
Nature-inspired designs for disordered acoustic bandgap 
materials

Journal: Soft Matter

Manuscript ID SM-ART-03-2023-000419.R1

Article Type: Paper

Date Submitted by the 
Author: 02-Oct-2023

Complete List of Authors: Li, Xinzhi; Carnegie Mellon University, Physics
Bi, Dapeng; Northeastern University College of Science, Physics

 

Soft Matter



Nature-inspired designs for disordered acoustic bandgap materials †

Xinzhi Li b, Dapeng Bi ∗b

We introduce an amorphous mechanical metamaterial inspired by how cells pack in biological tissues.
The spatial heterogeneity in the local stiffness of these materials has been recently shown to impact
the mechanics of confluent biological tissues and cancer tumor invasion. Here we use this bio-
inspired structure as a design template to construct mechanical metamaterials and show that this
heterogeneity can give rise to amorphous cellular solids with large, tunable acoustic bandgaps. Unlike
acoustic crystals with periodic structures, the bandgaps here are directionally isotropic and robust
to defects due to their complete lack of positional order. Possible ways to manipulate bandgaps are
explored with a combination of the tissue-level elastic modulus and local stiffness heterogeneity of
cells. To further demonstrate the existence of bandgaps, we dynamically perturb the system with an
external sinusoidal wave in the perpendicular and horizontal directions. The transmission coefficients
are calculated and show valleys that coincide with the location of bandgaps. Experimentally this
design should lead to the engineering of self-assembled rigid acoustic structures with full bandgaps
that can be controlled via mechanical tuning and promote applications in a broad area from vibration
isolations to mechanical waveguides.

1 Introduction
A number of recent studies on mechanical metamaterials 1–10

with full acoustic bandgaps have attracted intense interests.
These materials provide opportunities to precisely control propa-
gations of mechanical waves and have a broad range of potential
applications in vibration isolation11, acoustic cloaking12, wave
filters13,14, waveguides15,16 and mechanical switches4,17. Most
of these studies have been devoted to the design and optimization
of acoustic crystals1,2,5–10,18, which are periodic structural mate-
rials with full bandgaps. However, periodicity is not necessary
for the formation of acoustic bandgaps (ABGs)19,20 and amor-
phous structures with ABGs can offer many advantages over their
crystalline counterparts. For example, amorphous acoustic mate-
rials can exhibit bandgaps that are directionally isotropic and are
more robust to defects and errors in fabrications19,20. Currently,
there are few existing protocols for designing amorphous acous-
tic materials. In a recent work by Ronellenfitsch et al3, the au-
thors investigate the acoustic bandgaps in a 2D disordered spring
network constructed from Delanuary triangulation of randomly
perturbed periodic unit cell. They show that the bandgap can be
manipulated by optimizing distribution of stiffness of springs us-
ing machine learning methodologies. But the design is entirely
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artificial and the mechanism on how bandgaps arise is not well
explored.

Biological tissue is sculpted by cell division, growth and rear-
rangements rather than artificial patterning. Therefore, biologi-
cal cells naturally pack in a highly disordered manner, which is
inherently non-crystalline21,22. Previous works have used bio-
logical structures to build amorphous photonic metamaterials23

and topological mechanical materials24–26. Here, we propose a
design for amorphous 2D ABG materials that is inspired by how
cells pack in dense tissues in biology. We generate structures that
exhibit broad ABGs based on a simple model that has been shown
to describe cell shapes and tissue mechanical behavior. An advan-
tage of this design is that the width of ABGs can be directly tuned
by single mechanical parameters. We also take advantage of the
heterogeneity that is naturally-present in biological tissues. Based
on the design protocol, we first study in-depth the static mechan-
ical properties of the materials and characterize their acoustic
spectrum and bandgaps. We then perform mechanical wave per-
turbations on these bio-inspired structures.

1.1 Cells form a natural disordered mechanical network in
biological tissues

When epithelial and endothelial cells pack densely in 2D to form
a confluent monolayer, the structure of the resulting tissue can
be described by a polygonal tiling27. A great variety of cell shape
structures have been observed in tissue monolayers, ranging from
near-regular tiling of cells that resembles a dry foam or hon-
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eycomb lattice28 to highly irregular tilings of elongated cells29.
Cells can interact with each other via mechanical forces and can
transmit tensions at distances much larger than the single cell
size30,31. Cells pack in a highly disordered way21,22, and form
tissues by growth, apoptosis and rearrangements, which are all
dynamical events. Thus the tissue is able to maintain a home-
ostatic balance and the cell shapes are largely maintained. In
Fig. 1, we show a snapshot of primary human bronchial epithelial
cells32.

Fig. 1 Snapshot of a confluent epithelial tissue composed of mature,
well-differentiated primary human bronchial epithelial cells grown in air-
liquid interface culture32. Image Courtesy of the Park lab at the Harvard
School of Public Health.

2 Methods

2.1 Vertex Model for Generating Amorphous Cellular Struc-
tures

To better understand how cell shapes arise from cell-level interac-
tions, researchers have studied a simple vertex model27,28 that in-
corporates the constraints on cell shapes imposed by confluence.
The original models focused on 2D monolayers of cells, where
the system are coarse-grained as networks of cellular polygons
that tessellate the plane. In the vertex model, the basic degrees of
freedom are vertex positions of the polygons. The biomechanics
of the tissue is governed by the energy function27,28,33–37

E =
N

∑
i=1

[
KA(Ai−Ai

0)
2 +KP(Pi−Pi

0)
2
]

(1)

where cell areas {Ai} and perimeters {Pi} are functions of the
position of vertices {ri} and the connectivity between cells. KA

and KP are the area and perimeter elasticities, respectively.
The term quadratic in cell area Ai results from cell volume in-

compressibility and the monolayer’s resistance to height fluctua-
tions28,33,35. Changes to cell perimeters are directly related to the
deformation of the acto-myosin cortex concentrated near the cell
membrane 38,39. After expanding E, the term KPP2

i corresponds

to the elastic energy associated with deforming the cortex. The
linear term in cell perimeter, −2KPP0Pi, represents the effective
line tension contributed by cell i which gives rise to a ‘preferred
perimeter’ P0. The value of P0 can be decreased by up-regulating
the contractile tension in the cortex of cell i 28,33,37,40 and it can
be increased by up-regulating cell-cell adhesion between cell i and
its neighbors. For this work, we will assume the individual pre-
ferred cell area A0 does not vary from cell-to-cell and is set to be
equal to the average area per cell (i.e. A0 = Ā), which also sets

√
Ā

as the length unit. Therefore the unit of the tissue energy would
be KPĀ. The tissue energy can be non-dimensionalized by KPA0

as the unit energy scale, ε = ∑
N
i=1
[
κA(ai−1)2 +(pi− pi

0)
2], where

ai = Ai/Ā and pi = Pi/
√

Ā are the rescaled shape functions for area
and perimeter of the ith cell. κA = KAĀ/KP is the rescaled cell area
elasticity, and pi

0 = Pi
0/
√

Ā is the preferred cell shape index 37.

To capture the experimental heterogeneity in single-cell prop-
erties and in cell-cell interactions 41–45, we introduce variations
in the preferred shape indices {pi

0}. The majority of this work
uses a Gaussian distributed set of {pi

0} with mean µ and standard
deviation σ . The results are insensitive to the form of distribu-
tion for {pi

0}
30,31. When the tissue heterogeneity σ = 0, all cells

have the same preferred perimeter p0 and the system becomes a
homogeneous tissue which is well studied in previous works37,40.
The open source code CellGPU46 can be used to generate cellular
structures and implement the vertex model simulations.

2.2 Characterizing the Mechanical Property of the Cellular
Network

In this model, the cell stiffness is determined by the tension τm on
cell-cell junctions (edges)47–53. The tension of the edge m with
length lm shared by cells i, j is given by54,55,

τm ≡
∂E
∂ lm

= KP[(pi− pi
0)+(p j− p j

0)]. (2)

We also calculate the shear modulus56 to quantify the rigidity on
a tissue level.

To characterize the acoustic property of the system, we first
calculate the Hessian matrix Hiµ, jν = ∂ 2E

∂ rµ

i ∂ rν
j

and solve its engen-

values. By plotting the density of states, we could figure out the
existence of bandgaps. To obtain the full band structure at vari-
ous wave vectors kkk, we calculate the eigenvalues of the dynami-
cal matrix, which is the Fourier transform of the Hessian matrix.
Considering a system with energy E, the equation of motion is

mir̈
µ

i =− ∂E
∂ rµ

i
=−∑

jν
Hµ,ν

i, j rν
j . (3)

Here rrri denotes the position of vertex i. µ = x,y are cartesian
indices. We can assume periodic solutions to get the eigenvalue
equations

ω
2rµ

i (kkk) = ∑
jν

Dµ,ν
i, j (kkk)rν

j (kkk). (4)

Then the dynamical matrix is given by

Dµ,ν
i, j (kkk) =

1
√mim j

Hµ,ν
i, j exp

[
− ikkk · (RRRα

i −RRRβ

j )
]
. (5)
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For an amorphous structure, to calculate the dynamical matrix,
the whole system is treated as a super unit cell containing mul-
tiple vertices. RRRα

i denotes the position of the unit cell α in
which the ith vertex is located (see Supplemental Information
(SI) section II). In our model, the unit of frequency is denoted
by ω0 =

√
KAĀ/M0, where KA is the area modulus and has di-

mensions of Pa/m. M0 is the mass of the typical cell, which is in
the unit of kilogram.

3 Results

3.1 Band structure in homogeneous solid vs fluid states

In a homogeneous tissue without mechanical heterogeneity, we
find that the bandgaps only exist in fluid states. As shown
in Fig. 2(a) and (b), when the shear modulus G vanishes at
p0 = 3.812, the bandgap ∆ω shows up and keeps increasing deep
into fluids. We take two typical states, solid at p0 = 3.75 and
fluid at p0 = 3.9, and calculate the full band structures. The
solid state has no bandgap (Fig. 2(c)) while the fluid has con-
siderable bandgap (Fig. 2(d)). However, the fluid cannot trans-
mit mechanical forces as a result of external perturbations due
to the presence of floppy modes. For homogeneous solid states,
increasing the cell perimeter elasticity KP could enhance the rigid-
ity, which means resulting in higher shear modulus and making
the tissue more rigid. But there is no impact on the existence of
bandgap (see SI Fig. S1). Looking into the band structure, we
find that the appearance of the bandgaps at the specific mode
numbers is universal. The location of the bandgaps remains be-
tween mode NE and NE +1, where NE is the number of edges of
the system. For a triple-junctional network, due to the Euler re-
lation N−NE +NV = 0, the number of edges is 3 times of the cell
number NE = 3N and the number of vertices is NV = 2N. So the
bandgaps always appear between mode 3N and 3N +1.

To obtain insights on the existence and behavior of the acoustic
bandgaps in the vertex model, we consider the Hessian matrix of
the system,

Hµ,ν
i, j =

∂ 2E
∂ rµ

i ∂ rν
j

=
NE

∑
m=1

τm
∂ 2lm

∂ rµ

i ∂ rν
j
+KP

N

∑
α=1

∂Pα

∂ rµ

i

∂Pα

∂ rν
j
+O({Ai}) (6)

The first term sums over all NE edges where τm is the mechan-
ical line tension for an edge m shared by cell i and j defined as
Eq. (2), and lm is the edge length. The second term is positive
definite and contributes a total count of N to rank(H). In a re-
cent work by Yan and Bi54, they show that the area term has
little impact on the counting rule while makes the decomposition
of Hessian much more complicated. So we consider the special
case when KA = 0 without area contribution to the energy. In
Eq. (6), all area related terms come down to the infinitesimal
part. Based on the above decomposition of the Hessian matrix,
we can understand the existence of the bandgaps. The first NE

modes are induced by the first term and NE + 1→ 2NV higher
modes come from the second term. For solid states, when up-
regulating KP, tensions keep increasing and have no upper limits.
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Fig. 2 Mechanical and acoustic properties for homogeneous tissues. We
use N = 400 cell system with p0 = 3.75 : 0.01 : 3.95,KP = 1,KA = 1. (a)
Shear modulus G as a function of p0. (b) Width of acoustic bandgap
∆ω as a function of p0. (c) Band structure for a solid state at p0 = 3.75
indicated by blue asterisk in (a). ω is in units of ω0 =

√
KAĀ/M0. (d)

Band structure for a fluid state at p0 = 3.9 indicated by blue diamond
in (a). To obtain the full band structure, the dynamical matrix and
eigenvalues are calculated along the ~k path M = π/L(1,1/

√
3)→ ΓΓΓ =

π/L(0,0)→K = π/L(1/3,1/
√

3)→M = π/L(1,1/
√

3). L =
√

N is the box
size of the system.

Both of the two terms of Eq. (6) are increasing which leads to
the fact that all eigenmodes are shifting higher and no separa-
tion between eigenmodes emerges. For fluid states, the tension
is saturating at high KP values which means that the first term
of Eq. (6) remains almost constant while the second term keeps
increasing with KP.Therefore, the first NE modes are almost un-
changed and the NE + 1→ 2NV modes are moving higher when
increasing KP. The separation emerges between mode NE and
NE + 1. That is why the bandgaps only exist in fluids between
modes NE and NE +1.

3.2 Heterogeneous solids could realize both rigidity and
bandgaps

Fig. 3(a) shows a typical snapshot of the heterogeneous tissue
in the simulations. Colors represent various p0 values of each
cell. In our recent work studying how the heterogeneity affects
the rigidity of a tissue, we find a very interesting intermediate
state30,31, the heterogeneous solid (H. Solid), which has tension
network percolation but no rigid cell contact percolation. A perco-
lating tension network is shown in Fig. 3(b). The heterogeneous
solids are consequences of the mechanical heterogeneity while
for the homogeneous tissue, this intermediate state disappears.
After the heterogeneity σ is introduced, the homogeneous fluids
can be rigidified at some µ values. The critical value of µ that
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the rigidity transition occurs is determined by the strength of the
heterogeneity σ . The density of states (DOS) and band structure
of a typical heterogeneous state are shown in Fig. 3(c)). The il-
luminating behavior of the heterogeneous solids that it still has
a sizable bandgap like the fluid state attracts our curiosity about
properties of acoustic bandgaps in these systems.
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Fig. 3 Tissue structure and band structure in the vertex model simula-
tions. (a) Colors represent various p0 values of single cells. (b) Tension
network of the heterogeneous solid state. Edges with finite tensions are
indicated by thick black lines while other edges have τ = 0. In this net-
work, the tension percolation has occurred. (c) Density of states and
band structure along wave vectors k for N = 400,µ = 3.87,σ = 0.1,KP =

1,KA = 1.

As shown in Fig. 4(a), we plot the width of bandgaps ∆ω and
scaled shear modulus G/σ as a function of fr. Here fr repre-
sents the fraction of rigid cells with p0 < 3.812. For a Gaussian
distributed set of p0 with mean µ and standard deviation σ , the
fraction of rigid cells can be calculated fr = 1

2 erfc
(

µ−3.812√
2σ

)
. A

very interesting crossover is found in Fig. 4(a) near the rigid cell
contact percolation critical point f c

r = 0.48. This behavior is quite
similar with the scaled shear modulus as a function of µ presented
in our previous work30. At the critical f c

r = 0.48 where the con-
tact percolation occurs, the width of the bandgaps is constant de-
spite various σ values. The crossover separates the bandgaps into
two mechanical regimes. On the left side of f c

r , ∆ω is increas-
ing with σ which means heterogeneity σ enhances the bandgaps.
However, when fr is larger than f c

r , ∆ω is decreasing with σ indi-
cating that the heterogeneity is suppressing the bandgap. In the
inset of Fig. 4(a), a schemed phase diagram shows the existence
of bandgaps for various heterogeneous tissue states. For the fluid
state, there is a sizable bandgap. However, as mentioned above
in Section 3.1, the fluid state is difficult for practical applications
due to a number of floppy modes, which localize external exci-
tations. For a pure rigid state at µ < 3.812, there is no bandgap

at all. In Fig. 4(b), the scaled shear modulus G/σ is plotted as
a function of fr. By comparison between ∆ω and G/σ , we find
that the heterogeneous solid states at 0.21 < fr < 0.48 are optimal
candidates to obtain both rigidity and acoustic bandgaps. Now we
have states with complete acoustic bandgaps, how to control the
bandgaps and obtain gaps large enough? We will discuss these
problems in the following section.
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Fig. 4 Characterizing properties of acoustic band structures. (a) ∆ω as
a function of fr at N = 100,σ = 0.05 : 0.01 : 0.2,KP = 10,KA = 1,µ = 3.75 :
0.01 : 3.95. There is a crossover at fr ≈ 0.48 which coincides with the
critical point of the rigid cell contact percolation. (inset)Phase diagram
on where acoustic bandgaps exist. (b) Scaled shear modulus G/σ vs fr
at N = 100,σ = 0.05 : 0.01 : 0.2,KP = 10,KA = 1,µ = 3.75 : 0.01 : 3.95.

3.3 Cell perimeter elasticity could control the size of me-
chanical bandgaps

In the vertex model, KP is the cell perimeter elasticity. Inspired by
previous works3,57,58 that the contrast of spring constants could
generate gaps in a spring network, we are wondering if it is possi-
ble to control acoustic bandgaps by tuning KP in the vertex model.
In this section, we calculate mechanical tensions and the width of
acoustic bandgaps as a function of cell perimeter elasticity KP at
N = 100,σ = 0.1,KA = 1 and various µ values. Remember that
the rigidity transition occurs at µ ≈ 3.9 when the heterogeneity
σ = 0.130. As shown in Fig. 5(a), when µ < 3.812, the systems
are solid states and tensions τ keep increasing with KP. In hetero-
geneous solids at 3.812 < µ < 3.9, τ also increases with KP then
saturates. In addition, increasing KP largely promotes the size of
bandgaps which can be seen in Fig. 5(b). The bandgaps ∆ω keep
monotonically increasing with KP for heterogeneous solids and
fluids at various µ values, showing similar power-law behaviors.
As discussed in Section 3.1, ∆ω also exists between modes NE

and NE +1 as the homogeneous tissues. This means that the cell
perimeter elasticity KP could change the width but not shift mode
locations of the bandgaps. Note that increasing KP and introduc-
ing heterogeneity into solid states at µ < 3.812 do not generate
bandgaps as shown in SI Fig. S2.
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Fig. 5 Manipulating mechanical tensions and bandgaps. (a) Ten-
sion τ as a function of KP at N = 100,KA = 1,σ = 0.1,µ =

3.75,3.77,3.79,3.80,3.82,3.83,3.85,3.87,3.89,3.90. The data is plotted at
log-log scale. (b) ∆ω as a funciton of KP for the same state as in (a).
∆ω is increasing with KP for heterogeneous solids and fluids.

3.4 Transmission coefficient to quantify the size and posi-
tion of bandgaps

We have used the density of states and band structure to charac-
terize the bands of the tissue and quantify the width of bandgaps.
They are all static properties of the system and predictions based
on linear response calculations. To further demonstrate the exis-
tence of the acoustic bandgap and explore the dynamical property
of elastic wave transmission, we calculate the transmission coef-
ficient1,2,59,60 of the system perturbed by a sinusoidal wave exci-
tation at various driven frequencies. The excitation is put at the
center of the system. Both transverse and longitude oscillations
are applied to the system. In the tissue, driven vertices evolve ac-
cording to the overdamped equation of motion under longitude
perturbation,

m0
d2x
dt2 =

{
−b dx

dt +Asin(ωd t) vertices of center cells

−b dx
dt other vertices

(7)

Here m0 = 1 is the mass of a vertex, b is the damping coefficient,
A is the amplitude of the perturbation and ωd is the driven fre-
quency. ωd is in the unit of ω0 which has been discussed in
Section 2.2. For cells on the center, there is an external sinu-
soidal driving force Asin(ωd t) and cells behave as driven oscil-
lations. Other cells undergo damping oscillations. For a driven
cell, all vertices on the cell are oscillating with the driven force.
In Langevin dynamics, the damping force on vertices is −bvvv(x).
Therefore, the power dissipated by the cell stripe located at x is
−bvvv(x)2. By integrating the damping power at a time interval,
we can get the energy dissipated by the vertices at position xxx.
The transmission coefficient T is defined as the ratio of the en-
ergy dissipated by the perturbed cells at the center of the system
to the energy dissipated on boundary cells. We choose a typi-
cal heterogeneous solid state to calculate the transmission coef-
ficient. The density of states and band structure are shown in
Fig. 6(a) and (b). As shown in Fig. 6(c), at frequencies within
the gaps, T drops to very low values for both transverse and lon-
gitude waves, indicating prohibited transmission of mechanical
waves with these frequencies. In SI Fig. S3, we make colormaps

of transmission coefficient T (x) for both transverse and longitude
perturbations. T (x) is the ratio of the energy dissipated at x to
the energy dissipated on the boundary. We observe that the val-
ley of the transmission coefficient of dynamical perturbations is
consistent with the bandgaps predicted by the density of states
and the band structures. This further demonstrates the existence
of the bandgaps. For the heterogeneous solid states, whether the
mechanical waves could be transmitted depends on the driven
frequency ωd . If the driven frequency is within the bandgap, the
propagation of mechanical waves is prohibited, so the transmis-
sion coefficient vanishes. Outside the bandgap where mechanical
waves could transmit through the system, the transmission coef-
ficient could be finite values.
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Fig. 6 Characterization of transmission properties for a heterogeneous
solid state N = 100,µ = 3.815,σ = 0.1,KP = 5,KA = 1 excited by a sinu-
soidal wave Asin(ω0 t). The damping coefficient b = 0.8 and amplitude
A = 0.1. (a) Density of states. (b) Band structure along various wave
vectors k. (c) Transmission coefficient T on the boundary for both trans-
verse and longitude perturbations at various driven frequencies ωd .

4 Discussions
In this work, we propose a design for amorphous 2D ABG mate-
rials that is inspired by how cells pack in dense tissues in biology.
We generate structures that exhibit broad ABGs based on the ver-
tex model that has been shown to describe cell shapes and tis-
sue mechanical behavior. An advantage of this design is that the
amorphous structure is more robust to defects and cell rearrange-
ment. In addition, the width of ABGs can be directly tuned by
mechanical parameter, say the cell perimeter elasticity KP in het-
erogeneous solids. For a given heterogeneous solid state, increas-
ing KP largely enhances the width of the bandgap. The scaling
relation between the width of the bandgap ∆ω and KP shows a
universal cluster of the bandgaps. We use both static mechanical
properties such as density of states, band structures, and dynami-
cal transmission coefficients to characterize ABGs. The width and
position of the bandgap are consistent for these results. In our
tissue structure, there is a possible way to optimize the bandgaps
by tuning the distribution of cell perimeter elasticity KP based
on an machine learning algorithm3. It will be straightforward
to manufacture static acoustic materials based on this design us-
ing 3D printing or laser etching techniques. In addition, fabri-
cation techniques such as electron beam lithography or focused
ion beam milling can also be used to precisely control the ge-
ometry and arrangement of micro/nanostructures based on the
scale of the system. An even more exciting possibility is to adapt
this design protocol to self-assemble structures. Recent advances
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in emulsion droplets have demonstrated feasibility to reconfig-
ure the droplet network via tunable interfacial tensions and bulk
mechanical compression. Researchers have shown that the amor-
phous biological tissue can be used as a template to design pho-
tonic materials23. Therefore, our protocol provides the possibil-
ity to construct the metamaterial with both acoustic and photonic
bandgaps.
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