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Electrostatic force on a spherical particle confined be-
tween two planar surfaces

Zhanwen Wang, a Michael J. Miksis,b and Petia M.Vlahovska b

A charge-free particle in a uniform electric field experiences no net force in an unbounded domain. A
boundary, however, breaks the symmetry and the particle can be attracted or repelled to it, depending
on the applied field direction [Wang et al, PRE 106:034607 (2022)]. Here, we investigate the effect
of a second boundary because of its common occurrence in practical applications. We consider a
spherical particle suspended between two parallel walls and subjected to a uniform electric field,
applied in a direction either normal or tangential to the surfaces. All media are modeled as leaky
dielectrics, thus allowing for the accumulation of free charge at interfaces, while bulk media remain
charge-free. The Laplace equation for the electric potential is solved using a multipole expansion and
the boundaries are accounted for by a set of images. The results show that in the case of a normal
electric field, which corresponds to a particle between two electrodes, the force is always attractive
to the nearer boundary and, in general, weaker that the case of only one wall. Intriguingly, for a
given particle-wall separation we find that the force may vary nonmonotonically with confinement
and its magnitude may exceed the one-wall value. In the case of tangential electric field, which
corresponds to a particle between insulating boundaries, the force follows the same trends but it is
always repulsive.

1 Introduction
Electric fields are commonly used to manipulate colloidal par-
ticles1–6 and droplets7,8. Electric fields drive electrohydrody-
namic flows that assemble colloidal crystals on electrodes9 and
have also become a popular means to energize and create self-
propelled particles10–14 due to field-induced charge electrophore-
sis15–17 or torque due to the Quincke effect, which drives colloids
to roll on a surface18–23. Electric fields enable active control of
droplets in microfluidics24–26. In these applications particles are
often confined by electrodes or channels, and the electrostatic
force (and torque) exerted on the particle is significantly influ-
enced by the bounding surfaces.

The force on an spherical colloid near a planar boundary has
been mostly analyzed in the two limiting cases of a conducting
or an insulating particle. The surface of a conducting particle
is equipotential, and consequently, the electric field inside van-
ishes. The net charge and force on a spherical particle are calcu-
lated using the method of images27,28 or the equivalent problem
of two spheres in a uniform electric field29. If the particle is a
perfect insulator and charge-free, the boundary condition on the
particle-medium interface are continuity of the electric potential
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and the displacement field. The electrostatic force has been ob-
tained either in terms of series expansion in eigenfunctions of the
Laplace equation in bispherical coordinate system30–34, or from a
multipole-moment theory for the pair-wise dielectrophoretic in-
teractions of dielectric spheres35,36. Real materials are, how-
ever, rarely perfectly insulating. Even a weak conduction leads
to the accumulation of free charges at interfaces37, which can
profoundly affect the particle electrostatics. In the case where
particle and suspending media are leaky dielectrics, the appropri-
ate boundary conditions at interfaces are continuity the normal
electric current rather than the displacement field38. The dis-
continuity of the latter determines the induced free charge dis-
tributed along the interface (with net charge being zero). The
bulk media remain charge–free and the electrostatic potential is
a solution of the Laplace equation.

Recently, this leaky dielectric model was used to analyze the
spherical particle-wall interactions for particle and suspending
media with arbitrary conductivities39. Electric fields applied both
normal to an electrode or tangential to an insulating boundary
were considered and the force calculated for arbitrary particle
separations. Here, we consider the effect of a second, parallel
boundary on the electrostatic force on the particle. This paper is
organized as follows. The problem is formulated in Section 2. In
Section 3, the solution methodology using the method of images
and the mulitpole expansion is presented, which is a generaliza-
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tion of the approach developed by Washizu and Jones35 for two
identical particles in a uniform electric field. First, the solution
of the electric field is expressed in terms of a series of Legendre
polynomials, and an algorithm to determine the expansion coef-
ficients is developed. Then the force on the particle is calculated.
In Section 4, we explore the force dependence on confinement
and media electric properties.

2 Problem formulation
Let us consider a spherical particle with radius a, conductivity σ1

and permittivity ε1, suspended in a medium with conductivity σ2

and permittivity ε2 between two parallel planar walls. A Carte-
sian coordinates system (x̃, ỹ, z̃) is centered along the lower wall
below the particle. The particle has zero net charge. The dis-
tance between the walls is H. The particle center is located at
(x̃, ỹ, z̃) = (0,0,h). The applied electric field, with magnitude E0,
is either normal or tangential to the bounding walls. Hereafter,
we rescale all variables by E0 and a. The dimensionless Carte-
sian coordinates are (x,y,z) = (x̃/a, ỹ/a, z̃/a). The rescaling intro-
duces three dimensionless geometry parameters: the dimension-
less height of the particle center above the bottom wall, δc = h/a,
the dimensionless gap between the particle surface and bottom
wall, δp = δc − 1, and the dimensionless distance between two
walls, δw = H/a.

Fig. 1 Sketch of the problem. A cross-section in the y = 0 plane is
shown.

To solve for the electric field and find the electrostatic force
on the particle, we adopt the leaky dielectric model37, which as-
sumes charge-free bulk media and attributes the space charge in
the diffuse layers near boundaries to the interface. The model has
been shown to be a good approximation of the full electrokinetic
equations in the case of thin Debye layers40–45. Accordingly, the
dimensionless electric potential inside the particle, Φ1, and in the
medium, Φ2, satisfy the Laplace’s equation

∇
2
Φi = 0, i = 1,2. (1)

The electric potential and normal electric current are continuous.
The boundary conditions on the at r = 1 read

Φ1 = Φ2, χn ·E1 = n ·E2, (2)

where n is the outward-pointing normal to the interface and χ is
the conductivity ratio, χ = σ1/σ2. The continuity of the normal
electric current implies discontinuous displacement electric field;
its jump defines the interfacial charge. Note that the interfacial

charge distribution is nonuniform (and in a uniform applied elec-
tric field it has a dipolar character), and the net charge is zero.
The boundary condition on the confining walls depends on the
direction of applied electric field. In the case of a normal electric
field, the two plane walls are conducting and equipotential:

Φ2 =

{
−δw at z = δw,

0 at z = 0 .
(3)

In the case of a tangentially applied electric field, the walls are
insulating, and the normal electric current vanishes

∂Φ2

∂ z
= 0 at z = 0, δw. (4)

Let us introduce dimensionless disturbance field Φ̂1 and Φ̂2,

Φi = Φ̂i− xα , (5)

where xα is the direction of applied electric field, xα = z for the
normal electric field and xα = x for the tangential electric field.
The disturbance fields satisfy Laplace’s equation, with boundary
conditions at the particle-medium interface

Φ̂1 = Φ̂2, χ
∂ Φ̂1

∂n
− ∂ Φ̂2

∂n
= (χ−1)

∂xα

∂n
. (6)

and homogenous boundary conditions on the two bounding walls{
Φ̂2 = 0 Normal electric field,

∂ Φ̂2/∂ z = 0 Tangential electric field.
(7)

3 Solution

3.1 Electric field

Following Washizu and Jones35, the perturbation in the applied
electric field due to a particle confined between two planar sur-
faces can be represented as a sum of multipoles of strength Bn,m

placed at the particle center and image multipoles Mn,m that ac-
count for the boundary effects (see ESI for details)

Φ̂2 =
∞

∑
n=m

(
Bn,m

rn+1 +Mn,mrn
)

Pm
n (cosθ)cos(mφ), (8)

Here m = 0 corresponds to the case of a particle between two
electrodes (electric field applied normal to the surfaces), while
m = 1 is the case of a tangentially applied electric field. (r,θ ,φ)
denote spherical coordinates centered at the particle.

The effect of the boundaries is accounted for by the method
of images. The two walls require two sets of images: a series
of successive images starting with a reflection with respect of the
bottom wall, β , and a series of images starting with a reflection
by the top wall, γ. For group β , the first image β

(1)
n,m is the mirror

image of the original multipole Bn,m relative to the bottom wall.

The relation between multipole components β
(i)
n,m and β

(i−1)
n,m is

given by
β
(i)
j,k = (−1) j+k+1

β
(i−1)
j,k , (9)

for the case of the normal electric field and equipotential walls,
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and
β
(i)
j,k = (−1) j+k

β
(i−1)
j,k , (10)

for the case of tangentially applied electric field and insulating
boundaries. The positions of the images in group β is determined
successively,

zi =

{
2δw− zi−1 i even

−zi−1 i odd

Image group γ is constructed using the same procedure, starting
with γ

(1)
n,m as the mirror image of Bn,m relative to the top wall.

For both cases of the applied electric fields, the location of im-
ages are −δc, 2kδw±δc, and −2kδw±δc, k = 1,2,3, · · · . Images lo-
cated at 2kδw +δc and −2kδw +δc have all components the same
as the original multipole while some of components of images
located at −δc, 2kδw−δc, and −2kδw−δc have opposite sign.

The images fields are re-expanded about the particle center,
r = 0, which yields Mn,m as the sum of all their contributions as

Mn,m =
∞

∑
l=m

N(m)
n,l Bl,m. (11)

The coefficients N(m)
n,l only depend on the geometry parameters δc

and δw (see ESI for details of the derivation). In the case of a
particle between two electrodes

N(0)
n,l =

(n+ l)!
l!n!

Cn,l , (12)

where

Cn,l =
1

(−2δc)n+l+1 +
∞

∑
k=1

[
(−1)l +(−1)n

(2kδw)n+l+1

− 1
(2kδw−2δc)n+l+1 −

(−1)n+l

(2kδw +2δc)n+l+1

]
.

(13)

For a tangentially applied electric field

N(1)
n,l =− (n+ l)!

(l−1)!(n+1)!
Cn,l . (14)

Convergence of Eq. 8 requires that r is limited by the two walls
and the particle, i.e., 1≤ r ≤min [δc,δw−δc].

The disturbance field inside the particle is given by the nonsin-
gular (at r = 0) solutions of the Laplace equation

Φ̂1 =
∞

∑
n=m

An,mrnPm
n (cosθ)cos(mφ). (15)

The next step is to match Φ̂1 and Φ̂2 using the boundary condi-
tions at particle-medium interface r = 1. Substituting Eq. 8 and
Eq. 15 into the equation for the continuity of electric potential
Eq. 2, we obtain

An,m = Mn,m +Bn,m. (16)

The continuity of the normal electric current, together with Eq.
11 and Eq. 16, leads to a set of algebraic equations to be solved
for the multipoles Bn,m, n = 1,2...,

∞

∑
l=m

[
(χ−1)nN(m)

n,l +(nχ +n+1)δnl

]
Bl,m = (χ−1)Gn,m, (17)

where δnl denotes the Kronecker delta and Gn,m comes from the
eigenfunction expansion of ∂xα/∂n,

∂xα

∂n

∣∣∣∣
r=1

=
∞

∑
n=m

Gn,mPm
n (cosθ)cos(mφ). (18)

In the case of a normal electric field, xα = z = δc + r cosθ , ∂ z/∂ r =
cosθ = P1(cosθ). From Eq. 18, we obtain Gn,0 = δn1. In the case
of tangentially applied electric field, xα = x = r sinθ cosφ . Since
P1

1 (cosθ) =−sinθ , the coefficients Gn,1 =−δn1.

3.2 Electrostatic force on the particle

The force is calculated using the approach developed by Washizu
and Jones46. The particle disturbance to the applied field is mod-
eled as due to an effective charge distributed on the particle sur-
face

σt =−
∞

∑
n=m

KnM′n,mPm
n (cosθ)cos(mφ) , (19)

where

Kn =
n(2n+1)(χ−1)

nχ +n+1
. (20)

M′n,m = Mn,m−Hn,m with Hn,m is obtained from expanding xα ,

xα =
∞

∑
n=m

Hn,mrnPm
n (cosθ)cos(mφ). (21)

Accordingly, the dimensionless force, denoted as force coefficient
C f = Fz/(ε2E2

0 a2), on the particle is

C f =
∮

r=1
σt

(
−∂Φext

∂ z

)
dS, (22)

where Φext is the electric potential due to the applied field and all
the images,

Φext =−xα +
∞

∑
n=m

Mn,mrnPm
n (cosθ)cos(mφ).

Taking the derivative with respect to z yields

∂Φext

∂ z
=

∞

∑
n=m

M′n,m(n+m)rn−1Pm
n−1(cosθ)cos(mφ).

Substituting into Eq. 22 leads to

C f =
∞

∑
n=m

∞

∑
k=m

(k+m)KnM′n,mM′k,m

×
∮

r=1
Pm

n (cosθ)cos(mφ)Pm
k−1(cosθ)cos(mφ)dS

(23)

The integral is evaluated using the orthogonality of the associated
Legendre polynomials,∮

r=1
Pm

n1
(cosθ)cos(mφ)Pm

n2
(cosθ)cos(mφ)dS

=

 4π

2n+1 δn1n2 m = 0,
2π(n+m)!

(2n+1)(n−m)! δn1n2 m 6= 0.
(24)
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3.2.1 Normal electric field

In the case of an electric field applied perpendicularly to the walls,
the problem is axisymmetric, m = 0, and the force is

C f = 4π

∞

∑
n=1

Kn
n+1
2n+1

M′n,0M′n+1,0. (25)

where coefficients M′n,0 are

M′n,0 =

{
M1,0−1 n = 1

Mn,0 n = 2,3, · · · .
(26)

Note that if the particle is a perfect conductor, it charges when
in contact with the electrode. The calculation of the force in this
case is presented in the Appendix A.

3.2.2 Tangential electric field

In the case of a tangentially applied electric field in the x direction.
m = 1. Using Eq. 22, we find

C f = 2π

∞

∑
n=1

Kn
n(n+1)(n+2)

2n+1
M′n,1M′n+1,1, (27)

where coefficients M′n,1 are

M′n,1 =

{
M1,1 +1 n = 1,

Mn,1 n = 2,3, · · · .
(28)

4 Results and discussion
In this section, we investigate the particle-wall interaction at dif-
ferent confinement, and different material properties of the par-
ticle and the suspending media. Specifically, we analyze the de-
pendence of the force on the

• Dimensionless distance between the two walls, δw = H/a,
δp +2 < δw < ∞

• Dimensionless gap between the particle surface and the bot-
tom wall, δp = (h−a)/a, 0 < δp < δw−2,

• Conductivity ratio, χ = σ1/σ2.

All calculations are done with sums truncated at 50 terms (Eq. 25
and Eq. 27), which is sufficient to achieve a converged result (see
ESI for details of the convergence tests).

4.1 Normal electric field

FIG. 2 shows the variation of the force with the particle-electrode
gap at a given separation between the electrodes. The force coef-
ficient C f , defined as the interaction force normalized by ε2E2

0 a2,
is plotted as a function of the particle to bottom-electrode gap, δp

for different electrode distance, δw. FIG. 2 b replots the data as
a function of (δp + 1)/δw− 1/2, which is zero when the particle
center is at the midplane between the electrodes. The magni-
tude of force is symmetric about the midplane while the direction
changes sign since the particle is attracted to the nearer electrode.

FIG. 3 illustrates the effect of the conductivity ratio χ on the
force. Since χ varies between 0, for an insulating particle, to ∞

Fig. 2 Particle between two electrodes: force coefficient C f =Fz/(ε2E2
0 a2)

as a function of the gap between the particle and the bottom electrode,
δp, and different electrode separations, δw (a). Panel (b) replots the data
as a function of (δp+1)/δw−1/2, the deviation of the particle center from
the midplane. Conductivity ratio is χ = 5.

Fig. 3 Particle between two electrodes: force coefficient C f =Fz/(ε2E2
0 a2)

as a function of the conductivity mismatch β12 = (χ−1)/(χ +1) for fixed
δp = 1 and various δw. β12 = 1 corresponds to a perfectly conducting
particle, while β12 =−1 corresponds to a perfectly insulating particle.
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for a perfectly conducting particle, we introduce the conductiv-
ity mismatch β12 = (χ−1)/(χ +1) which has a finite range from
-1 to 1, which is more convenient for plotting. The force behav-
ior is similar to the one-electrode solution39, which means that
introduction of the top electrode does not change the problem
qualitatively. The presence of the top electrode only decreases
the magnitude of the force, and weakens the attraction by the
nearer electrode.

Intriguingly, we find that the force may vary non-monotonically
with the confinement δw for a fixed particle-electrode gap, see
FIG. 4. At large distance between the electrodes, δw � 1, the
two-electrode solution approaches the one-wall result39. At the
minimum value of δw in the figure, 2(δp + 1), where the parti-
cle center is at the mid-plane between the electrodes, the force
vanishes. As the confinement decreases, however, the magnitude
of the force coefficient C f behaves differently depending on the
conductivity ratio χ. When the particle is more conducting than
the suspending medium, χ > 1, see FIG. 4(a), the force magnitude
passes through a maximum value (a "peak") that exceeds the one-
wall solution. In the case of χ < 1, FIG. 4(b), the magnitude of
C f monotonically decreases to zero as the electrode separation
decreases. We also compare the exact two-wall solution with the
approximate superposition solution, which is the sum of two one-
wall solutions with dimensionless particle surface to plane wall
gaps δp and δw − δp − 2, respectively. In general, the superpo-
sition solution is a good approximation of the two-wall problem,
especially in the case χ < 1. However, it can not predict the “peak"
since two the electrodes attract the particle in opposite directions.

A contour plot of the "peak” magnitude, defined as the maxi-
mum difference of the force magnitude between the two-wall and
one-wall solutions scaled by the one-wall solution, as a function
of particle-wall gap and conductivity ratio, is shown in FIG. 5.
The "peak" is most pronounced when the conductivity mismatch
is large, χ � 1 (conducting particle) and the particle is close to
the bottom wall, δp� 1.

The non-monotonic behavior of the force arises from the com-
peting interactions of the images β

(1)
n,m and γ

(1)
n,m and the particle

multipoles Bn,m. In the case of δw � δp � 1, the origin of the
peak can be illuminated by considering the interactions between
the leading order multipoles, the particle dipole B1,0 and its two

closest image dipoles β
(1)
1,0 and γ

(1)
1,0 , which all have the same mag-

nitude B1,0 = β
(1)
1,0 = γ

(1)
1,0 . The force is then

C f =
3π

2
B2

1,0

[
1

(δp +1−δw)4 −
1

(δp +1)4

]
, (29)

When the electrode separation is large, δw � 1, the second term
on the right hand side of Eq. 29 dominates. In the case of χ > 1,
B2

1,0 increases as the gap between two walls decreases, see FIG.
6, which increases the force magnitude (the force on FIG. 4a be-
comes more negative). When δw ∼ O(1), the first term becomes
the dominant contribution thereby reversing the trend. Eventu-
ally, the magnitude of force becomes zero when δw = 2(δp + 1),
when the particle center reaches the mid-plane between the elec-
trodes. However, if χ < 1, the dipole magnitude decreases with
decreasing δw. Thus, both terms on the right hand side are mono-

Fig. 4 Particle between two electrodes: force coefficient C f as a func-
tion of the dimensionless separation between two electrodes δw and fixed
particle-electrode gap. The superposition solution stands for the sum of
two opposite one-wall solutions. (a) δp = 0.1 and χ = 5 (b) δp = 0.1 and
χ = 0.2

Fig. 5 Particle between two electrodes: peak magnitude of the force co-
efficient, scaled by the one wall solution, as a function of the conductivity
mismatch β12 = (χ−1)/(χ +1) and δp.
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Fig. 6 Normal field: the square of dimensionless dipole, B1,0, as a func-
tion of dimensionless confinement δw for χ = 5 and δp = 0.1. Inset:
χ = 0.2, δp = 0.1.

tonically decreasing, which leads to the monotonic decreasing be-
havior in FIG. 4b. A more precise argument can be made based
on the asymptotic behavior at large δw, see Eq. 35-Eq. 39 below.

B1,0 ∼ (B0)1,0 +δ
−3
w (B3)1,0 , (30)

where (B0)1,0 and (B3)1,0 are

(B0)1,0 =
χ−1
χ +2

, (B3)1,0 = ζ (3)
[
(B0)1,0

]2
. (31)

ζ is the Riemann zeta function.

The "peak" exist only if dC f /dδw = 0. Taking derivative of Eq.
29 with respect to δw, equating with 0, and rearranging the terms
yields the following relation

dB2
1,0

dδw

1(
δp +1

)4

 1(
δw

δp+1 −1
)4 −1

=
4B2

1,0

(δw−δp−1)5 . (32)

The right hand side of the above equation is positive. Since δw >

2(δp+1) for a particle near the bottom electrode, this implies that

dB2
1,0

dδw
= 2B1,0

dB1,0

dδw
< 0. (33)

The dipole B1,0 behaves asymptotically as Eq. 30. Accordingly,

dB2
1,0

dδw
∼− 3

δ 4
w
(B0)1,0 (B3)1,0 =−

3
δ 4

w
ζ (3)

(
χ−1
χ +2

)3
, (34)

which show that a "peak" arises only if χ > 1 in the case of a
normal electric field.

The precise asymptotic behavior of the force for large electrode
separations, δw� 1, is obtained by noting that

N(m)
n,l = X (m)

n,l +δ
−3
w Z(m)

n,l , (35)

Fig. 7 Normal field: force coefficient C f as a function of δw, the di-
mensionless gap between two electrodes, compared to the asymptotic
solution. δp = 0.1, χ = 9

where for a particle between two electrodes (m = 0)

X (0)
n,l =

(n+ l)!
l!n!

(−2δc)
−(n+l+1) ,Z(0)

n,l =

{
−ζ (3) (n, l) = (1,1),

0 otherwise.
(36)

Consequently, the interaction force on the particle has the follow-
ing form,

C f ∼C f 0 +δ
−3
w C f 3,

C f 0 =4π

∞

∑
n=1

Kn
n+1

2n+1
(
M′0
)

n,0

(
M′0
)

n+1,0 ,

C f 3 =4π

∞

∑
n=1

Kn
n+1

2n+1

[(
M′0
)

n,0 (M3)n+1,0 +(M3)n,0
(
M′0
)

n+1,0

]
,

(37)

The sign of C f 3 indicates if the force will behave non-
monotonically with δw. If negative, the attraction between the
particle and the nearer electrode is stronger at large electrode
separations. However, the force should vanish when the particle
is maximally confined and its center is at the midpoint between
the electrodes. The increase in C f at large δw should reverse to
decreasing at small δw, leading to non-monotonicity. The M coef-
ficients are expanded Mn,0 ∼ (M0)n,0 +δ−3

w (M3)n,0

(M0)n,0 =
∞

∑
l=1

X (0)
n,l (B0)l,0

(M3)n,0 =
∞

∑
l=1

X (0)
n,l (B3)l,0 +

∞

∑
l=1

Z(0)
n,l (B0)l,0

(38)
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Fig. 8 Tangential field: force coefficient C f as a function of the dimen-
sionless particle to bottom wall gap sizes δp, or the normalized gap size,
(δp +1)/δw−1/2, for various δw. χ = 0.2.

(B0)l,m and (B3)l,m are found from the following equations

∞

∑
l=1

[
(χ−1)nX (0)

n,l +(nχ +n+1)δnl

]
(B0)l,0 = (χ−1)Gn,0,

∞

∑
l=1

[
(χ−1)nX (0)

n,l +(nχ +n+1)δnl

]
(B3)l,0 =

− (χ−1)n
∞

∑
l=1

Z(0)
n,l (B0)l,0 .

(39)

where n = 1,2.... This asymptotic solution for the force for large
distance between two walls δw � 1 is detailed in the ESI. FIG. 7
shows that the asymptotic solution provides a good approxima-
tion to the full solution down to δw ∼ 5.

4.2 Tangential electric field
FIG. 8 - FIG. 13 provide the plots for tangentially applied electric
field mirroring FIG. 2-FIG. 7 for the normal electric field. The
trends are the same as the normal electric field, however the in-
teraction is with a reversed sign. The particle is repelled by the
nearer wall in the case of tangential electric field since the particle
dipole and its images are parallel.

The non-monotonic dependence on the confinement δw is also

Fig. 9 Tangential field: force coefficient C f as a function of the dimen-
sionless conductivity mismatch β12 for various δw. δp = 0.1

Fig. 10 Tangential field: force coefficient C f as a function of the Di-
mensionless distance between the two walls δw. (a) δp = 0.01, and χ = 5
(b) δp = 0.01, and χ = 0.2
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Fig. 11 Tangential field: the square of dimensionless dipole, B1,1, as
a function of dimensionless confinement δw for χ = 0.2 and δp = 0.01.
Inset: χ = 5, δp = 0.01.

Fig. 12 Tangential field: peak magnitude of the force coefficient, scaled
by the one wall solution, as a function of the conductivity mismatch β12
and δp.

Fig. 13 Tangential field: force coefficient C f as a function of the distance
between the two planes, compared to the asymptotic solution. δp = 0.01,
χ = 0.

found in the case of tangential electric field. The mechanism is
same as the normal electric field (discussed in the previous sec-
tion). The square of dipole B2

1,1 increases as the gap between two
walls decreases when χ < 1 (see FIG. 11), which contrasts the
case of normal electric field. Consequently, the non-monotonic
behavior appears when χ < 1 (see FIG. 10(b)). The magnitude
of the "peak", which is defined as the maximum difference of the
force magnitude between the two-wall and one-wall solutions, is
presented in FIG. 12. The "peak" magnitude is maximal when the
conductivity mismatch is large and the particle is close to the bot-
tom wall. In FIG. 13, we present the asymptotic solution for weak
confinement, δw� 1.

5 Conclusion
We calculate the electric force on a spherical colloid between two
planar surfaces in the presence of a uniform electric field. We
consider the general case of the colloid and the suspending me-
dia that have arbitrary conductivities. We employ the leaky di-
electric model, which assumes bulk media to be charge neutral
(and thus electrostatic potential satisfying Laplace equation) and
continuous normal current across the particle-medium interface.
The charge carried by conduction accumulates at the particle sur-
face and gives rise to free-charge polarization of the particle. We
construct a general solution for the electric potential is using the
method of images. The force on the particle is calculated us-
ing the effective multipole method. We find that the particle is
attracted by the closer boundary in the case of normal electric
field, and repelled in the case of tangential electric field. The
calculation also shows that while in general the top wall weak-
ens the interaction, the force on the particle could exceed the
one-wall problem when σ1 > σ2 (particle more conducting than
the suspending medium) in the case of an electric field applied
normal to the boundaries, and σ1 < σ2 for a tangentially applied
electric field. Our findings will be useful for the design micro-
electro-mechanical systems to manipulate particles such as col-
loids, droplets, and biological cells with electric fields.
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Appendix A: A conducting sphere between
two electrodes
In this case, the particle surface is equipotential and the boundary
condition at r = 1 becomes Φ2 =Φp. The electric potential outside
the particle is

Φ2 =
∞

∑
n=0

(
Bn,0

rn+1 +M′n,0rn
)

Pn(cosθ). (40)

where M′0,0 = M0,0− δc and the M′n,0 are given by Eq. 26. The
multipoles Bl,0 are solutions of

∞

∑
l=0

(
N(0)

n,l +δnl

)
Bl,0 = Gn,0,

8 | 1–10Journal Name, [year], [vol.],
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with Gn,0 being

Gn,0 =


ΦP +δc n = 0,

1 n = 1,

0 n≥ 2.

(41)

The dimensionless net charge on the particle, scaled by ε2E0a2 is

Q =−
∮

r=1

∂Φ2

∂ r
dS = 4πB0 . (42)

The electric force on the particle is calculated by integrating the
Maxwell stress tensor on the particle surface,

C f =
∮

r=1
ez ·T2 · erdS, (43)

where

T2 =

[
E2E2−

1
2
(E2 ·E2)I

]
. (44)

The integral is evaluated analytically,

C f = 4π

∞

∑
n=0

n+1
(2n+1)(2n+3)

LnLn+1, (45)

where Ln is
Ln =−(n+1)Bn,0 +nM′n,0. (46)
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