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Understanding Creep Suppression Mechanisms in Poly-
mer Nanocomposites through Machine Learning†

Entao Yang,a James F. Pressly,b Bharath Natarajan,c Robert Colby,c Karen I. Winey,∗b and
Robert A. Riggleman∗a

While recent efforts have shown how local structure plays an essential role in the dynamic hetero-
geneity of homogeneous glass-forming materials, systems containing interfaces such as thin films
or composite materials remain poorly understood. It is known that interfaces perturb the molecu-
lar packing nearby, however, numerous studies show the dynamics are modified over a much larger
range. Here, we examine the dynamics in polymer nanocomposites (PNCs) using a combination
of simulations and experiments and quantitatively separate the role of polymer packing from other
effects on the dynamics, as a function of distance from the nanoparticle surfaces. After showing
good qualitative agreement between the simulations and experiments in glassy structure and creep
compliance, we use a machine-learned structure indicator, softness, to decompose polymer dynamics
in our simulated PNCs into structure-dependent and structure-independent processes. With this
decomposition, the free energy barrier for polymer rearrangement can be described as a combina-
tion of packing-dependent and packing-independent barriers. We find both barriers are higher near
nanoparticles and decrease with applied stress, quantitatively demonstrating that the slow interfacial
dynamics is not solely due to polymer packing differences, but also the change of structure-dynamics
relationships. Finally, we present how this decomposition can be used to accurately predict strain-
time creep curves for PNCs from their static configuration, providing additional insights into the
effects of polymer-nanoparticle interfaces on creep suppression in PNCs.

1 Introduction

Due to the continuous growth of the world population, the global
construction market is predicted to increase 85% by 2030 com-
pared to 20151. Flourishing construction will strain materials
supply streams, including wood, sand used for cement, and iron
ore for steel, challenging the sustainable utilization of these lim-
ited natural resources. To fill the gap in materials supply and
demand within the infrastructure sector, development of new ma-
terials for structural applications is desired. Polymer composites
are a promising candidate due to their light weight and corrosion
resistance.2,3 However, polymers, particularly recycling-friendly
thermoplastics, tend to creep under long-term external loads,4

limiting their application as infrastructural materials, which typi-
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cally require a service life of 50 to 100 years.5

Studies have shown that adding nanoparticles (NPs) with neu-
tral or attractive polymer-NP interactions can significantly change
the mechanical properties of polymer matrices, including increas-
ing tensile strength and average shear and Young’s moduli, alter-
ing polymers’ nonaffine displacement field during deformation,
and rendering the material less fragile.6–10 While some studies
show that polymer nanocomposites (PNCs) have a better resis-
tance to creep,10–14 the mechanism of creep suppression, includ-
ing the role of NP size, loading, and polymer-NP interactions, re-
mains unclear.

The presence of an interfacial layer where polymers exhibit de-
creased segmental mobility is known to be critical to mechanical
reinforcement in PNCs.7,15,16 In both experiments17–19 and sim-
ulations,20–23 attractive NPs have been shown to create a layer
of slowed polymer dynamics, often several orders of magnitude
slower than in bulk polymers. Simulation studies have shown
that these local dynamical changes are not solely attributable to
denser packing near the NP surface, as evidenced by the thickness
of the structurally affected region decreasing with cooling while
the thickness of the dynamically affected region increases.24 Re-
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cent work also suggests that the presence of NPs can slow down
the polymer diffusion, which persists far beyond the length scale
where the polymer conformation are modified.25 Schweizer et
al. have formulated a force-level theory, which divides the free
energy of relaxation into a local barrier based on Nonlinear
Langevin Equation (NLE) theory26 and a long-range barrier de-
scribed by an elastic continuum, describing relaxation progress in
both bulk supercooled liquids and free-standing films.27–34 These
results suggest that changes in the segmental packing are not
the only factor controlling the dynamical gradient around NPs.
Thus, investigating the relationship between polymer dynamics
and structure and how the relationship changes as a function of
different conditions (such as applied stress, NP size, and polymer-
NP interaction) is important to understanding not only creep sup-
pression, but also the underlying mechanisms behind NP rein-
forcement in PNCs.

Over the past several years, an application of machine learn-
ing has been proposed in disordered materials to directly con-
nect a monomer’s local-structure features, termed as ’softness’, to
its probability of rearrangement (defined as having a relatively
large non-affine local displacement. See Methods for more de-
tails).35–37 This new method easily measures the structure in
amorphous materials and estimates its effect on monomer-level
dynamics. Softness expanded our understanding of glassy ma-
terials, including the universal yield strain38, the brittle-ductile
transition39,40, the aging process37, and the structural initiation
of shear banding.41,42 Using softness, Liu and coworkers decom-
posed dynamics in both bulk glasses and glassy polymer thin
films36,43 into structure-dependent and structure-independent
components and found that the slowing of dynamics near the
glass transition in bulk glasses is associated with structural
changes, whereas enhanced dynamics near free surfaces in glassy
thin films are dominated by a structure-independent mechanism.
While most of these softness analyses are applied to homoge-
neous glassy systems, our recent work has shown that softness
can also be used in quantifying the structural features (i.e., lo-
cal packing) of polymers in the interfacial region near nanoparti-
cles,42 enabling us to develop a dynamical decomposition model
for polymers in PNCs.

In this work, we simulate neat polymers and dispersed
nanoparticle PNCs with attractive polymer-NP interactions
(strong interaction) over a range of NP loadings and two NP sizes.
The creep suppression in these systems was compared to exper-
imental poly-2-vinylpyridine (P2VP) silica composites to verify
that the simulations qualitatively agree with real-world systems.
We also vary polymer-NP interactions in the model PNCs with a
10 vol% loading of NPs to study the effect of interaction strength
on creep suppression.

After establishing good agreement between the simulated
and experimental nanocomposite systems, we demonstrate how
polymer dynamics in PNCs can be decomposed into structure-
dependent and structure-independent processes and how this re-
lation holds within the constant strain rate regime. We refer to
this relation as the dynamical decomposition model in this work.
With this decomposition, we show that besides the modified lo-
cal packing, the relation between structure and dynamics are

also changed near NPs, leading to the slow interfacial dynam-
ics. Finally, we show a potential application of this decomposi-
tion model in predicting PNCs’ strain response directly from the
structure of an undeformed sample.

2 Methods and Materials

2.1 Simulation methods

All simulations were performed using the LAMMPS molecular
dynamics package.44 A coarse-grained bead-spring model was
used to construct the polymer matrix.45 Each simulation system
contains 405 monodispersed polymer chains consisting of 128
Lennard-Jones (LJ) interaction sites, connected by flexible har-
monic bonds for a total of 51,840 polymer monomers. In other
words, each polymer monomer in the model PNCs is one LJ in-
teraction site. The standard 12-6 Lennard-Jones cut potential is
used to describe all non-bonded monomer interactions,

Unb(ri j) = 4εi j

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
−Ucut, ri j < 2.5σ (1)

where Ucut is the value of the 12-6 potential at our cut-off dis-
tance, rc = 2.5 σ , and σ is the bead size, which can be roughly
taken as one nanometer.46,47 Both polymer-polymer (εpp), and
NP-NP (εnn) interactions are fixed at 1.0, while polymer-NP (εpn)
interactions are set at 0.5, 1.0, and 2.0 representing weak, neu-
tral, and strong interactions respectively. Bonded monomer inter-
actions are described by the harmonic bonding potential,

Ub
i j = K (r−σ)2 (2)

where K = 400ε/σ2, and σ is the diameter of the monomers. All
units for quantities taken from the simulation are in LJ-reduced
unit notation. T is the reduced temperature, expressed as T =

kT ∗/ε, the LJ-time, τLJ = t∗
√

ε/mσ2, k is the Boltzmann constant,
T ∗ is temperature, m is the mass of a single LJ interaction site, and
t∗ is time. The asterisk indicates quantities in laboratory units.

The NPs are modeled as amorphous, solid, and rigid spheres
of LJ sites, cut from a bulk LJ liquid at high temperature (T =

10.0) and high density (ρ0 = 1.25) with nominal radii, Rp, of 3.0
and 5.0 σ for small and large NPs, respectively. The resulting NP
has the same density as the high temperature, high pressure LJ
liquid, ensuring an amorphous NP. Due to its amorphous nature,
the actual radius can be slightly smaller than the nominal radius
in some parts of the NP. For simplicity, we used the nominal radius
to define the position of the NP surface from the NP center of
mass.

In addition to the neat polymer systems, we prepared PNCs
with four different NP volume fractions, 5v%, 10v%, 15v%, and
20v%. Strong polymer-NP interactions were simulated at all NP
loadings, while additional weak and neutral interactions were
simulated at 10v%. More details about simulated composites, in-
cluding NP loading, size, number, and polymer-NP interactions
can be found in Table S1.

Systems were equilibrated in the NPT ensemble at T = 1.0 and
P = 0 with a timestep of 0.002τ

−1
LJ . Connectivity altering Monte

Carlo moves (i.e. bond swap) were applied for the purpose of
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reaching equilibrium.48–50 For a given system, different configu-
rations are separated by at least one polymer diffusion time, τD, to
guarantee their independence. τD is estimated at the time where
the slope of polymer monomer mean-squared-displacement ver-
sus time is approximately unity. Next, all the PNCs were quenched
to different target temperatures (T = 0.2 to 0.5) with a cooling
rate of Γ = 10−4τ

−1
LJ , followed by an aging period of 104τLJ . Creep

deformations at a series of stresses (σc = 0.3 to 0.9) were then
performed at different temperatures (T = 0.35 to 0.50). For each
configuration, the system was uniaxially deformed in each dimen-
sion while maintaining constant pressure in the transverse direc-
tions, and the strain responses were averaged. Compliance vs
time curves at each temperature were shifted using time tempera-
ture superposition (TTS) to generate a master curve at Tref = 0.35.
This reference temperature is below the glass transition temper-
ature, Tg, in all the PNCs. In this study, Tg in the model PNCs is
determined during the quenching process described above, where
the cooling rate is Γ = 10−4τ

−1
LJ . The system density was moni-

tored, and linear fits were performed above and below the tran-
sition region. We took the corresponding temperature of the in-
tersection point between the two linear-fitted lines as the glass
transition temperature.

2.2 Softness calculation

Softness is a particle-level structural field, which measures parti-
cles’ tendency of rearrangement over a given time period. To cal-
culate softness, we employ a set of structure functions and form
a feature vector to represent a polymer monomers’ local environ-
ment. In other words, the structure functions describe the distri-
bution of other monomers around a central monomer. These fea-
ture vectors represent the monomers’ coordinates in high dimen-
sional space (with the dimension equal to the number of struc-
ture functions). By applying the Support Vector Machine (SVM)
machine learning algorithm, we can find a hyperplane that best
separates the rearranging monomers from the non-rearranging
monomers. We then define softness as the particle’s signed dis-
tance to this hyperplane, with a positive value corresponding to
the rearranging side of the hyperplane and a negative value to
the non-rearranging side. Here we used the hyperplane trained
in our previous work,42 which was trained on a quiescent neat
polymer system with two groups of structure functions for each
polymer monomer i. The first group,

GR(i; µ,L) = ∑
j

max [exp (− (Ri j −µ )2/L2)− εR, 0], (3)

describes the radial structural characteristics while the second

GA(i;ξ ,λ ,ζ ) =∑
j
∑
k

max [exp(−(R2
i j +R2

ik +R2
jk) / ξ

2)·

((1+λ cosθi jk )/2)ζ − εA,0]

(4)

describes three-body orientation characteristics. Here, Ri j is the
distance between particle i and particle j; θi jk is the angle between
particle i, j, and k; and µ, L, ξ , λ , ζ are all parameters varied to
construct different structure functions.

Given the two types of particles in our systems, polymer and NP
sites, we make an approximation by treating the NP sites the same
as the polymer sites; this avoids creating a region of artificially
high softness near the NPs due to a decrease in monomer density.

Our recent work shows this method is able to probe the structure
change near the NP surface.42 In the supporting materials, we
provide a detailed discussion and justification of this assumption.

2.3 Dynamical measurement

For our dynamical decomposition model, we use PR(S), the prob-
ability of rearrangement for particles with a given softness, as
the measurement of polymer dynamics. This method has been
employed in different glassy systems and can predict particles’ re-
laxation time efficiently and robustly.36,37,43 Details of the PR(S)
calculation are presented below.

Since we are interested in composites under creep deformation,
we use the quantity D2

min as recommended in literature to deter-
mine whether a monomer is rearranging,51 which accounts for
the monomer’s non-affine motion. D2

min is defined as

D2
min(i; t) =

1
Ni

Ni

∑
j

[⃗
ri j(t +δ t)− Λ⃗i(t )⃗ri j(t)

]2
, (5)

where r⃗i j is the displacement vector between particle i and j at
time t and Λ⃗i(t) is the best fit local-affine transformation tensor
for particle i that minimizes D2

min(i; t). Ni is the number of neigh-
boring monomers around polymer monomer i, which is within a
cut-off distance of 2.5 σ . The choice of this cut-off distance agrees
with previous work in softness.38,40,42,52 In this study, we choose
a δ t = 10 τLJ and measure D2

min for a time range of 2000 τLJ or
within the low strain regime where the strain rate is constant.
A monomer is considered to be rearranging if its value is larger
than D2

min,0 = 0.1. As shown in both previous work and our own
tests,42,43 we find our results are qualitatively insensitive to the
choice of D2

min,0 over a reasonable range of values (0.06 to 0.23).

After identifying the rearranging particles, we then bin both re-
arranging particles and all particles based on their softness. PR(S)
can be calculated by dividing the number of rearranging particles
by the total number of particles with that softness. In this work,
we used softness values ranging from −2.75 to 1.25 (covering 97%
of monomers in the system) with a resolution of 0.25 (our soft-
ness distribution follows a normal distribution with σS = 0.92)
when calculating PR(S).

2.4 Materials and experimental details

Commercial grade poly(2-vinylpyrridine) (P2VP, Mn =

70 kg mol−1 and Mw/Mn = 2.4) was obtained from Scien-
tific Polymer Products, Inc. (Ontario, NY). Silica nanoparticles
dispersed in 2-butanone were obtained from Nissan Chemical
(MEK-ST and MEK-ST-L). The nanoparticles diameters were
measured via small angle X-ray scattering (SAXS) and were
found to be log-normally distributed with average diameters of
13 nm and 52 nm, respectively, and polydispersities of 0.30 and
0.29. For clarity, the small nanoparticles will be referred to as
NP13 and the large nanoparticles as NP52. Nanoparticles were
transferred from 2-butanone to methanol via a solvent exchange
process using hexane to crash the nanoparticles out of solution.
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2.4.1 Polymer Nanocomposite Preparation

The P2VP was dissolved in methanol at a concentration of ap-
proximately 50 g/L. Pentaerythritol tetrakis (3-(3,5-di-tert-butyl-
4-hydroxyphenyl) propionate) (Sigma-Aldrich), an antioxidant,
was added to the polymer solutions at a concentration of 0.1 w%
of the polymer mass to prevent polymer decomposition during
nanocomposite preparation and thermal processing.

The nanoparticle solutions were diluted to approximately
15 g/L with methanol prior to adding, dropwise, to the P2VP so-
lutions to target nanoparticle loadings equal to 5 vol%, 10 vol%,
15 vol%, and 20 vol%. The nanocomposite solutions were mixed
for 24 h before casting on PTFE dishes at 120 ◦C to remove the
majority of the solvent. The samples were then transferred to
a vacuum oven where they were annealed for 24 h at 150 ◦C to
remove the remaining solvent.

After thermal annealing, the composites were hot pressed in
aluminum molds at 150 ◦C under 0.5 metric tons for 10 min, cre-
ating samples with nominal dimensions of 35×3.0×0.5 mm. Sam-
ples were quenched and removed from the molds before anneal-
ing for 12 h at 120 ◦C under vacuum followed by a slow cool in
the vacuum oven to a temperature of less than 40 ◦C. This process
was used to remove residual stresses caused by hot pressing and
ensure a standard thermal treatment for each set of samples. The
hot pressed samples were used for all subsequent analysis.

2.4.2 Thermogravimetric Analysis (TGA)

Nanoparticle loadings were determined via TGA using a TA In-
strument Q600 SDT. For each sample, 10 mg of composite was
heated to 150 ◦C at a rate of 10 ◦C, held for 20 mins, and then
heated to 900 ◦C at a rate of 20 ◦C min−1 under flowing air. The
volume percent of silica was calculated using a silica nanoparti-
cle density of 2.2 g cm−3 and a P2VP density of 1.2 g cm−3. A
summary of the composite loadings is provided in Table S2.

2.4.3 Temperature Modulated Differential Scanning
Calorimetry (TMDSC)

The glass transition temperature (Tg) of the nanocomposites was
measured via TMDSC using a TA Instrument Q2000. Measure-
ments were made upon cooling a 10 mg sample at a rate of
5 ◦C min−1 with a modulation time of 30 s and an amplitude of
±0.5 ◦C from 40 ◦C to 170 ◦C. Tg was defined as the inflection
point of the heat flow thermograms. Tg of the composite systems
was within 1 ◦C of the neat polymer Tg. See Table S2 for a full list
of Tg.

2.4.4 Small Angle X-ray Scattering (SAXS)

Particle dispersion was examined using SAXS performed on a
Xenocs Xeuss 2.0 with a GeniX3D copper source (8 keV , 1.54 Å)
and a PILATUS3 1M detector. Sample to detector distances of
1.2 m and 6.4 m were used, corresponding to a wave vector (q)
range of around 0.002 Å−1 to 0.2 Å−1. Two-dimensional scatter-
ing patterns were azimuthally integrated to one dimension us-
ing the Foxtrot software. Nanoparticle form factor scattering was
measured using a dilute solution of nanoparticles in methanol
(0.1 vol% and 0.5 vol% for NP13 and NP52 nanoparticles, respec-
tively) within a low-noise flow cell (Xenocs). The form factors

were fit with a polydisperse sphere model using the SASView
analysis software to determine average particle size and polydis-
persity.

2.4.5 Scanning Electron Microscopy (SEM) & Focused Ion
Beam (FIB)

PNC samples were fractured at room temperature to expose a
fresh interior region. Cross-sectioning for two-dimensional anal-
ysis was performed using a Zeiss Crossbeam 540 FIB/SEM.

2.4.6 Dynamic Mechanical Analysis (DMA)

Oscillatory DMA measurements were performed on a TA In-
struments RSAIII in tension mode. Strain-controlled frequency
sweeps (0.03 Hz to 30 Hz) were performed with a 0.05 % strain
(within the linear viscoelastic regime) in 5 ◦C increments between
30 ◦C and 110 ◦C. Three samples were measured for each com-
posite system and the results were averaged. DMA measurements
were shifted using time-temperature superposition with a refer-
ence temperature of 105 ◦C. The choice of this reference tempera-
ture is also consistent with our prior study of P2VP composites.10

The dynamic modulus, E∗(ω), obtained from the oscillatory DMA
experiments (where ω is the frequency of the dynamic loading),
was converted to transient compliance, D∗(t), using known ana-
lytical relationships.53,54 As an approximation to connect oscilla-
tory DMA data to creep compliance measured in the simulations,
we used D∗ = 1/E∗ and t ≈ 1/ω to estimate the transient com-
pliance. We refer to D∗(t) as the ‘complex compliance’ in this
work because it explicitly includes both the storage and loss com-
ponents of the DMA measurements. Using D∗(t) also enables us
to directly compare the experimental work to the simulation and
better reveal the similarities. This method has been used previ-
ously to examine creep in polymer nanocomposites.10

3 Results and Discussion

3.1 Nanoparticle Dispersion

We begin our study from measuring NP dispersion state in both
experimental and simulated PNCs. Figures 1a and 1b contain
small angle X-ray scattering (SAXS) measurements and scanning
electron microscope (SEM) images demonstrating excellent dis-
persion of the 13-nm diameter silica nanoparticles (NP13) within
the P2VP matrix (see Figure S1 for 52-nm diameter nanoparti-
cles, NP52 composites). In both the NP13 and NP52 composites,
scattering in the high-q regime (q > 0.03 Å−1 and 0.007 Å−1, for
NP13 and NP52 composites, respectively) is identical for all silica
loadings. Likewise, in the low-q regime, the scattering intensity
plateaus in all systems. This behavior is characteristic of well-
dispersed NPs. The structure factor scattering shown in the insets
to Figures 1a and S1a further emphasize the well-dispersed na-
ture of the composite systems, with the structure factor intensity
settling at 1 with no large or sharp peaks. The SEM images in
Figure 1b and S1b visually confirm NP dispersion for the 15 vol%
NP13 and NP52 systems, respectively.

The well-dispersed NPs observed in the experimental compos-
ite systems agree qualitatively with the nanoparticle dispersion
observed in the strongly attractive (εpn = 2.0) polymer-NP inter-
action simulations. Figure 1c shows the pair distribution func-
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Fig. 1 a) SAXS measurements of NP13 composites showing excellent
NP dispersion with an inset showing the NP structure factor. b) Repre-
sentative SEM image of the 15 vol% NP13 PNCs. c) Pair distribution
functions of NPs in simulated PNCs with small attractive NPs (r = 3σ)
showing good dispersion. d) Visualization of the NP distribution in the
simulated PNCs with small attractive NPs (10 vol% NP). NPs are colored
to ease differentiation.

tions, g(r), of the small NPs within the composites while Figure
1d shows a visualization of the nanoparticle dispersion within the
simulation box. (See Figures S1c and S1d for large NP compos-
ites.) The single, relatively weak peak in g(r) indicates weak or-
dering of the nanoparticles, suggesting good overall dispersion.
Additionally, we observed well-dispersed NPs in composite sim-
ulations with neutral interactions (εpn = 1.0) and significant ag-
gregation in simulations with weak interactions (εpn = 0.5, weak
attractions), as expected (see Figures S1e–S1h).

3.2 Creep Attenuation
Representative master curves of the complex dynamic compli-
ance (D∗(t))) for the experimental and simulated PNCs are shown
in Figures 2a and 2b for the smaller NP composites. Master
curves are shown with Tref = 105 ◦C for experimental PNCs and
Tref = 0.35 for simulation systems. This Tref for the experimental
PNCs was used in the recent creep study of the P2VP compos-
ites and is near Tg.10 For the simulated PNCs, Tref is below Tg

(Tref /Tg ≈ 0.76), because we are interested in tracking the glassy
dynamics change during creep and correlate them to the strain re-
sponse. At first glance, we observe several similarities in the com-
pliance curves for the experimental and simulated PNCs. In each
case, the compliance in the glassy plateau modulus decreases with
increasing NP loading and the fast creep regime (upturn in D∗)
is shifted to longer times, demonstrating the reinforcement and
creep attenuation abilities of NPs.

We define the critical deformation time as the time to reach a
critical compliance value, D∗

crit, at Tref . For experimental systems,
D∗

crit = 2.5−9Pa−1 (a 5% strain under a 20MPa stress) while for
simulations D∗

crit = 10−1 (a 4% strain under a stress of 0.4), as
indicated by the dashed lines in Figure 2a - 2c. Figures 2d and 2e

plot tcrit as a function of nanoparticle loading for all experimental
and simulation systems. In all cases, tcrit increases exponentially
with loading, with larger increases observed for smaller NP sizes,
demonstrating how even modest loadings of small NPs with at-
tractive polymer interactions can significantly suppress creep de-
formation. Numerical values of the average tcrit for different sys-
tems can be found in Table S1 in the ESI. This method for quan-
tifying creep attenuation has been used previously and the expo-
nential relation between critical time and NP loading is not qual-
itatively sensitive to the choice of critical compliance values.10

While the stress and strain value in the experiments are same as
the previous work10, we selected a stress of 0.4 in the simulation
systems given its dual efficacy. Firstly, it is large enough to induce
significant dynamical enhancements, and secondly, it is also ad-
equately small to hold the PNCs within the constant-rate regime
for a long enough time (See Figure S5). We then chose a strain
of 4% to arrive at a compliance value of 0.1. We note that while
tcrit is small (< 100s) for this reference temperature, under ambi-
ent conditions (around 25 ◦C) tcrit may be on the order of several
10s to 100s of years due to the time-temperature equivalence in
polymer viscoelasticity. These results are in qualitative agreement
with previous measurements of creep in P2VP-silica nanocompos-
ites.10

We also study the effects of polymer-NP interactions on creep
suppression in simulation systems, by fixing the NP loading at
10 vol% and varying the interaction parameters between polymers
and NPs. We find strongly interacting NPs better suppress creep,
as evidenced by the shift of the upturn in compliance curves to a
longer times and the increase in tcrit with εpn (Figure 2c and 2f).
For the simulated PNCs with different interactions, no qualita-
tive change in NPs distribution has been observed within the TTS
temperature range, which further confirms the validity of our TTS
results.

Overall, the qualitatively similar behavior observed in nanopar-
ticle dispersion quality and creep attenuation for experimental
and simulated strong-interaction PNCs suggests that the simula-
tions performed in this work provide a good qualitative descrip-
tion of the behavior in the experimental composites and can be
used to further probe the nanoscale behavior.

3.3 Dynamical Decomposition in PNCs

To reveal the mechanism of NP reinforcement under creep defor-
mation, we extend the dynamical decomposition developed in ho-
mogeneous glass-forming materials36,43 to PNCs. A monomer’s
probability of rearranging at a given softness, PR(S), is used as
the measurement of local polymer dynamics and has been shown
to be proportional to the inverse of the segmental relaxation
time.36,37 Technical details of the PR(S) calculation can be found
in Methods.

In the work presented below, unless otherwise specified, we
present the dynamical decomposition results for PNCs with
10 vol% NPs and neutral polymer-NP interactions at T = 0.40.
This analysis can be applied to other temperatures and all sys-
tems with dispersed NPs. More details about other simulation
conditions are provided in Table S1. We begin with calculating
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Fig. 2 Characteristic creep compliance curves for several a) experimental and b) simulation composites containing NPs of strong polymer-NP
interactions. The dashed line represents the critical creep compliance value. Critical deformation times as a function of NP loading for d) experimental
and e) simulation composites. The qualitatively similar creep behavior in experimental and simulation systems suggests these simulations can capture
creep behavior in polymer nanocomposites. Results of different polymer-NP interactions in PNCs with 10 vol% NP are presented in c) and f)
respectively.

the bulk-average dynamics in PNCs, PR,avg(S), by examining poly-
mer monomers at least 8σ away from one NP surface in the un-
deformed PNCs.

In Figure 3a, we plot PR,avg(S) as a function of T−1 for 8 dif-
ferent softness values, ranging from S = −2.75 to 1.25 (covering
97% of polymer monomers). For each softness, PR,avg(S) follows
Arrhenius behavior and the left-extended fitting curves all inter-
sect at the same point. Furthermore, the softness-dependent ac-
tivation energy exhibits a linear dependence on S (Figure 3b).
These two observations are similar to what has been seen in bulk
glassy systems36 and indicate that the bulk-average PR(S) in PNCs
can be expressed as the product of a structure-dependent and a
structure-independent term,

PR,avg(S) = exp
(

Σ− ∆E
T

)
= exp

(
Σ0 −

e0

T

)
· exp

(
−
(

Σ1 −
e1

T

)
S
)
= PI(T ) ·PD(T,S).

(6)

Here, Σ and ∆E represent the entropic and enthalpic contribu-
tion to the energy barriers, respectively. Σ0, Σ1, e0, e1 are con-
stants determined through linear fitting with softness, as shown
in Figure 3b, and are independent of temperature. Through the
softness analysis, we can separate the structure-dependent com-
ponents out from both Σ and ∆E by combining terms involving
S (forming PD(T,S)), and the other terms left form the structure-
independent term, PI(T ). The shared intersection point repre-
sents the temperature, To, where softness dependence of Σ exactly

cancels ∆E/T in Equation 6. Previous softness work also suggests
that To scales with the onset temperature of glassy dynamics in
the simulated bulk glasses.36

However, Equation 6 breaks down near the NP interface be-
cause the probability of rearrangement at a given softness de-
creases as we approach the NP surface, as shown in Figure 3c
where PR(S) is plotted at five distances from the NP surface (rpos)
and within the bulk-average region, for T = 0.40. The downward
shift in the PR − S curves leads to poor fit quality and no shared
intersection point when plotting PR(S) as a function of T−1 (see
Figure S3). The vanishing of the shared intersection point further
suggests the linear dependence between Σ (and ∆E) and softness
is no longer valid near NP surface. This is consistent with the
intuitive expectation that PR should be lower for the same local
packing (i.e., softness) when polymer monomers are near NPs,
because NPs can slow nearby monomer dynamics.

To isolate the effect of NP proximity, we introduce a new quan-
tity, Pnp, defined as the ratio of PR over PR,avg for a given softness,

Pnp(rpos|Si) =
PR(rpos,Si)

PR,avg(Si)
(7)

Thus, Pnp(S) is a measure of how much the NP slows down the dy-
namics for a given local structure. We plot Pnp(S) at T = 0.40 for
different distances from the NP surface in Figure 3d and find that
Pnp follows an exponential relation with S at each distance, indi-
cating that Pnp can be expressed as Pnp = exp[a1(rpos) ·S−a0(rpos)],
where both a0 and a1 depend on distance from the NP surface.
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a)

d)

b)

c)

Fig. 3 Dynamical decomposition in PNCs. a) Bulk-average probability
of rearrangement for a given softness, PR,avg(S), as a function of 1/T at
eight different softness values. The color gradient represents the gradient
in softness, ranging from light blue at S =−2.75 to dark blue at S = 1.25.
b) The ∆E and Σ values as a function of softness, calculated by fitting the
results in a) to PR,avg(S) = exp(Σ−∆E/T ). Error bars represent the stan-
dard deviation of uncertainty. c) Isothermal probability of rearrangement
as a function of S at five distances from the NP surface (rpos) and within
the bulk-average region, at T = 0.40. d) Isothermal Pnp as a function of S
at five rpos and the bulk-average region, for T = 0.40. These simulations
use r = 3σ , εpn=1.0, and 10 vol% PNCs.

Note that, unlike Σi and ei, which are temperature independent,
ai are temperature dependent (see Figures S2d–S2g). This is con-
sistent with the observation that thickness of the dynamically dif-
ferent region generally decreases with increasing temperature.24

It would be interesting to study the temperature dependency of ai,
which may help reveal a more detailed mechanism of the differ-
ent temperature dependency between the structure-modified in-
terfacial layer and the dynamics-modified interfacial layer around
nanoparticles. Within the temperature range studied, we found
that while a0 and a1 change modestly at low temperature, for the
highest temperature, T = 0.42, both parameters become larger.

Recalling that PR,avg can be written as a product of PI(T ) and
PD(T,S) (Equation 6), this together gives the new expression for
PR in PNCs near the NP surface:

PR(rpos,S,T ) = P∗
I (rpos,T ) ·P∗

D (S,rpos,T ) =

exp
(

Σ0 −
( e0

T
+a0

))
· exp

(
−
(

Σ1 −
( e1

T
+a1

))
S
) (8)

where P∗
I and P∗

D are the new expressions for the structure-
independent and structure-dependent components, respectively.
Note that both a0 and a1 decays to zero in the bulk region, re-
covering Equation 6 and making Eq. 8 a general expression for
polymer dynamics throughout PNCs. To the best of our knowl-
edge, this is the first monomer-level expression which can quan-
tify the effect of structure on glassy dynamics in PNCs. It suggests
that structure affects glassy dynamics through two approaches in
PNCs. One is the local structure gradient in the polymer induced
by the NP surface, captured by the change of S. The other is
the change in the structure-dynamics relationship, which also de-

a) b)

Fig. 4 a) P∗
I and P∗

D as functions of the distance from the NP surface,
rpos, for T = 0.40. The dash lines represent the bulk-average values of
these quantities, PI,avg and PD,avg. b) a0 and a1 as functions of rpos, for
T = 0.40. The dashed lines are exponential fits. Both a0 and a1 decay
exponentially with rpos. These simulations use r = 3σ , εpn = 1.0, and
10 vol% PNCs.

pends on S, as described by the P∗
D term. That is, while polymers

near the NPs can have different local structures, even a monomer
with the same local structure can also have different dynamics
near the NPs compared to the bulk.

We want to emphasize that Equation 8 is not a combination
of six random parameters aiming for better fitting, but with a
physical meanings on par with the activation energy associated
with the temperature dependence of viscosity in a simple fluid.
As shown in previous study36, Σ0 and e0 represent the structure-
independent contributions in the entropic and enthalpic barriers
for the monomer rearrangements. In contrast, Σ1 and e1 measure
how sensitive these two barriers are to the local packing, respec-
tively. The new parameters a0 and a1 are introduced in this work.
The former (a0) quantifies a constant slowing down for polymer
dynamics carried by NPs, which only depends on distance to NP
(at a given temperature), regardless of polymers’ local structure.
While the later a1 accounts the dependency of NP slowing down
effect on the local packing.

In Figure 4a, we plot P∗
I and P∗

D as functions of rpos, both terms
decrease near the NP surface, corresponding to slowed dynam-
ics. When calculating the term that depends on softness, P∗

D, we
use the average softness at that given rpos. The relative effect of
the polymer-NP interface on P∗

D and the thickness of the affected
region are less than the effect of the interface on P∗

I , similar to
the reported behavior near thin film interfaces.43 However, this
behavior is not due solely to the presence of NPs, but also fluc-
tuations in softness (packing) caused by polymer-NP interactions
(see Figure S4a). The former effect can be quantified by a0 and
a1, which both decay exponentially with rpos (see Figure 4b). The
exponential decay suggests that log(Pnp) ∝ exp(−rpos), which also
agrees with the ’double-exponential’ relation of overall dynamical
gradient near a hard surface predicted in theory31 and observed
in simulations.55–59

To determine if this decomposition could be expanded to PNCs
under creep deformation, we deformed the 10 vol% NP compos-
ites using seven different stresses, σc = 0.3 to 0.9, and measured
the average softness as a function of time and rpos within both
the constant strain rate regime and the full range of deformation
(see Figures S5 and S6). All σc are lower than the composites’
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Fig. 5 Structure-independent (FI) and structure-dependent (FD) free
energy barriers as functions of rpos under different applied stresses for
PNCs containing 10 vol% a) neutral polymer-NP interaction or b) strong
polymer-NP interaction NPs. The color gradient represents the stress
gradient, where the lightest color represents σc = 0 and the darkest color
represents σc = 0.6. Dashed lines are the corresponding bulk-average
values. These simulations use r = 3σ PNCs and T = 0.40.

yield stress, which is greater than 1.0 for all the systems. This
stress range is also much larger compared to the stress we used
for the TTS analysis, σc = 0.4, thus it should be sufficient to probe
the regimes in which our model is valid. Within the constant
strain rate regime, the average softness was stable, following a
brief jump caused by the initial elastic response. A similar trend
was reported in a recent work focused on softness analysis of col-
loidal gels under creep, where system average softness was found
to depend on the strain rate.60

Examining PR(S) as a function of σc and rpos for both neutral
and strong interactions reveals that the probability of rearrange-
ment for a given softness varies significantly less with applied
stress than with distance from the NP surface (see Figure S7).
Our recent work also indicates that the stress-enhanced dynam-
ics in polymer glasses can be described by an Eyring-like model,
which buttresses the validity of dynamical decomposition under
creep deformation.52 These observations indicate that our new
expression for polymer dynamics (Equation 8) should still apply
within the constant strain rate regime. Thus, we perform the
same dynamical decomposition analysis as carried out in Figure
3 for PNCs under several different stresses (σc = 0.3 to 0.6) and
find Equation 8 remains valid (see Figures S8 and S9).

As suggested by previous work36, the exponential terms of
P∗

I and P∗
D can represent the structure-dependent and structure-

independent free energy barriers, FD and FI respectively, which
needs to be overcome for polymer monomers to rearrange (Equa-
tion 9).

FD = e0 −Σ0 ·T +a0 ·T

FI =−(e1 −Σ1 ·T +a1 ·T ) ·S
(9)

Thus, we can calculate the free energy barriers for monomer
rearrangement during creep and the results of which are shown
in Figure 5. Starting from the undeformed systems, free energy
barriers near NPs are greater than the bulk-average energy bar-
rier during deformation, and both FI and FD decrease with in-
creasing stress. Comparing the free energy barriers for PNCs

with neutral and strong polymer-NP interactions, we observe a
greater decrease in both FI and FD with stress for composites with
neutral polymer-NP interactions, explaining the better creep sup-
pression observed for PNCs with strong polymer-NP interactions.
The increased free energy barriers in PNCs with strong polymer-
NP interactions hinder local polymer monomer rearrangements,
thereby suppressing creep deformation. This further confirms
that the increase in polymer packing density near NPs is not
the only source of NP reinforcement, because only FD depends
on structure. In contrast, the presence of NPs alters the rela-
tionship between structure and glassy dynamics (through a1 and
a0), leading to the increase of free energy barriers. Note that
here FD consists of both local structure gradient effect (aver-
age S is higher near surface) and the NP slowing down effect
(a1). However, it is still much smaller than the FI term, even
for the strong interaction NPs. This suggests that for our model
PNCs, the structure-independent process dominates the overall
creep suppression. Thus, we have provided direct quantitative
evidence that the modified dynamics is not solely originated from
the change in structure (density increase) near the NP surface. It
is tempting to speculate that a1 and a0 are due to the presence of
a stiffer phase (rigid NPs), which increases the local stiffness of
the interfacial layer and blocks potential rearrangements in cer-
tain directions. We also note that both FI and FD are just relative
measurements of the barriers, whose magnitude can vary depend-
ing on the choice used to identify rearrangements (see Methods
for more technical details). From our tests, the free energy bar-
rier difference between σc = 0 and σc = 0.6 presented in Figure
5a leads to an increase of approximately 47% in total number of
rearrangements.

On a high level, our results are also consistent with the re-
cent advances of ECNLE theory, where Schweizer and coworkers
show that glassy dynamics can be described by a combination of
a local cage barrier and a long range elastic barrier27,28. Both
barriers are higher near rough surfaces31 and decrease with ex-
ternal stress61, while the long range elastic barrier is more sensi-
tive to stress29,31,33. However, the barriers in our model have a
distinct microscopic origin. In ECNLE, the local cage and the elas-
tic barrier are causally related, since the elastic barrier originates
from the local cage expansion27. While our approach using the
machine-learned structure field, softness, enables us to effectively
isolate the effect of structure, which should be a combination of
the structural dependence in both the cage and elastic barriers
proposed in ECNLE. In addition, our analysis automatically ex-
cludes the effect of surface-induced structure change, since all the
analyses are carried on polymer monomers with the same soft-
ness values, which should approximately correspond to similar
local structures.

3.4 Predicting Strain Response

Plastic deformation in disordered solids happens through local
structural rearrangements.51 Thus, to connect the macroscopic
mechanical response to microscopic polymer dynamics, we can
examine the relationship between strain, ε, and the accumulated
number of monomer rearrangements, Racc, within the constant
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Fig. 6 a) Normalized Racc, as a function of time, for different NP loadings
at T = 0.40 and σc = 0.4. The inset shows the corresponding strain
versus Racc/Npolymer curves. b) Predicted strain-time responses (dashed
lines) of three systems at T = 0.40; dots are the measured strain. These
simulations use neat polymers or r = 3σ PNCs.

strain rate regime. In Figure 6a, we plot Racc (Racc normalized by
the total number of polymer monomers, Npolymer) with time and
find they follow a intriguing linear relationship, with the slope
decreasing as NP loading increases. In other words, the ratio
of monomer rearrangements to Npolymer remains almost constant
during deformation and is determined by the NP loading (see Fig-
ure S10). As we are within the constant-strain-rate regime, this
implies the strain, ε, also increases approximately linearly with
normalized Racc after a brief initial transient, as shown in the in-
set of Figure 6a. Therefore, ε can be estimated from Racc using:

ε = k1Racc + k0 (10)

Here, k0 and k1 are constants obtained through linear fitting, rep-
resenting initial elastic response and rearrangements needed to
reach 1% strain, respectively. This linear relationship suggests
that we can predict strain as a function of time from the struc-
ture information (i.e. softness), because Racc can be estimated by
integrating the probability of rearranging,

Racc =
1

Npolymer

∫ time

0

∫
∞

0

∫ S∞

S0

NsPR dSdrposdt. (11)

Here, Ns is the number of monomers with a given softness and
rpos. PR is the probability of rearranging and can be calculated
through our dynamical decomposition model (Equation 8) given
the system’s softness distribution.

Having connected the number of rearrangements required to
reach a given strain, we can move to predict the strain response
from PR(S). We find that the softness distributions remain un-
changed after the initial elastic response and the magnitude of
the softness change due to the elastic response grows linearly with
stress. Therefore, the softness distribution during creep can be es-
timated from the pre-deformation sample, enabling us to directly
predict strain responses within the low strain regime where the
strain rate is approximately constant and spatially homogeneous
from the structure in the undeformed system (see more technical
details in Figures S11 and S12).

In Figure 6b, we plot the measured strain (points) and the pre-
dicted strain (dashed lines) as functions of time, for three sys-
tems at T = 0.40, finding excellent agreement. Strain predictions
for other temperatures are also accurate and can be found in Fig-

ure S13. These predicted strains, combined with the shift fac-
tors from TTS, can be used to estimate the critical deformation
time of different composites. In Figures 2e and 2f we predict
tcrit for multiple composite systems (diamond points) and demon-
strate excellent agreement with the measured values. This strain
prediction provides a microscopic picture of the glassy dynamics
that leads to creep. By connecting the monomer-level structure
to molecular rearrangements, the model presented above decom-
poses the dynamics into a product of a structure-dependent and
a structure-independent process and can be used to predict the
creep response. This approach can be applied not just in neat
polymers but also polymer nanocomposites. Future work will
seek to understand how the picture changes when the relation-
ships between stress, strain, and softness become nonlinear.

As shown in Figure 2, a composite’s critical deformation time
increases exponentially with NP volume fraction. Based on our
dynamical decomposition model, we speculate that this exponen-
tial dependence is a collective outcome of several factors includ-
ing: 1) the exponential decay of NP slowing down effect on dy-
namics versus rpos (described by a1 and a0); 2) the increase of
interfacial polymer ratio versus NP loading; 3) the magnitude of
the change in the TTS shift factors with changing NP loading; and
4) the shift in softness distribution caused by both NPs and stress.
The first three factors help suppress creep, while the impact of the
last one depends on the sample conditions; NPs typically reduce
softness, but stress tends to increase it. A decrease in softness
would promote the suppression of creep. These factors are all in-
cluded in our prediction of strain response from static structure
information (Figure 6b). The agreement between strain predic-
tion and direct measurements in simulation further support that
the change of the critical time cannot be attributed to a single
factor. Our primary tests suggest that the relative contribution of
different factors depends on system conditions (polymer-NP in-
teractions, NP loadings, etc.) and a systematic study by isolating
these factors respectively is needed in the future. It would also be
insightful to experimentally study PNCs with significantly differ-
ent softness, either near nanoparticle surfaces or for the polymer
matrix itself.

4 Conclusions
In this work, we studied the ability of well-dispersed NPs to sup-
press creep using both simulations and experiments, demonstrat-
ing good qualitative agreement between the model and experi-
ments. We find that a composite’s critical deformation time in-
creases exponentially with NP volume fraction in both simulation
and experiments, with smaller NPs having a larger effect. Sim-
ulation results also suggest that this exponential dependence re-
mains for different polymer-NP interactions, while stronger inter-
actions can better suppress creep. We then proposed the dynami-
cal decomposition model, which provides an explicit relationship
between structure and dynamics on the particle level in PNCs,
especially near the NP surface. Our results suggest that, in ad-
dition to the structure change, the modified structure-dynamics
relation (PR(S)) is also responsible for the slow interfacial dynam-
ics. The change of PR(S) can be described by the product of two
processes (PD and PI), one is dependent on polymer packing (soft-
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ness) and the other is not. Both processes depend on the distance
to the NP surface, rpos, while PD increases with softness exponen-
tially at each rpos. For the same polymer packing, the NP slowing
down effects on dynamics (ai) decay exponentially with rpos in
both components (PI and PD). These together constitute the ’dou-
ble exponential’ dynamical gradient predicted and observed be-
fore31,55,56,58,59. The existence of the structure-independent pro-
cess also explains why the thickness of the dynamically-distinct
region around NPs can differ from the thickness of the region
with an altered monomer structure, as reported in previous stud-
ies24,62.

With the dynamical decomposition model, we show that the
free energy barriers of both processes in the strong interaction
PNCs are higher and less sensitive to the increasing external
stress, resulting in better creep suppression. It also enables us
to predict the overall strain response within the low strain regime
and, thus, the constant-strain-rate response limit of a given PNC
directly from the structure information of the pre-deformation
sample. We believe it provides additional insights in the mech-
anism of creep suppression and will potentially reduce develop-
ment time when designing and screening PNCs for structural ap-
plications. Further, the connection built between particle-level
softness and the overall mechanical response suggests that soft-
ness plays an important role as a structural descriptor for the de-
velopment of constitutive models of glasses that broadly predict
non-equilibrium behavior.63
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