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Understanding nonequilibrium interactions of multi-component colloidal suspensions is critical for
DOI:00.0000/000000000x many dynamical settings such as self assembly and material processing. A key question is how the
nonequilibrium distributions of individual components influence the effective interparticle interac-
tions and flow behavior. In this work, we develop a first-principle framework to study a bidisperse
suspension of colloids and depletants using a Smoluchowski equation and corroborated by Brown-
ian Dynamics (BD) simulations. Using nonlinear microrheology as a case study, we demonstrate
that effective depletion interactions between driven colloids are sensitive to particle timescales out
of equilibrium and cannot be predicted by equilibrium-based pair potentials like Asakura-Oosawa.
Furthermore, we show that the interplay between Brownian relaxation timescales of different species
plays a critical role in governing the viscosity of multi-component suspensions. Our model high-
lights the limitations of using equilibrium pair potentials to approximate interparticle interactions in
nonequilibrium processes such as hydrodynamic flows and presents a useful framework for studying

the transport of driven, interacting suspensions.

1 Introduction

When a colloidal suspension is driven out of equilibrium by body
forces or hydrodynamic flows, interactions between the individ-
ual particles can couple with convective forces to induce mi-
crostructural reorganizations and relaxations across large time
and length scales. 72 As a result of these structural changes, col-
loidal suspensions can exhibit non-Newtonian behaviors such as
shear thinning,®™ shear thickening,®™ and viscoelasticity. 1213
As such, developing a relationship between interparticle interac-
tions and suspension-level transport is a crucial goal for under-
standing many natural systems and soft materials.

Particle interactions in colloidal systems typically result from
the local distribution of small molecules, polymers, or ions near
the surfaces of the colloids. Particularly, adding non-adsorbing
polymer coils to a colloidal suspension induces an entropic deple-
tion force, responsible for a rich variety of phase phenomena in-
cluding flocculation, ™ liquid-liquid phase separation, 1% and nu-
cleation and crystallization. Established by Asakura, Oosawa
(AO), and Vrij, depletion forces at equilibrium result from
depletants preferentially excluding from the vicinity of the larger
colloids to induce an entropic attraction between colloidal pairs
that scales with the thermal energy kg7 and the depletant con-
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centration, ny,. Equilibrium-based models of the depletion poten-
tial have also been broadly applied to suspensions driven out of
thermodynamic equilibrium as an approximation of the interpar-
ticle interactions. In biology, AO-type depletion potentials have
been proposed as a model for reversible aggregation of red blood
cells. 1921 1n synthetic systems, equilibrium depletion potentials
are used to predict the rheology of colloid-polymer mixtures22
and in simulating depletant-induced gelation processes.23 2427
The key underlying assumption is that there exists a separation
of timescales between the slow rearrangement of large colloidal
particles and the rapid equilibration of the small polymeric deple-
tant bath, 7. > 1,, such that the depletant distributions behave
quasi-statically under any nonequilibrium process which disturbs
the colloidal-scale microstructure.

However, when the flow velocity is comparable to the ther-
mal Brownian velocity of the depletants, the depletants no longer
assume an equilibrium Boltzmann distribution around the col-
loids and the classic AO depletion potential is no longer an ac-
curate model for colloidal interactions. For example, Dzubiella
and coworkers have shown theoretically that two fixed colloids
in a drifting depletant bath exhibit anisotropic, flow-dependent
depletion forces, 28 which have also been confirmed by Sriram
and Furst through optical trapping experiments.29 As a separate
example, Xu and Choi et al. recently demonstrated that polymer-
coated colloids exhibit dynamic pairwise forces which slowly re-
lax over time when colloids are driven towards each other at
speeds comparable to polymer surface diffusion.2% While such
nonequilibrium effects are important in dictating the macroscopic
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behavior of driven suspensions, developing models for out-of-
equilibrium particle interactions remains a challenge. Previous
work has primarily focused on bath particle organization around
fixed colloids, while colloids in a free suspension are able to un-
dergo motion under various forces such as Brownian diffusion
and advection.?132 It is still unclear how the local polymer distri-
butions and timescales couple to suspension-level processes. We
hypothesize that a competition between the depletant timescales
7, and colloidal process timescales 7. in nonequilibrium systems
ultimately controls the suspension microstructure and rheology.

In this work, we use Smoluchowski theory and Brownian dy-
namics (BD) simulations to develop a multiscale framework for
studying nonequilibrium interactions among colloids driven out
of equilibrium. As a specific case study, we focus on the nonlinear
microrheology of a bidisperse suspension of colloids and deple-
tants. We show that the nonequilibrium colloidal microstructure
and viscosity cannot generally be predicted by a naive applica-
tion of an AO-type depletion potential. To the best of our knowl-
edge, this work is the first full micro-mechanical consideration
of a nonequilibium, multi-phase suspension that does not rely on
any standard, equilibrium-based approximations.

The remainder of this paper is organised as follows. In Section
2 we describe the model suspension and use the Smoluchowski
framework to derive governing equations for the colloidal mi-
crostructure and viscosity. In Section 3 we present our results
and analysis. Finally, we discuss the implications of our work in
Section 4.

2  Methods

2.1 Model Preliminaries

Our theoretical framework is general to any imposed hydrody-
namic flow, but we chose to focus here on a nonlinear microrhe-
ology problem to make comparisons with existing work. As de-
picted in Fig. [1} we consider a 2-dimensional system of two in-
teracting colloidal particles suspended in a bath of smaller, ideal
depletant particles in a Newtonian solvent with viscosity 11 and
temperature 7. Assuming the polymeric depletant behaves as
a random walk chain that can be mapped onto a hard sphere,
we choose the particle radii of the colloids and depletants as
d. =50 and dj, = 10, respectively. We assume that the depletants
are ideal and mutually uncorrelated but can interact with the
larger colloidal particles. In constant-velocity nonlinear microrhe-
ology, we consider the behavior when one colloid particle (the
“probe”) is driven in the positive-x direction through the suspen-
sion at a probe velocity, U; = U.e,, while all other particles move
through Brownian motion and are quiescent. As the probe is
pulled through the suspension, it experiences viscous drag forces
from the Newtonian solvent and also from random collisions with
suspended particles. Under these effects, the imposed velocity is
related to an average force felt by the probe (U.) = upF; where
Up is the mobility of the probe. This is contrasted with passive
microrheology, where the probe itself undergoes Brownian fluc-
tuations, and with constant-force nonlinear microrheology, where
the probe is pulled at a fixed force and moves under a velocity that
has been averaged over collisions with all remaining particles.
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Fig. 1 Schematic of a bidisperse model system depicting one probe colloid
(red) and one quiescent colloid (gray) with size d. suspended in a dilute
bath of smaller bath particles (blue) with size d,. The probe is driven at
constant velocity U, in the positive x-direction. The coordinates (h, r)
denote the positions of a depletant and the quiescent colloid relative to
the probe, respectively.

Neglecting hydrodynamic interactions, the viscous drag expe-
rienced by the depletants, {,, and by the quiescent colloid, &, is
related through a drag parameter, a = {./,. Under the Stokes-
Einstein-Sutherland (SES) relation for particle diffusion coeffi-
cients, D}, = kgT /{1, the relative drag parameter reduces to a
ratio between the particle sizes, a = d./d, = 5. To thoroughly
explore the relationship between diffusive timescales and mi-
crostructure, we consider the general case where the frictional
drag coefficients may deviate from the SES relation. For example,
if particles are embedded in a more complex environment, such
as a hydrogel network, o may additionally depend on parameters
such as mesh size and mesh stiffness.?3%3% To reduce the number
of parameters, we define a Péclet number Pe. = U.d},/D. relating
the driving velocity to the speed at which the colloid diffuses in
space. In general, the Péclet number Pe indicates the relative im-
portance of external forcing to the thermal, restorative forces of
the material. Since there are two particle species in the system,
a second Peclet number, Pey, = Ucd}, /Dy, relates the driving veloc-
ity to the speed at which the polymeric depletant diffuses. We
note that these two nondimensional quantities are exactly related
through the drag parameter, Pey, = Pe./ .

We now explain the micro-mechanical framework for this bidis-
perse suspension below.

2.2 Smoluchowski Framework

In colloidal suspensions, the microstructural response to nonequi-
librium perturbation determines the rheological response of the
material. The time-dependent distribution of particles in a
suspension obeys the Smoluchowski equation, which balances
fluxes of advection, interparticle forces, and Brownian diffu-
sion.H3IL3I37539 We have labeled all quantities with respect to the
probe with the subscript i = 1, the quiescent colloid with i = 2,
and the bath depletant with i = 3, respectively. The three-particle
distribution P; of the probe, the quiescent colloid, and a depletant
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particle is given by:

%+V'Uz—j1>3+vh‘ﬁ3—j1>3:0- )
In Eq. (1} j; is the probe flux, which is deterministic when driven
at constant velocity, j, is the flux of the quiescent colloid, and js
is the flux of the bath depletant. The brackets (...); represent a
statistical average over the degrees of freedom of N — 1 depletant
particles. The relative flux of the quiescent colloid (j, —j;) is:

(o —i1)s = —a L [PecPye, + P3V(Var +Vap) /(kpT) +VPs],  (2)
and the relative flux of the depletant (j; —j;) is:
(i3—Jj1)3 = —0 'PecPse; — P3Vy (V31 +V32)/(kgT) — ViPs.  (3)

The terms on the right hand side of Eq. 2hnd Eq. [3] represent
contributions from advection due to probe motion, interparticle
forces derived from probe-colloid (Vi;), probe-depletant (V;3),
and colloid-depletant (V,3) pair potentials, and thermal motion,
respectively. We have rescaled all distances by the depletant size
dy,, energies by the thermal energy kg7, and time by the Brownian
timescale of the depletant particle, TSrownian — dg /Dy. In general,
the Smoluchowski equation for P; depends on higher order mo-
ments that involve the conditional distributions of the remaining
N — 1 particles. To render the equation tractable, in writing down
Eq. we have opted for a closure relation which neglects those
higher order contributions. A more detailed derivation of these
equations from a general Smoluchowski equation is provided in
the Supplementary. All derivatives and gradients with respect to
the colloidal position are defined as V = V; for notation simplicity.

The three particle probability may be defined in terms of con-
ditional probabilities, Py = P Py (r,1)Pyp(h,t[r). Here, Py (r.t) is
the probability of finding the quiescent colloid at position r and
Pyp(h,t|r) is the probability of finding a depletant particle at h
given that the quiescent colloid is at r. These conditional proba-
bilities are related to physical quantities by Py (r,7) = ncg(r,t) and
Pp(h,t|r) = nyp(h,t|r) where g is the colloidal pair distribution
function and p is the local depletant structure about the colloidal
pair in a particular configuration. We observe that the colloid pair
distribution satisfies mass conservation, g(r) = ny, [ g(r)p (h|r)dh.
Additionally, because hard particles cannot overlap, Eq[l] satis-
fies no-flux boundary conditions at hard-disk contact distances,
n,-(s—ji)3=0ath=dy = (de+dp)/2 and n, - (jp —j)3 =0 at
r = dc. At infinitely large separations, the depletants and colloid
are uniformly distributed and uncorrelated, g,p — 1 for r,i — oo.

The integration of Eq. [1] over the last depletant degree of free-
dom results in a two-body Smoluchowski equation:

V-Go—j1)2=0 4

where the average colloidal flux is:

J2—ji)2= fPeCa_leng o

, )]
Vet aVia/(aT) + gm [ pVVas/(aT)eh .
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The contributions on the RHS of the average colloidal flux are
advection, Brownian, colloid-probe interactions, and an average
bath-mediated colloid-probe interaction. We observe that Eq.
are standard, pair-level equations which have been used exten-
sively and successfully to model distributions of mono-disperse
colloidal suspensions. The main focus of our present work is the
last term in Eq. [5| In most prior works, p is not explicitly solved
for and the last term in Eq. [5]is instead approximated by an equi-
librium pair potential such as DIVO theory or Asakura-Oosawa
depletion interactions even while the system is driven out of equi-
librium, as we will briefly describe in the next section.

2.3 Asakura-Oosawa (AO) Model

The Smoluchowski equation we have previously laid out consti-
tutes a framework in which the bath flux is explicitly considered
when deriving the suspension microstructure. The microstruc-
tural deformation becomes a function of both the nonequilibrium
driving strength and the relative rate of diffusive transport be-
tween the colloid and the bath, g(r,7;Pe.,o). To validate our
framework and demonstrate its advantages in nonequilibrium set-
tings, we will compare our approach to a conventional treatment
which uses an equilibrium depletion potential. In this treatment,
rather than considering the nonequilibrated local bath distribu-
tion p, we impose a quasi-static, attractive pair potential between
the colloid and the probe, such that their relative motion is gov-
erned by a two-body Smoluchowski equation:

dg ..
T v, — =0 6
g TV 2= (6)
where the relative translational flux is given by:

(G2 —j1) = —Pecger — gVVao/(kgT) — Vg. @)

Observe that Eq. [7] is identical to Eq. [5if the pairwise forces
obtained from the equilibrium approximations satisfy VVjo =
VVia/(kgT) + ny, [ pVVa3/(kgT)dh. Physically, this means that the
AO potential is equivalent to a local bath distribution which in-
stantaneously equilibrates about the two larger colloids.

At equilibrium, the structure of a homogeneous mixture gives

the effective depletion potential, which in two dimensions is given
by: 40141

14a)?
VAO/kBT:_"bdtz)( > )

cos ™! Ly L r 1- L r ’
1+4ady 1+ady 1+4ady

(8)

where a = d./dy,. Similar to Eq.[1} Eq[§satisfies no-flux boundary
conditions n- (j, —j; )3 = 0 at contact r = d. and uniform distribu-
tions far away, g — 1 for r — c. Under Eq.[6} [7} the microstruc-
tural deformations do not depend on depletant transport and are
purely functions of the probe driving strength, g(r,#;Pec). This
simple theory serves as a check of our framework at equilibrium,
and we will now consider its utility out of equilibrium.
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2.4 Regular Perturbation

In general, Egs. are difficult to evaluate numerically be-
cause the equation depends on both the bath and colloidal de-
grees of freedom. However, if the depletant diffuses much faster
than the colloid in the suspension, then the drag parameter o
is much greater than 1. In this limit, we can solve Eq. [1| using
a regular perturbation expansion p ~ pg+ o !p; + 0(a~?) and
g~ go+a g +0(a?) (see Supplemental). This is analogous
to a multiple-timescale approach, where the effective depletion
force at equilibrium may be obtained by expanding the time vari-
able in terms of the “fast” timescale of the depletants.42*44 phys-
ically, the regular perturbation implies that the probe is driven
at strengths comparable to thermal fluctuations of the depletant
(i.e. the linear response limit). Note that the driving strength
is not necessarily weak relative to colloidal diffusion, which al-
lows us to measure the nonlinear microrheology of the colloidal
suspension.

Using regular perturbation, we evaluate Eq.[1}[3]at steady state
and find that the leading order depletant distribution is a Boltz-
mann distribution py ~ e~¥2
that the fastest timescale in the system is depletant diffusion. The
leading order colloidal distribution obeys:

—Vi3 | consistent with our assumption

V- |Pecgoex + Vgo +goVVi2/(ksT) — gone /POVV23/(kBT)dh =0.

9
The first three terms on the left-hand side of Eq.[9]are identical to
Squires and Brady for a monodisperse bath,? while the last term
is a potential of mean force between the probe and colloid due to
the presence of depletants. We have further derived the govern-
ing equations for the & (a~') contribution in the Supplementary.
All equations are numerically evaluated for an arbitrarily large
2-dimensional area using FreeFEM+ +, an open-source finite ele-
ment package.“>

2.5 Viscosity Calculation

When driven at a constant velocity U, through the suspension,
the probe experiences both a Newtonian drag due to the solvent
and an additional, effective drag due to interactions with other
particles. For arbitrary pairwise interactions, it may be shown
that the average force felt by the probe is given by:

Fi)= 5 ¢

+nckgT /gVVzldr-i-ncnkaT/g/pVhV31dhdr.
nnde . J 7.

(10
The additional viscosity due to particle interactions may be re-
lated to Stokesian-type drag, (Fi) = 3@NegdcUc. One may com-
pute the effective viscosity increment Aneg = Negr — N, Which is
given by:

Aneff _ nckBT
n 3nnd.Uc

ncnkaT
3znd.U.

/gVVzldl'-i- /g/pVhV31dhd1'.
1D
The first term on the right-hand side of Eq. [11] exactly matches
the result arrived at by Squires and Brady for a monodisperse
suspension, except that, in this case, the pair distribution g is

modified by depletant motion.22 The second term contributes an

4 Journal Name, [year], [vol.], 1

O (ny,) effect and accounts for contributions arising from hard-disk
collisions with the depletant particles. One may rationalize this
depletant concentration dependence by considering that the AO
interaction potential also scales with n,. We note that our multi-
scale model naturally reduces to the AO pair interaction in the
limit of rapidly-equilibrating depletants.

In the next section, we detail our simulation protocol and our
choice of particle pair interactions.

2.6 Brownian Dynamics Simulations

To validate our Smoluchowski theory, we perform 2-dimensional
BD simulations of the aforementioned viscous suspension of two
colloidal particles suspended in a bath of smaller depletants. In
the simulation, one probe colloid moves deterministically with
constant velocity Uce, such that in the reference frame of the
probe, the quiescent colloid and depletants follow the over-
damped Langevin equation of motion:

Ar,-

=L ViV + FP ) — Peye, (12)
At > —— ~— ~——
interactions Brownian  advection

where 17} = Cep/Cc is the non-dimensional drag of the corre-
sponding depletant or colloid. Here, we have nondimensionalized
time by the diffusive timescale of the depletants d% /Dy, positions
by the depletant size d,, and all forces by kg7 /dp,. The implicit
solvent induces a stochastic force F? satisfying zero mean and
variance consistent with the fluctuation-dissipation theorem. In
all simulations, we have chosen a time step, Ar = 1074,
All interparticle forces are derived from a global potential:

VO =YY Vi(ry) (13)
i

where Vj; is the pairwise potential between particles i and ; at
separation rj;. As mentioned earlier, we neglect any depletant-
depletant interactions and assume that they are ideal. To model
the short-ranged repulsion between particles, we impose the
Weeks-Chandler-Anderson (WCA) potential between all remain-
ing particles pairs:4©

Vij(rij) = e {(%)12 - (%)6} +e (r< Z%d) 0
0 (r>2sd)

where d is the hard-disk contact distance, either d. for probe-
colloid pair interactions V}; or dg, for colloid-depletant and probe-
depletant interactions (V12,V5j+12), and ¢ is set as the thermal
energy scale.

From the simulations, we compute the average drag force on
the probe due to collisions with the quiescent colloid (i = 2) and
with the depletants (i =3,...,N +2),

1 N+2 VtOt
F)=— Y Vi[— ). 15
m=5 L l(kBT) (15)
which is related to the effective viscosity, as shown earlier.

All simulations are performed in a periodic box with dimen-
sions L, x L,. For weak driving (Pec < 1), we choose L, =220
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Fig. 2 Local depletant density transmits an effective nonequilibrium force between the quiescent colloid and the driven probe. Perturbation solutions
of Eq. for the steady-state conditional depletant density p(h|r) are shown given that the quiescent colloid (gray) is spatially fixed at a position (a)
behind, (b) alongside, (c) in front of, and (d) far from the probe (red). The quiescent colloid disrupts the depletant dipole organization when in
vicinity of the probe. White arrows indicate the the local, nonequilibrium force field on the quiescent colloid, weighted by the local polymer density,
pViV'™t. The drag parameter is & = {./{y =5 and driving force is Pec = 10. For contrast, equilibrium distributions peq are shown when the quiescent
colloid is (e) close to and (f) far from the probe, where excluded area overlap results in a classic 2D depletion force. Comparison of panels (e)-(f)
with panels (c)-(d) show dramatic differences in the distribution of the depletants around the colloids, demonstrating the inaccuracies of applying the

equilibrium AO depletion potential in nonequilibrium processes.

and L, = 18c. Under moderate driving (Pe. > 1), a trailing wake
begins to form behind the microrheological probe. Therefore, we
have increased the x-dimension in those simulations to L, = 1800
to ensure that results are not biased by finite size effects. Based on
box dimensions, we have chosen the number of bath particles to
maintain a high bulk density of ideal depletants, ny, = 0.63d;; 2. To
obtain sufficient statistics, we simulate 30-100 independent real-
izations and sample statistics for up to 10,000 depletant Brownian
timescales and 200 — 2000 colloidal Brownian timescales to ensure
steady state spatial distributions. All simulations are performed
using HOOMD-blue, a GPU-accelerated simulation package.47

3 Results

3.1 Nonequilibrium Depletant Microstructure

To understand how the depletant bath modifies colloidal in-
teractions out of equilibrium, we first consider the micro-scale
depletant structure around the colloidal pair. For an ideal,
monodisperse suspension, it is well known that bath particles
at steady state adopt a symmetric diffusive dipole, p(h,0) =
1 + Peycos(0)/(2h%), where bath particles accumulate in front
of the probe and deplete from the back.2 In Fig. [2] we solve
Eq. [1| using the regular perturbation approach and present con-
tour plots of the local depletant distribution p at a moderate driv-

ing strength Pe. = 1 and a =d./dy, =5, corresponding to the SES
limit. In the presence of the second quiescent colloid, the de-
pletant structure exhibit significant deviations from the monodis-
perse limit when the colloid is in the viscinity of the probe. When
the quiescent colloid is upstream of the probe (where it spends
a nontrivial amount of time), the depletants accumulate about
the quiescent colloid (Fig. ). On the other hand, when the
quiescent colloid is located downstream, depletants exclude be-
hind the quiescent colloid (Fig.[2h). In both cases, the quiescent
colloid effectively “shields” the probe, mitigating the retardation
felt by the probe from collisions with the bath. When colloids
are separated far apart (Fig. [21), the dipole is recovered and
the depletant density around the colloid is generally undisturbed.
These near-field deviations have not been previously predicted by
equilibrium-based assumptions such as dynamic superpositioning
approximation (DSA), which do not preserve the internal force
transmissions between the particles#8.

In Fig. [2k-f, we verify our theory at equilibrium by showing
that the depletant microstructure follows a Boltzmann-like dis-
tribution, where the depletant density is unity except inside the
excluded volume shells around each colloid. While the net de-
pletion force at equilibrium points along the centers-of-mass axis
between the probe and the colloid, the nonequilibrium depletion
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Fig. 3 Competition between depletant and colloidal timescales governs
the steady-state colloidal microstructure out of equilibrium. Contour
plots for the colloidal pair distribution g(r), obtained from numerically
solving the steady-state solution to Eq. [I] are shown for a range of de-
pletant diffusivities @ and probe velocities Pe.. The colloidal distribution
at low-Pec is uniformly isotropic while a boundary layer and trailing wake
develops at higher Pec.. An upstream ring of depleted density develops
at higher Pe. and low o due to nonequilibrium depletant interactions.

force is generally anisotropic and acts along the direction of probe
motion (Fig. [2h-d). Given their strength and anisotropy, we ex-
pect that these nonequilibrium forces will significantly impact the
colloidal microstructure. Our results demonstrate that the dis-
tribution of depletants is no longer Boltzmann in the presence
of forcing, and that the nonequilibrium distributions of the de-
pletants play a key role in dictating the effective forces on the
colloids. As we discuss in further detail below, the equilibrium
AO potential cannot be used in general to accurately predict the
colloidal distributions driven out of equilibrium.

3.2 Colloidal Microstructure

Given the local, flow-dependent organization of depletant par-
ticles, we now consider how the colloidal scale microstructure
is modified by these nonequilibrium depletion interactions. In
Fig. |3} we show contour plots for the steady colloidal pair distri-
bution function g(r) for a range of depletant diffusivities a and
probe driving strengths Pe.. Surprisingly, we find that the moder-
ate to high Pe behavior is sensitive to the diffusivity of the bath.
In a monodisperse suspension under strong shear, one expects mi-
crostructural deformations to collapse to a convection-diffusion
boundary layer of width d.Pe;! at sufficiently high Pe.. For a
bidisperse suspension, while the boundary layer is recovered in
the limit of very diffusive depletants, an upstream ring of essen-
tially no colloidal density with width d;, appears for lower values
of a. This is indicative of repulsive interactions between the col-
loid and probe beyond their hard sphere-like interaction. In a
previous study, this repulsion has been attributed to the interac-
tions facilitated by depletants, but the mechanism by how this oc-
curred was not clear.*8 When the probe velocity is comparable to
the depletant timescale, the depletant-mediated nonequilibrium
force tends to push the colloid away from the leading probe front
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and towards the back. (Supplementary Fig. 1) Due to the local
dipolar distribution of depletants, this nonequilibrium depletion
force tends to be stronger and longer-ranged than the equilib-
rium force, which disappears once |r| > dc +dp,.  Additionally,
we observe that the low-Pe. behavior is isotropically enriched, in-
dicative of an isotropic attractive depletion potential.

To quantitatively consider the colloidal microstructure at mod-
erate Pe., we perform BD simulations and average over a rep-
resentative cross-section of g(r) along the upstream direction. In
Fig.[dh, we show both the equilibrium distribution and a nonequi-
librium distribution at a driving velocity Pe. = 1 for low (o = 5)
and high (o = 50) depletant diffusivities. We plot our BD sim-
ulations, theoretical solutions to Eq. [I}Eq. [3] and results using
the equilibrium approximation with an AO depletion potential
(Eq.@Eq. . Overall, BD simulations show good agreement with
the theoretical solutions. The equilibrium g(r) enriches at contact
r/d. =1 due to AO-type depletion interactions and is independent
of a. This is consistent with the intuition that the equilibrium dis-
tribution is only dependent on the potential energy landscape and
is insensitive to transport properties such as diffusivity. We note
that the hard sphere contact distance limits our multi-scale solu-
tions to r/d. > 1.

Interestingly, two distinct characteristics arise when the probe
is driven. First, when depletants diffuse much faster than the col-
loid (et = 50), the peak in g(r) at r/d. = 1 increases by roughly
60% due to advection-driven accumulation along the upstream
direction. On the other hand, when the depletants are diffus-
ing at similar speeds as the colloidal particle (o = 5), the en-
richment at contact is significantly dampened. The AO theory
accurately predicts the former but has no way of accounting for
the latter. We rationalize that because the AO model assumes a
quasi-equilibrium distribution of bath particles, it therefore relies
on having a large separation of timescales, or large . Secondly,
while one would expect uniform attraction (i.e. g(r) > 1 for all
r) for depletion interactions, we find that the suspension shows
a slight decrease near r/d. ~ 1.2 when the bath is less diffusive.
This decrease corresponds to the repulsive ring that was qualita-
tively observed in Fig. 3] AO-theory fails to predict the repulsive
behavior, which must be purely a nonequilibrium effect. We veri-
fied that deviations of the theoretical results from simulations at
r > 1.2 are attributed to indirect correlations between the ideal
depletants, which exist at high number densities in our simula-
tions. We note that this depletant-mediated repulsion is distinct
from the pairwise repulsion in colloidal systems coated with inter-
acting, end-tethered polymer brush layers. While the polymer
brush system results in a entropic repulsion at equilibrium, the
depletant-mediated pair interaction is purely attractive at equi-
librium and the repulsion is a nonequilibrium effect associated
with the intrinsic depletant timescale.

In Fig. @b, we propose one mechanism by which the competi-
tion of diffusive timescales helps to facilitate this short-range at-
traction and longer-range repulsion. When the probe is driven at
moderate strengths, the particles in suspension accumulate (i.e.
spend a non-negligible amount of time) at the upstream surface of
the probe. When the colloid is separated from the probe by a layer
of smaller bath particles, a more diffusive bath is less perturbed
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Fig. 4 Depletant diffusivity modulates a short-range attraction and longer-range repulsion between colloidal pairs out of equilibrium. (a) The steady
colloidal pair distribution function g(r) upstream of the microrheological probe is plotted as a function of the center-center separation between the
colloids. Filled markers are BD simulations for the equilibrium suspension (blue) and the nonequilibrium suspension (Pe. = 1) in a less diffusive (red)
and more diffusive (black) depletant bath. Solid curves are solutions to Eq. [1} The Asakura-Oosawa approximation is also plotted for Pe. =0 (purple)
and Pe, =1 (green). Numerical solutions are truncated at Eq. |1| r/d, where we have imposed a no flux condition. (b) Proposed mechanism of how
depletant diffusivity modulates colloidal microstructure. Given their spatial diffusivity, depletants either quickly relax and move away to allow colloids
to come into contact (top) or form a boundary layer that shields the probe (bottom).

by flow and allows the colloid to make contact with the probe by
diffusing away from the interstitial region. As such, an AO-type
depletion attraction is maintained because depletants are able to
reach local equilibrium. However, when the bath depletants dif-
fuse comparably as fast as the colloid, the depletants accumulate
more strongly upstream and therefore requires more work for the
colloid to penetrate. In this case, the quiescent colloid effectively
“sees” a larger probe of diameter d. + dj,.

Finally, using our theoretical framework, we have derived a
nonequilibrium potential of mean force between colloidal par-
ticles which may be more practical for many-body systems un-
der assumptions of weak driving forces (see Supplemental for
detailed derivation). Unlike the equilibrium pairwise interac-
tion Veq which is equivalent to AO and is purely isotropic, the
nonequilibrium pair interaction Vyeq depends specifically on the
nonequilibrium protocol and may also depend on the relative
angle of separation. In Fig. we show the nonequilibrium
and equilibrium pair interactions along the leading front of the
probe for @ = 10 and colloid Péclet Number Pe, = 0.1. In agree-
ment with Fig. |4} Vheq contributes a repulsive barrier peaked at
r/d. = 1.2 = 1+4dy/d., corresponding exactly to the hard-sphere
contact distance between two colloids plus the diameter of the de-
pletant particle. This further supports our mechanism that deple-
tants help to shield the probe from the quiescent colloid along the
leading front. Additionally, this repulsive potential decays slowly
due to the long-ranged, dipolar perturbation to the local deple-
tant structure. Finally, because the equilibrium depletion interac-
tion is purely attractive but limited to r/d. < 1.2, the net pair in-
teraction demonstrates short-ranged attraction for r/d. < 1.2 and
long-ranged repulsion at r/d. > 1.2.

3.3 Microviscosity

Microstructural deformations about the probe are of central im-
portance to the rheology of the suspension. In this section, we
will study how the microviscosity responds to the competition be-
tween various relaxation timescales in our system. We first con-
sider the depletant contribution to the microviscosity by isolat-
ing the second term on the right-hand side of Eq. Any/n =
kgT (3nenpndcUe) ™! [ g [ Vi V31dhdr which accounts for the di-
rect interactions between the probe and the depletant. Notice
that this term has been normalized by n. and ny, since it depends
on the depletant distribution in the presence of the two colloids.
When considering depletant viscosity contributions, the depletant
Péclet number, Pey,, is the relevant nondimensional quantity that
measures the driving force relative to depletant Brownian relax-
ation.

In Fig. @ we plot An,/n as a function of Pey, for three differ-
ent depletant ratios. Interestingly, we observe that the depletant
microviscosity contribution increases at weak driving and is sen-
sitive to . When the depletants relax much faster than the col-
loids (& = 50), the probe experiences a lower drag at low shear
rates (Pe, < 1), approaching a linear-response plateau at Pey, — 0.
As probe velocity increases, the viscosity rises to a maximum be-
fore monotonically shear-thinning at moderate to high Pey,. This
is markedly different from the typical shear-thinning behavior of
hard sphere suspensions. We offer one explanation for this mild
shear thickening effect. When o is large, perturbations to the
colloidal structure relax much slower and g(r) adopts a bound-
ary layer of ¢'(Pe.) with a width of &(Pe.).2? The accumulation
of the colloid upstream of the probe prohibits depletants from
contacting the probe, as demonstrated earlier in Fig. [2k, and re-
duces Any,/n at low Pey,. As Pey, increases, the colloid is decreas-
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Fig. 5 Nonequilibrium, depletant-mediated interaction potential between
colloidal particles. The nonequilibrium pair potential Vheq(red), Asakura-
Oosawa potential Veq (black), and the net pair interaction (blue) are
plotted for large diffusivity ratio oo = 10 and small colloid Péclet Number
Pe. =0.1.

ingly able to screen out the depletants, thereby leading to an in-
crease in the depletant contribution to the microviscosity. On the
other hand, when a =5, Pe;, is comparable to Pe., the viscos-
ity remains relatively flat because both colloids and depletants
relax on similar timescales. At moderate to high shear, all cases
shear thin. Predicting this limit requires solving the coupled set of
Eq. without using regular perturbation, which can only pre-
dict a diffusive dipole. Numerical evaluation of those equations
are challenging as they require accounting for both colloidal and
depletant degrees of freedom simultaneously. Although we do
not have a theoretical prediction in this limit, we speculate that
the shear thinning behavior is likely similar to that of a monodis-
perse suspension. At high Pe., we observe a prolonged shear de-
cay towards zero in the simulations, which has been previously
observed. This shear thinning has been attributed to the inaccu-
racy of the continuous WCA pair potential in approximating hard
spheres in the limit of high probe velocity.4®. For hard sphere sus-
pensions, it has been previously found that the high shear viscos-
ity flattens toward a finite value as particles accumulate within a
convection-diffusion boundary layer of width Pe_ !, within which
the accumulation grows as O(Pec).22.

Finally, we consider the colloidal contribution to the micro-
viscosity by defining Ane/n = kpr(3ncandcUc) ™! [ gVVaidr from
Eq. In Fig. [7] we plot Anc/n as a function of the the col-
loidal Péclet number, Pe. for three different drag ratios. Here,
we observe a shear thinning behavior throughout and a small in-
crease in the linear response viscosity for decreasing depletant
diffusivity. This is consistent with the intuition that reducing bath
diffusivity also increases the relaxation time of the colloid and
therefore increases the work required to distort the colloidal mi-
crostructure. At higher driving strengths, both theory and sim-

8 | Journal Name, [year], [vol.], 1

ulations indicate a shear thinning behavior, which is commonly
observed in monodisperse hard-sphere suspensions without hy-
drodynamic interactions or contact friction. BD simulations at
weak driving suffer strongly from thermal noise and are omitted
for clarity.

When both contributions are combined, the overall viscosity
of the suspension remains shear thinning despite the mild shear-
thickening effect of the bath. However, caution should be taken
when directly comparing Fig. [6} [7] for two reasons. First, the x-
axis of Fig.[7]is offset from Fig.[6] by a factor of & due to the defini-
tion of the Péclet numbers, Pe. = oPey,. Second, Any, /1 is normal-
ized by the bath density while An./n, which also contains contri-
butions from the depletants, is not. Therefore, while the viscosity
is seemingly dominated by the colloid, in reality the depletants in-
directly influence g(r), and An./n become a weaker contribution
once np, has been scaled out. Finally, for a fixed depletant area
fraction ¢y, = nyw(dp,/2)%, we observed similar qualitative features
and note that the microviscosity contributions generally decrease
as depletant size increases. (Supplementary Fig. 2) Because the
depletant number density n;, must decrease to maintain a con-
stant area fraction, both the equilibrium and nonequilibrium de-
pletant interactions will weaken. Therefore, we hypothesize our
analysis holds in the limit of small depletants which are present
in high concentration.
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Fig. 6 Viscosity contribution from depletant bath mildly shear thickens at
lower shear and shear thins at higher shear. The depletant bath viscosity
is plotted as a function of the depletant Péclet number Pey, for a varying
drag ratios of o =5 (red), oo =12 (blue), and o =50 (black). Theory
predictions from Egs. are only shown for Pey < 0.2, when the regular
perturbation expansion is valid.

4 Discussion

Understanding the material properties of multicomponent sus-
pensions is important for many applications. In this work, we
have developed a framework that accurately predicts the struc-
ture and microrheology of a bidisperse suspension of colloids and
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depletants. We found that the colloidal microstructure is gener-
ally sensitive to the bath diffusion timescale and that equilibrium-
based approximations toward a depletion pair potential is only re-
liable in certain limits. While we focus our case study on a dilute
suspension with at most pairwise interactions, in denser systems
one may opte to apply a mean-field treatment. For a hard sphere
suspension, one may incorporate the mean field external poten-
tial, which is derived based on the free energy of the system and
depends on higher order virial coefficients, into Eq. [1| to account
for density effects. 49,

We also qualify our results by observing that beyond a cer-
tain flow strength, the polymer may undergo a coil to stretch
transition, resulting in stresses that grow nonlinearly with the
flow rate.4? When the deformation time exceeds that of the in-
ternal relaxation time of the depletant polymer chain, polymers
no longer adopt a random-walk chain and can become elastically
stretched. In such cases, the polymeric bath may be better treated
as a continuous, viscoelastic fluid instead of hard sphere parti-
cles. Previous works have used well-established models such as
Giselkus or Oldroyd-B to describe the fluid suspension.2%%2 In
such cases, the fluid disturbances due to the particles alone may
give rise to shear thickening effects, in the absence of hydrody-
namic interactions or frictional effects.®% In Brownian Dynam-
ics simulations, one could explicitly model internal chain dynam-
ics by representing the polymer as a Kremer-Grest bead spring
model.”3 We leave the detailed analysis of such systems to future
work.

Although we have not accounted for hydrodynamic interac-
tions, fluid effects play an important role in modifying the rhe-
ology and microstructure of colloidal suspensions.*# Our the-
ory may accommodate near-field hydrodynamic functions as a
first step towards including fluid-mediated interactions. Addi-
tionally, effects such as roughness and friction between parti-
cle surfaces may contribute to shear thickening at higher flow
strengths. "1 We note that our simulations, which measures cor-
related motion between the probe and anther colloid in a de-
pletant bath, bear similarities with multiparticle microrheology
techniques, where the relative motion of multiple probes allows
the measurement of collective drift or characterization of material
heterogeneities.24>>

We conclude with a discussion of the potential applications of
our model. Although we have provided the simplest case of deple-
tion interactions facilitated by repulsive, hard disks, future work
may look into other types of small particles such as ahesive col-
loids coated by single-stranded DNAR9"38l or particles stabilized
by electrostatic interactions.® Furthermore, AO or DIVO poten-
tials are commonly used to model colloidal systems that undergo
kinetic arrest and gelation.24126127159:62I The mjcro-mechanism we
have identified in this work may shed light on the limited applica-
bility of static pair interactions in these nonequilibrium systems.
Our framework may also be used to predict other material prop-
erties. For example, one may measure viscoelasticity by perform-
ing oscillatory shear rheology,®"> for which a microscopic the-
ory that accurately predicts the unsteady microstructure and the
material moduli of multicomponent suspensions is still lacking.
Finally, understanding the interplay between various relaxation
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Fig. 7 Viscosity contribution from quiescent colloid shear thins. The
viscosity due to interactions with the quiescent colloid is plotted as a
function of the colloidal Péclet number Pec for three drag ratios: a =35
(red), =12 (blue), and ot =50 (black). Theory predictions from Egs. [i}
are only shown for Pe. < a, when the regular perturbation expansion
is valid.

timescales in systems of colloidal scale is broadly relevant for a va-
riety of biological systems, including deformable particles©® and
biological cell surfaces where proteins laterally rearrange cell-cell
contact.®”
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