantify this change we use the variance of the distri-
bution and choose a cutoff of 0.0378 to identify phase separation.
The resulting phase diagram is shown on the right side of Fig. 2,
where the variances have been normalized by this cutoff. As one
can see from the histograms on the left side of Fig. 2, the chosen
cutoff separates the homogeneous and phase separated systems.
The required Pe for phase separation decreases with increasing d.
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Fig. 2 Left: local density curves for two different d, showing the dif-
ference in the distribution below and above the empirically determined
cutoff. Right: phase diagram based on the variance of the local density
distributions, with a fit based on the deformability dependence of the
duration of two-body collisions. The stars indicate the deformabilities
corresponding to the distributions on the left. The variance is normal-
ized by the empirically chosen cutoff for phase separation.

3.2 Deformability modifies the effective duration of a colli-
sion

Previous work on motility-induced phase separation has shown

that the transition from a homogeneous fluid to a phase sepa-

rated state can be captured by continuum models formulated in
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terms of coarsed grained density and polarity fields. 121416 Inter-
actions renormalize the self-propulsion speed vj, which becomes
v(p), a function of the density. To capture the deformability de-
pendence of the phase diagram, we start from the observation
that at long times an isolated ABP behaves as a random walk of
step length ¢, ~ v1,, with 7, = D;!. Following the argument
given in Ref. !>, we note that an ABP will be slowed down by col-
lisions during each step of length ¢,,, resulting in a reduction of
the effective step length /(p) < ¢,. Denoting by n. the number
of collisions in 7,, and by 7, the typical stalling time associated
with each collision, the effective step length can be written as
4(p) = vo(tp —nets). The effective self-propulsion speed is then
given by v(p) = £(p)/t,. We estimate the number of collisions in
a time T, as n¢ > T,/Tyn, Where T is the mean free time be-
tween collisions. This is controlled by the scattering cross section
and for circular particles can be written in terms of the number
density p as T, = 1/(2Rvop). The effective propulsive speed can
then be written as1©

wmzm( “). (5)

Tmft

This derivation makes sense at low densities, where 7., > 7;, and
two body collisions are the primary cause of velocity slow-down.
Eq. (5) predicts a linear dependence of velocity on density. This
has been observed empirically to hold to a good approximation
up to much larger densities which might be a priori expected on
the basis of this simple derivation1°.

Previous work121416 on continuum models of MIPS has

shown that the onset of phase separation can be understood qual-
itatively by a linear instability associated with the vanishing of an
effective diffusion coefficient, given by 10

@m%:ﬂ@)o+deM).

dlnp
Within our approximation in Eq. (5), MIPS ensues when T, ~ Ty,
which is also when such an approximation breaks down, suggest-
ing that many-body collisions become important.

(6)

To estimate the stalling time 7, and hence the onset of MIPS in
our deformable droplet system, we note that the latter is mainly
controlled by two processes: the reorientation that occurs at rate
D, and the fact that collisions among deformable particle have a
finite duration 7.. Assuming that 7; is controlled by the faster of
these two processes, we write 7, | = a; D, +a7, !, with a; and a,
fitting parameters expected to be of order one. We then estimate
the deformability dependence of 7., i.e., the time it takes for par-
ticles to move past one another due to interactions, by examining
numerically two body simulations of nearly head-on collisions in
the limit D, = 0, where particles cannot escape the collision by
turning their nose. We find that 7. depends strongly on deforma-
bility (Fig. 3). Using this estimate in the instability condition
Tt (P) = T5(d) we obtain the dashed line in Fig. 2, with a; = 3.70
and ap = 1.42. Therefore we find that the criterion 73 = 7, pre-
dicts well the onset of MIPS, so that the strong dependence of the
stalling time on deformability obtained from two body collisions
captures the increasing propensity of more deformable particles
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Fig. 3 The collision duration 7, as measured from two body simulations
of nearly head-on collisions with D, = 0 increases with increasing particle
deformability. See Appendix B for more details.

to phase separate.

3.3 Structure of the dense phase

The dense phase becomes more disordered as deformability in-
creases. This is evident from Fig. 4(a) and (b), where we show
snapshots in which the cells are colored by their number of neigh-
bors as determined by a Voronoi construction of their centers of
Clearly the number of structural defects increases with
deformability. To quantify the structure, we define the bond-

orientational order of a cell j as Ws ; = y1- ¥ €%, where the
’ " kenn
sum is over the k nearest neighbors and 6 is the angle between

the center of mass of cell j and cell k. We define the local bond-
orientational order |We|jo. as the average of W¢ ; over the cells
within a subsystem of size 10R. We show the distributions of this
quantity in Fig. 4, for low (c¢) and high (d) deformability. At low
deformability the distribution has a peak near |Wg|joc ~ 1, corre-
sponding to local hexatic order of the dense clusters, and a second
peak at a small values of |Wg|,. arising from the disordered low
density gas. For high deformability, however, there is no local
heaxatic order in the dense clusters, and the distribution has a
single peak at low |W¢|,.. The increase in disorder as a function
of deformability is similar to the change seen in the confluent de-
formable particle monolayer studied in previous work. 3>

mass.

4 Summary

In summary, we have characterized numerically the phase dia-
gram of a system of purely repulsive deformable active particles as
a function of their deformability and motility. This case is an im-
portant one to consider when the applicability of motility-induced
phase separation to biological systems, such as cell suspensions,
is considered: indeed, cells behave differently from colloidal rigid
particles, and can be better represented by deformable droplets.
We have shown that, like rigid APBs, deformable particles

4] Journal Name, [year], [vol.], 1—7
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Fig. 4 Top row: snapshots of the phase-separated system with some of
the particles in the dense phase colored by the number of neighbors as
determined by a Voronoi diagram of the centers of mass for low ((a),
d =0.1) and high ((b), d = 10) deformability. Bottom row: correspond-
ing (time-averaged) distributions of the local bond-orientational order
parameter |Pg|oc-

phase separate into a dilute and dense phase for sufficiently per-
sistent motility. However, we found that deformability has two
important effects on motility-induced phase separation. First, de-
formable particles are able to phase separate at a significantly
lower motility than rigid ones. This effect can be explained by
the fact that deformability increases the duration of two-body col-
lisions, thereby enhancing the slow-down of motility induced by
crowding. Second, deformability strongly affects the nature of the
high-density phase, which is glassy for squishy (more deformable)
particles, which become polydisperse, and near-crystalline for
rigid (less deformable) particles. It would be of interest to study
in the future the dynamics within the high-density phase, to as-
sess whether the structural differences we have observed translate
into a dynamical phase transition between the two regimes.

We stress that increasing deformability in our work has a dis-
tinctly different effect from the softening of the repulsive inter-
action. Previous work on simulations of rigid repulsive ABPs
has shown that softening the repulsive interaction suppresses
both motility-induced phase separation and bond orientational
order2®. Phase separation in that context is suppressed because
softer repulsive interactions allow particles to overlap, which re-
duces the amount that particles are slowed down due to colli-
sions. In contrast, deformability, as implemented in our work,
suppresses overlap and enhances the slow down due to collisions,
which promotes phase separation.

Future work will be needed to further connect MIPS to bio-
logical systems. Additional interactions beyond steric repulsion,
such as differential adhesion3?, as well as chemically mediated
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interactions %%*! | may enhance cell aggregation or affect pattern

formation in real systems. A further interesting generalization
would be to consider mixtures of deformable and rigid particles,
which could lead to sorting between cells within the high-density
phase.
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Appendix A Role of interaction forces in the advec-
tion equation

Phase field models used in previous literature have either in-
cluded 3931 or neglected 3237 the passive interaction forces in
Eq. 3 for the cell advection velocity. These interaction forces arise
from cellular stresses when the 3D force balance equation is av-
eraged over the cell thickness to obtain a 2D model of cells cou-
pled to a substrate.*> We show here that the presence/absence
of these forces has a significant effect on MIPS. Specifically, the
effect of deformability on MIPS is reversed when the passive in-
teraction forces are not included in the force balance equation
for the advection of velocity. In this case, increasing deforma-
bility suppresses rather than enhances phase separation even at
high motility. To understand this we recall that MIPS occurs when
crowding suppresses motility. For rigid particles with purely re-
pulsive interactions the reduction of the motility of particle i is
given by the component of the repulsive force on that particle
along its direction of self propulsion and can be estimated to lin-
ear order in density, as shown in Ref.14. When passive forces are
neglected in the force balance equation, there are simply no inter-
actions that can renormalize the motility. Increasing deformabil-
ity then allows cells to more easily squeeze through their neigh-
bors, slightly increasing the particles’ effective motility (Fig. 5(b))
and suppressing MIPS. This effect can also be observed by visu-
ally inspecting the phase separated system (see Fig. 5(c)): passive
forces help cells keep away from each other, leading to larger clus-
ters. In their absence, the same deformability and motility lead to
sparser clusters.

To demonstrate the effect of the passive forces on the effec-
tive velocity v; of a cell, we have performed simulations of the
head-on collision dynamics of two particles at various values of
the substrate friction I'. It is clear from the force balance equa-
tion, Eq. 3, that increasing I" reduces the importance of the pas-
sive forces, which eventually drop out entirely for I' — oo, where
v; ~ voP;. We show in Fig. 6 the duration of a binary collision as
a function of deformability for various values of T'. It is evident
that while at small I" the duration of collision increases with de-
formability, as shown in the main text, this behavior is reversed

Soft Matter

at high I', where the collision is only indirectly slowed down by
shape changes in the evolution of the phase fields, Eq. 2. In this
case more deformable particles can squeeze more easily around
the obstacle provided by another particle. The small nonmono-
tonic region at intermediate I" (green dots in Fig. 6) and small
deformability is due to the competing effects of the particle shape
changes and passive forces on the collision duration. Initially, the
shape changes allow the particles to move past one another more
quickly. However, as deformability increases further, the shape
changes result in greater passive forces along the direction of the
collision, thus slowing the particles down.

Appendix B Details of two-body collisions

We consider two particles, initially isolated and circular, which
propel towards each other in a head-on collision. All the cell
parameters are as in the main text, except D, = 0 to eliminate ro-
tational noise. We offset the particles by one lattice point (impact
parameter b = éR) so that they are nearly head-on, but are still
able to move past one another in the absence of noise. We focus
on nearly head-on collisions because those are the ones which
significantly slow down a particle, and hence are the most im-
portant for cluster formation. We choose a cutoff of ¢; + ¢, = 0.1
to define when the two particles are in contact with one another,
and measure the collision duration as the total time the particles
are in contact. As can be seen in Fig. 7, when particles with high
d collide (bottom row), their shape changes, which slows their
motion past one another.

Appendix C Table of Parameters and Simulation
Details

Table 1 Value(s) of the parameters used in the simulations.

Parameter Interpretation Dimensions  Value(s)

d deformability - 0.1-10

R cell radius [L] 1

13 cell interface thickness [L] 1/4

€ strength of repulsion [E] [L]2 1

X cell compressibility - 50

% inverse mobility [E][T][L]"%2 4.375x1072

r substrate friction density ~ [EJ[T][L]™* 4.375x 1072

Vo cell self-propulsion speed  [L][T]™! 1

D, polarity diffusion rate [T]! 1/75-1/15

dt time step [T] 2.1875x 10~*

dx lattice size [L] 1/8

Ly cell subdomain size [L] 4.375
simulation box size [L] 112.125

[0} packing fraction - 0.5

We have chosen the preferred cell radius as unit of length (R=1),
R/vy as unit of time (vy = 1), and the repulsion strength over cell
area as unit of energy (¢R> = 1). To compare with a physical
system of cells, we can match the cell radius and self-propulsion
speed to the data for isolated cells in Table 1 of Ref.? for kera-
tocytes. This results in a radius R ~ 10 um, and vy ~ 558 um/hr.

We simulate Eq. (2) using finite differences, and a 3rd order

upwind scheme for the advection velocity. The simulation lattice
spacing is dx ~ 1.25um with a total box size L ~ 0.1cm and the
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Fig. 5 (a) Phase diagram obtained simulations using the model of Ref. 32
without passive forces in Eq. (3). Colorbar: variance of the local packing
fraction, normalized by a cutoff 0.0252, which corresponds to the dif-
ference between a unimodal and bimodal distribution in this model. In
the absence of passive forces, deformability suppresses phase separation.
(b) Cell velocity as a function of local packing fraction for cells without
passive forces. Increasing deformability reduces the slow-down induced
by crowding, thus suppressing MIPS. (c) Snapshot of phase separated
states with and without passive forces at the same deformability and
motility (d = 0.1, Pe =75). Passive forces lead to a more spread-out
spatial distribution of cells.
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time unit is 64s, with a time step of dr ~14 ms and a total sim-
ulation time of ~35 hrs. As in previous work, we compute an
auxiliary field 4(7) = £V ¢?, which allows us to solve for the in-
dividual phase field in parallel on their own subdomains 28-31-32,
We choose a subdomain of size Ly, X Lg,;,, Where Lg,;, = 35, which
is larger than a single cell but smaller than the whole system, with
fixed boundary conditions (¢; = 0) on the boundary of the subdo-
main. As in previous work32, we keep the cell in the center of its
subdomain by shifting its position when it has moved more than
2 lattice units in any direction, and we correspondingly update
the position of the subdomain relative to the whole lattice. On
the full simulation box, the boundary conditions are periodic. We
initialize the system with cells that are placed randomly but non-
overlapping, with a random initial velocity direction. On each
sublattice, the field of the cell is initialized as a circle of radius
R, with ¢; = 1 inside the circle and ¢; = 0 outside, centered at the
center of the subdomain. We evolve the system without motility
(vp = 0) for 10,000 time steps before turning on motility (vy # 0).
This passive run allows the cells to develop a finite interface width
and reach their equilibrium shape before turning on activity. We
run the active simulations for 1.1 x 107 time steps on 12 proces-
sors, parallelized with OpenMP.
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We have included videos of the system at d=0.1 and 10.0 with
Pe=75 to show the system at various values of deformability
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