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Industrial networks consist of multiple industrial nodes interacting with each other through material
exchanges that support the overall production goal of the network. These industrial networks exhibit
complex nonlinear dynamics arising due to the multiscale nature of interactions among industries
and the inherent dynamics of each industrial node. Further, these overall dynamics have a signifi-
cant impact on the sustainable design of these networks, along with the resource consumption and
emission dynamics of the overall network. However, understanding the overall dynamics of industrial
networks is challenging as digital models do not exist for the whole network dynamics, especially for
emerging industrial systems, and simulative analyses of the same can be computationally expensive.
To overcome this limitation, we propose a hybrid mechanistic machine learning approach based on
data-driven system identification to build surrogate dynamical models of industrial nodes, which can
be coupled to evaluate the overall industrial network dynamics. Further, we propose utilizing the
overall network dynamics to quantify dynamic carbon footprint and design of industrial network for
maximum carbon sink. We apply our methodology to evaluate the dynamical carbon footprint of
an algal-biodiesel industrial network comprising of 5 separate dynamical industrial systems. The
redesign of the network with the modified technological parameters informed by overall network dy-
namics results in approximately 2% enhanced CO2 sequestration rate of 29750.34 kg/hr, with the
net CO2 footprint being accurately calculated as -1485069.47 kg for the 50 hours of operations based
on the nonlinear model obtained for the network. The dynamical models were also used to analyze
the net neutralization time required to completely remove the energy-related CO2 emissions using
this specific algal biodiesel network for a specific region in a particular year, providing insights into
the potential of this technology to meet the climate mitigation goals. Hence, the proposed approach
establishes a pathway to evaluate industrial network dynamics for any emerging system by relying
on mechanistic models and data-driven system identification and informing the sustainable design of
future industrial networks.

1 Introduction
Industrial decarbonization is a major objective for meeting the
climate change goals aimed towards limiting global warming to
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1.5°C set forth by IPCC.1 Industrial emissions for the year 2020
accounted for 1426.2 million metric tonnes CO2eq. of GHG emis-
sions globally which is 24% of the total US GHG emissions distin-
guished by the economic sectors.2 In order to meet the goals of
industrial decarbonization, several technologies in the US are be-
ing proposed for carbon capture & utilization, primarily being op-
erational in 5 industrial sectors, viz. chemical production, hydro-
gen production, fertilizer production, natural gas processing, and
power generation.3 Furthermore, the transitions away from a fos-
sil fuel-based economy towards waste reutilization for the man-
ufacturing of value-added products are being proposed, for in-
stance, conversion of vegetable oil into bioadsorbents for wastew-
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ater treatment,4 thermolysis of waste plastics to liquid fuel,5 bio-
fuel production from grape marc,6, upcycled carbon black in the
formation of battery anode,7 etc. These emerging technologies
will be embedded in existing industrial networks, which are a
group of industries interacting through the exchange of materi-
als to meet a goal of production. Such industrial networks are
complex dynamical system that interacts at multiple scales, and
each node in the network represent an individual industrial pro-
cess governed by specific chemical, biological, or physical mech-
anisms. Further, there exists inherent nonlinearity within the dy-
namics of each industrial node, that results in nonlinear dynami-
cal relationship between different material streams in the overall
production network. Hence, the overall dynamics of the indus-
trial network at macroscale is driven by the dynamics at each
node and interactions among these nodes which determine the
overall production dynamics of the network, the exact character-
istics and underlying governing equations of which are generally
unknown. However, understanding this overall dynamics of ex-
isting and emerging industrial networks is necessary to accurately
quantify the resource consumption and emission dynamics from
these networks in long term, which is critical to evaluate the sus-
tainability of these systems as a whole rather than at individual
industrial nodes.

There are several systematic techniques like Life Cycle Assess-
ment (LCA)8, Material Flow Assessment (MFA)9, Agent Based
Modeling (ABM)10, Statistical Process Control11–13, and System
Dynamics (SD)14 that are widely being used for sustainability as-
sessment of industrial systems. One principal limitation of LCA
and MFA method is lack of accounting for the nonlinear dynam-
ics between various system components15–17. Capturing such
nonlinear relationship is important for accurate assessment of re-
source consumption and emissions over time as the systems re-
sponse to changes cannot be linearly extrapolated. While system
dynamics method does account for these dynamical behavior, it
relies on causal loop diagrams which are generally unknown for
emerging industrial networks18. Similarly, ABMs rely on accu-
rate information about effect of participating components on each
other, which is also unknown for emerging industrial networks19.
Hence, to overcome these gaps in modeling the dynamics of in-
dustrial networks for sustainability assessment, we propose a hy-
brid mechanistic machine learning approach inspired by data-
driven system identification. Since the existing methods do not
capture the overall dynamics of industrial networks and do not
focus on the network design for sustainability, a direct compara-
tive analysis of the proposed approach in this work with existing
methods cannot be done.

Data-driven system identification is an age-old technique for
solving inverse problems, that can recover the governing equa-
tions for dynamics of a system based on experimental observa-
tions and known physical laws20,21. The recovery of underlying
mathematical relationship which governs the systems, establishes
the governing first principles physical, chemical, and biological in-
formed laws. These laws can then be experimentally validated for
smaller systems, however for large scale complex industrial net-
works, it is not feasible to experimentally validate these inverse
equations. Therefore, as the direct application of experiment-

based system identification is challenging as well as nearly im-
practical procedure to apply on the emerging industrial networks,
it becomes important to utilize the multiscale nature of these net-
works for evaluation of dynamics. Thus, in our approach, we
propose to build surrogate models for individual nodes (indus-
trial system) in the industrial network using machine learning
and couple these models to study the overall dynamics of the
industrial networks. As it is feasible to experimentally validate
the individual node models, it provides confidence in using these
surrogate models to evaluate the dynamics of overall complex in-
dustrial network.

The field of data-driven system identification itself has been
growing rapidly due to the availability of large-scale data and
increased computational power in last few years. Several re-
cent papers have shown the promise of novel data driven system
identification in fields such as fluid mechanics22, chemical reac-
tion networks23–25, single unit operations such as distillation col-
umn26,27, chemical process plants28, mechanical systems29,30,
etc. These machine learning algorithms seem promising to build
surrogate models for the industrial nodes in large scale industrial
networks, that can then be utilized to evaluate the overall dy-
namics of networks without missing any critical causal relation-
ships that drive the dynamics of overall networks. As mechanistic
models are known for several of the industrial systems or can
be built when a new industrial technology is being proposed, we
propose this hybrid approach that utilizes the strength of mecha-
nistic knowledge to generate data and machine learning to create
surrogate dynamical models. We utilize Sparse Identification of
Non-Linear Dynamics (SINDy) algorithm in our work, based on
it’s recent success in model identification in several scenarios such
as nonlinear optics31, thermal fluids32, chemical reaction dynam-
ics33, structural modelling34, models for partial differential equa-
tions35,36, and stochastic systems37. Recently SINDy has also
shown promising results in identifying governing equations for
the overall dynamics of single-unit operation and multi-unit op-
eration manufacturing systems27,28. We demonstrate our hybrid
approach on an emerging industrial network of algal biodiesel
production, which is a promising technology for carbon capture
& utilization and waste water reutilization for value added pro-
duction in economy. Figure 1 shows an example of multiscale
interaction in an industrial network for algal biodiesel network as
modeled in our work. It shows interactions all the way from the
unit operations to industrial systems and further to the network.
The overall dynamics of this network is then used for sustain-
ability assessment of aspects such as dynamic carbon footprint
calculation, identifying optimal values for control parameters to
design a "net carbon negative" industrial network and evaluating
the time feasibility of meeting net zero carbon goals based on
the optimal operational design of industries in the network. We
demonstrate these applications using the analyses for the mod-
eled algal bio-diesel network.

The methodology proposed is described in detail in section
2, results on application and sustainability analysis of algal bio-
diesel industrial network are discussed in section 3 and conclu-
sions along with future applications or advancements of method
are provided in section 4.
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Fig. 1 Industrial Production Network comprising of multiple smaller individual industrial systems operating at different time scales, that further
comprises of multiple unit operations. The industrial systems are connected together by the material interdependencies existing in a sub-economic
supply chain framework.
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Fig. 2 Methodical Schematic of the Hybrid Mechanistic Machine Learning Approach for Industrial Network Dynamics and Sustainability Assessment

2 Methodology
We propose a two part methodology shown in Figure 2 to evaluate
the overall dynamics of industrial networks. In the first part of the
methodology, we propose a three-step procedure to build a sur-
rogate dynamical model for industrial systems in the production
network using a hybrid mechanistic machine learning approach
(Section 2.1). The second part of methodology, focuses on cou-
pling the individual node models and evaluating overall network
dynamics for scenarios related to sustainability assessment of sys-
tem (Section 2.2).

2.1 Hybrid Mechanistic Machine Learning for Surrogate Dy-
namical Model Construction of Industrial Systems

The hybrid mechanistic machine learning approach is developed
based on data-driven system identification technique that relies
on supervised machine learning algorithms. Consequently, there
are three steps for developing the dynamical models for the indus-
trial systems in the network. The step 1 involves the data genera-
tion, where we utilize the computationally-designed mechanistic
models of each industry to generate reliable time-series data of
the state variables based on excitation variables of the system for
each block. Next in step 2, we use data from mechanistic models
in Step 1 and apply white-box machine learning algorithm to per-
form system identification and obtain governing dynamics model
as Ordinary Differential Equations (ODEs) for each industrial sys-
tem. In the final third step, the obtained ODEs from step 2 are
numerically integrated, to test the accuracy of these models for
dynamical reconstruction. Thus, the models are validated both
qualitatively using visual inspection and quantitatively using ap-

propriate accuracy testing metric. These evaluations are used for
accepting the models with appropriate complexity. Details for im-
plementing these steps and considerations for data generation,
model training and validation are discussed next.

2.1.1 Step 1 - Data Generation Using Mechanistic Models:

System identification technique relies on availability of correct
data that can capture the mechanisms of the process38. For any
industrial process, the data can be obtained from the real-time
operations and the same can be used. But often such data is pro-
prietary in nature and is not available for the use. Additionally, for
emerging technologies that are not yet under commercial opera-
tions, such data is not available. Hence, the primary challenge of
obtaining data has been proposed to be bridged through the use
of mechanistic process simulations. In this work, we rely on As-
pen Plus and Aspen Dynamics software, a versatile process simu-
lation tool that can be operated in the static and dynamical mode,
respectively. Aspen Plus aids in the design and formulation of a
process-scale flow diagram while the Aspen Dynamics provides
insight on the temporal variation of the state variables (output)
upon the excitation of control variables (input). The state vari-
ables are defined to be the key parameters of the process system
which shows dynamical variation with time and capture the over-
all state of system, governed by underlying physical and chemical
laws. The control variables are the parameters of a process that
can be controlled by the user and the excitation of the same over
time results in the dynamical variation pattern of the state vari-
ables. For instance, the control variable can be the flow rate or
temperature of the input stream, while the state variable can be
the flow-rate or temperature of the output stream, heat duty of
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the reactor being used in the process as a unit operation, etc.
For data generation, first we design process flow-sheet in a

"Flow-driven" static condition using Aspen Plus and thereafter
transfer it to Aspen Dynamics environment. Once the flow-sheet
is uploaded in the dynamical environment, the second and most-
important step is the qualitative choice of control variables and
the state variables that are of interest. Ideally, several system
variables are chosen in the state space and based on the non-
linear pattern of variation shown by each throughout the dynam-
ical simulation, the state variables are finalized. If a state vari-
able does not show dynamic variation to the excitation used, it is
not selected as one of the state variable for model construction.
Additionally, among collinear variables only one is selected. In
addition to selecting the right state variables from a quantitative
i.e. system dimensionality, and qualitative i.e. model recovery
perspective, it is also important to choose the appropriate control
variables that needs to be perturbed for the system. Importantly,
such control variables needs to be close to the realistic perturba-
tion that occurs during the industrial operations, and has to be
meaningful for the later use of models such as in industrial node-
node coupling and sustainability analyses.

After the selection of control variables and state variables, exci-
tation input is given to the control variable to generate time series
data for state variables in response to the excitation input. In our
study, the forcing function for excitation is written in Aspen Dy-
namics environment using FORTRAN. Key parameters to set up
the dynamical simulation are : i) type of dynamic jump given to
the control variable such as ramp function or sine-ramp function;
ii) total simulation time till which the state variables show dy-
namics before converging to stable value and iii) sampling time
for the time stamp to collect data. Sampling time is dependent on
total simulation time and the number of data points required. For
instance, if the total simulation time is 100 hours and 1000 data
points are desired for training models, the sampling time selected
will be 0.1 hours.

Eventually the process flow system is initialized at time t=0
hours with the chosen forcing function of control variable. The
system is then run in the dynamical mode where the dynamical
variation time is assigned in a way similar to the time variation
that happens in the actual industrial operation for the correspond-
ing control variables. This is done to maintain the consistency of
the computational model with the real world processes. This dy-
namical simulation generates a time series array of data for the
selected state variables and control variables which is exported
in CSV file serving to be the input file for the machine learning
algorithm.

For the case of material flows happening within a large com-
plex industrial operation comprised of smaller sub-industries, a
decoupling scheme can be utilized in order to ease the computa-
tional load on dynamical data generation providing an easier ap-
proach for the convergence of the solution while using Aspen Plus
and Aspen Dynamics. In order to decouple the industry into sub-
industrial nodes, selection of nodes for an industrial network is
based on the division of the processes in an Industry and the ma-
terial exchanges occurring between different industries, in which
case the nodes represents the individual industries that can be

easily modeled. To decouple, the material flows from one "indus-
try" to other "industry" within the complex is identified and each
industry is modeled separately. This is realistically valid since
there exists different processes comprised of several unit opera-
tions in an industry and each processes are connected by shared
material interdependencies flowing via pipelines.

2.1.2 Surrogate Dynamical Model Construction using
Machine-Learning Approach:

In this step, we use data-driven system identification technique
to create surrogate models governing dynamics for each in-
dividual industrial nodes via utilizing the time series dynami-
cal data generated in the previous step. Data-driven system
identification approaches include a diverse range of techniques
like Symbolic Regression39, Sparse Regression40, Gaussian Pro-
cesses41, Sure-Independence-Screening Sparsifying-Operator Re-
gressor (SISSO)42, and Deep Learning43. For this particular
work, we utilize Sparse Identification of Non-Linear Dynamics
(SINDy)40 approach for recovering the governing mathematical
model for an industrial node operation. SINDy is based on sparse
linear regression that is highly extensible and requires signifi-
cantly fewer data in comparison to other techniques, for instance,
neural networks. It makes two assumptions about the structure
of the model, the first one is that only a few essential terms in the
space of possible functions actually govern the dynamics of the
chosen system, thus reducing the dimensionality of the govern-
ing equations making it parsimonious. The second assumption
is that the space of possible functions comes from a predefined
set of library functions that a user can either choose or define.
Both these assumptions hold for a wide range of complex physical
systems following reduced order representation for the dynamics
of the system. Furthermore, SINDy models have certain advan-
tages over other methods, like having the characteristics of inter-
pretability, tending to generalize the system over a wide range of
control dynamics, and also preventing the model from overfitting.

The goal of SINDy is to discover a model for dynamical systems
in the form given in Equation 1.

d(x(t))
dt

= f (x(t)) (1)

where x(t)∈ Rn is time-series data of the state variables and the
dynamics encoded by the function f .

For modeling of non-linear dynamical systems with known ex-
ternal forcing function given as u(t) ∈ Rn, the f (x(t),u(t)) is a lin-
ear combination of non-linear functions of x(t) and u(t). This
leads to Equation 2

ẋt = Σ
k
i=1ξiθi(x(t),u(t)) (2)

where θs are non-linear functions called the candidate terms of
f (x,u) that can comprise of user provided function which can be
of the form constant, polynomial, fourier, or any custom defined
function as well, while ξ s are the coefficients of the terms iden-
tified by SINDy algorithm. It is crucial to choose the library of
candidate functions carefully, and can include any function that
might describe the data. Additionally, numerical differentiation
methods such as finite differences or smoothed finite differences
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method are used to calculate the time derivative of state variable
dynamical data that are used in SINDy.

The system in Equation 2 can be written in terms of these data
matrices

Ẋt = Θ(X (t) ,u(t))Ξ (3)

SINDy uses a sparsity-promoting optimization algorithm to
identify the sparse matrix of coefficients Ξ, i.e. to select only a
few model terms from a library of candidate functions. The opti-
mization algorithm is typically based on regularization approach
that can be L1 regularization such as (LASSO)44 or Sequentially
Thresholded Least Squares (STLSQ)45, L2 regularization (Ridge
Regression)46, TV regularization such as Sparse Relaxed Regu-
larized Regression (SR3)47, Elastic Nets48, etc. The sparsity is
controlled by the use of λ , which is the regularization hyperpa-
rameter. For the implementation of SINDy, we use PySINDy49,
a python package that provides various tools to apply the SINDy
approach for model discovery. PySINDy is scikit-learn compatible
and also includes options for user customization. The data from
Step 1 is fed to the algorithm and models for each industrial node,
and are iteratively trained with specific λ values, which are tested
and validated in next step.

2.1.3 Model Validation and Accuracy Estimation of Surro-
gate Dynamical Models:

Finally, we validate the surrogate models for dynamical recon-
struction using visual and quantitative approach. The ODEs ob-
tained from training models are numerically integrated using an
Initial Value Problem (IVP) approach. To perform this numer-
ical integration, we have utilized an inbuilt Python function in
PySINDY library. The arguments for the integration function in-
clude (i) initial values of the state variable initialized at t=0
hours, (ii) array of values of the control variable expanding up
till the total dynamical simulation time, and (iii) the array of total
time up to which the numerical integration needs to be performed
with appropriate time step. Selection of integrator available also
needs to be done in the function. One can choose to use explicit
integration techniques like RK45, DOP853, RK23, etc. or implicit
integration techniques like Radau, BDF, LSODA, etc. The choice
of integrator type is correlated to the system of ODEs being stiff
(implicit integrators) or non-stiff (explicit integrators). Impor-
tantly, depending on the stiffness of the ODE system, the time
step for the total time of integration needs to be adjusted as well,
where the stiff system usually works best for the extremely small
time step. As the selection is dependent on type of ODEs obtained,
there is no generalized approach, however most ODEs potentially
can be solved using the available solvers. In the terminating step,
the solution of system of ODEs for each of the state variables is
obtained as an array of values spanning across the overall time of
integrative simulation, which is also the total dynamical simula-
tion time.
These integrated values from ODEs are used for graphical visu-
alization of dynamical construction against the simulated data
from mechanistic models, thus qualitatively testing the accuracy
of ODEs models to trace the dynamics of system. Further, the

data from ODE integration is also used for calculation of quan-
titative metrics for model accuracy testing. From the data ob-
tained via the dynamic simulation of the mechanistic models, 10
% the dataset has been used for the quantitative accuracy calcu-
lation. There are several metrics available in machine learning
(ML) literature that can be used such as Mean Absolute Error
(MAE), Mean Square Error (MSE), R-Squared Error (R2), Root
mean Square Error (RMSE), etc. In our study, we have used RMSE
to test the accuracy of obtained ODE models for each industrial
nodes. RMSE is very similar to the euclidean distance between
two data points, except it takes in the consideration for all the n
data points in the test set and heuristically defines the normal-
ized distance between the vector of numerically integrated values
and the vector of dynamically simulated values. RMSE is calcu-
lated using the Equation 4 and the model with minimum RMSE
is accepted as the surrogate model to represent dynamics of the
node.

RMSE =

√
Σn

i=1
(ŷi − yi)2

n
(4)

where ŷ1, ŷ2, ŷ3, ........, ŷn: Numerically integrated values of the sys-
tem identified ODEs and y1,y2,y3, ........,yn: Values obtained via As-
pen Dynamical simulation n: Number of data points in the class of
test data set

2.2 Coupled Nonlinear Dynamics Analysis for Sustainability
Assessment of Industrial Network:

The second part of the methodology focuses on the application
of the nonlinear dynamical models obtained in part 1 for sustain-
ability assessment of coupled industrial networks. To achieve this
goal, the first step is to couple the models of each industrial node
in production network via identification of appropriate coupling
parameters in the form of state variables. The second step is cal-
culation of selected sustainability metrics (eg. resource consump-
tion, emissions etc.) for long term using integrated dynamics for
coupled system and scenario analysis based on varying dynamics
of key forcing variables (eg. water availability).

2.2.1 Coupling Dynamical Models of Industrial Nodes for
Overall Industrial Network Dynamics:

The validated ODEs upon the accuracy check obtained from
the first part represents the governing equations for the individ-
ual industry node. In order to couple models to evaluate the cou-
pled dynamics, we first identify the coupling parameters, which
is used to modify the mathematical model (ODEs) obtained for
the state variables of each individual nodes. Such modification is
performed by replacing the control variable term of the next node
with the coupling variable term that establishes a conjoining link
between the previous and the next node. The modification of the
ODEs in this manner provides a mathematical model structure of
higher dimension, that consists of all the state variables of the
coupled industrial network. A binary coupling consisting of two
individual systems has been portrayed in Figure 3 where the first
system consists of 3 state variables and 2 control variables, while
the second system also consist of 3 state variables and 2 control
variables, but one of the state variables of System A is the control
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variable of System B, which is the coupling parameter. This can be
a direct coupling when industries are co-located and streams are
connected or indirect coupling (also called tele-coupling) in case
when industries are at distance but System A provides the input
to System B. Both scenarios can be simulated using the coupled
ODE system set up.

With the modified equations to represent overall network
dynamics, the coupled ODEs can be integrated for user speci-
fied time. The time specified for the numerical integration here
should be less than or equal to the time utilized for running the
dynamical simulation for the least time-consuming mechanistic
process model, since the coupling beyond this time value will not
make physical sense for the coupled node operation. For integra-
tion, the stiffness of the coupled mathematical model needs to be
checked and the type of integrator, whether implicit or explicit,
needs to be selected based on the stiffness of the ODEs.

2.2.2 Sustainability Assessment of Industrial Networks via
Coupled Dynamics:

The overall industrial network dynamics using the coupled ODEs,
can be utilized to provide insights into sustainability issues includ-
ing resource utilization, minimization of waste/emissions over
time in whole network, design parameters for each node to at-
tain overall carbon neutrality in supply chain over time etc. In
this work, we address three key challenges for design of sustain-
able industrial networks utilizing dynamics of overall network, as
described below :
(a) Dynamic Carbon Footprint of Industrial Networks : A net
dynamic carbon footprint of the whole industrial network can
be calculated using the CO2 sequestration and CO2 generation
profiles for each node in the network. For this, it is proposed
to use the coupled surrogate models for resource consumption
(when CO2 is a feedstock) and emissions generation (CO2 as
emissions from nodes) integrated over time to calculate net
carbon footprint over time. The benefit of utilizing this coupled
dynamics approach is that a more accurate representation of
carbon utilization and emissions in the whole network is done
by accounting for the non-linear dynamics of each node in
the network. This overcomes the existing limitation of carbon
footprint calculations in life cycle analysis, which only accounts
for static representation of carbon footprint and does not account
for nonlinear interactions between different subsystems of the
overall network. For the ease of understanding and application,
the concept is shown on CO2 only, which can be extended to
other GHGs associated with carbon footprint in future.

(b) Identification of optimal control parameter values to cre-
ate a carbon negative Industrial Network: From the dynamic
graphs for overall CO2 sequestration and CO2 emissions, the
"time" stamp at which the overall network is maximum net neg-
ative system can be obtained. Since these dynamic graphs were
obtained by perturbations of the control variables, the time stamp
of net negative system can be used to obtain the parameter values
of control variables for all nodes in the network to create an over-
all carbon negative industrial network. These identified control
variables values can then be used to operate the individual nodes

at steady state which will lead to achieve the desired net negative
industrial network at macroscale. We apply this technique to de-
sign the algal biodiesel network towards a net-negative industrial
network.
(c) Quantifying Time for Sequestering Regional Energy Emis-
sions: With the information on rate of carbon sequestration in
overall network as discussed above, total time required to neu-
tralize the energy production related emissions can be calculated.
Net neutralization time is defined as equation 5, where τneutralize

is the time needed to neutralize the energy-related CO2 emis-
sions, [(C)emission]year=A is the overall amount of energy-related
CO2 emissions of a particular region extracted from the EIA in
a specific year A , and the ˙(C)in and ˙(C)out are the rates of CO2

sequestration and generation, respectively in the industrial net-
work. These values are calculated at the optimal control parame-
ters from the previous step, in kg/year. The value η signifies the
number of similar industrial networks working towards the neu-
tralization of the energy-related CO2 emission. The assessment
of the net neutralization time becomes important to inform tech-
nological scale up necessary for meeting the climate mitigation
goals. For example, if τneutralize is large such as 100 years, η will
need to be increased by higher investment in the specific technol-
ogy. This can also be used to perform a comparative analysis of
time required by different technologies for carbon sequestration.

τneutralize =
[(C)emission]year=A

η ∗ [ ˙(C)in − ˙(C)out ]
(5)

3 Results
The hybridized approach proposed has been demonstrated on the
algal biodiesel production network. We consider the conversion
of CO2 and nutrients into biodiesel via the utilization of technol-
ogy involving algal strains, which is a promising carbon capture
& utilization technology. Five industrial nodes are considered in
this industrial network, where the prime function of each nodes
are Algae Growth, Pretreatment, Fermentation & Extraction, Pu-
rification, and Anaerobic Digestion. Process models for each of
these nodes were developed following an overall process given
by NREL50. The characteristic details of each processes is given
in the SI section 2 describing the process flow diagrams of each
industrial nodes in Figures S2-S6, along with the initial values
of the state space parameters and the characteristics of the forc-
ing function for the control variables. Henceforth, we discuss the
results of applying the proposed two part methodology on this
industrial production network.

3.1 Surrogate Dynamical Models for Nodes in Algal
Biodiesel Industrial Network using Hybrid Mechanistic
Machine Learning Approach

3.1.1 Step 1: Data Generation using Mechanistic Models:

To obtain surrogate dynamical models for the network, mecha-
nistic models (MMs) were designed for each sub-industrial nodes
which is the process flowsheets generated using Aspen Plus.
These models were firstly generated at steady state, and then
converted to flow-driven Aspen dynamics models to obtain time
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Fig. 3 Variable-Transformation Coupling of the surrogate models obtained for the individual industrial systems generates a single coupled mathematical
model for an Industrial Network

Industrial Node Time of
operation Control Variables (CV) CV Composition State Variables (SV) SV Composition

Algae Growth 500 Hours 1. Flowrate stream G120
2. Flowrate stream G300

1. Algal Complex
2. CO2

1. Flowrate stream BIOMASS
2. Flowrate stream O-EVAP
3. Density stream LOSS
4. Reactor B4 Temperature

1. Algal Biomass
2. Gas Mixture
3. Water Loss
4. Initial Algae Growth Reactor

Pretreatment 400 Hours 1. Flowrate stream BIOMASS
2. Flowrate stream 170

1. Algal Biomass
2. Water

1. Flowrate stream TANKPROD
2. Flowrate stream FLASH
3. Reactor NH4TNK Temperature

1. Pretreated Slurry
2. Water
3. Ammonia Mixing Reactor

Fermentation &
Extraction 1000 Hours 1. Flowrate stream TANKPROD 1. Pretreated slurry

1. Flowrate stream OILPROD
2. Flowrate stream RECTBOT
3. Flowrate stream 230
4. Flowrate stream 500
5. Flowrate stream O-ETOH

1. Algal Oil
2. Water
3. CO2
4. Extraction Mixture
5. Ethanol

Purification 1000 Hours 1. Flowrate stream OILPROD 1. Algal Oil
1. Flowrate stream COOLRDB
2. Flowrate stream O-NAPTHA
3. Flowrate stream 510
4. Flowrate stream 450

1. Renewable Diesel Blendstock
2. Long Carbon chain Naptha
3. CO + CO2 + H2 + Propane
4. Phosphoric Acid

Anaerobic
Digestion 1000 Hours 1. Flowrate stream 510

2. Flowrate stream 520

1. CO + CO2 + H2 + Propane
2. Hexane + Lipid Impurities +
Water

1. Flowrate stream FLUGASLP
2. Flowrate stream 550
3. Reactor COMBUST Temperature

1. Flue Gas
2. Centrifugation Mixture
3. Combustion Reactor

Table 1 Control Variables and State Variables chosen for each Industrial Node in the Algal Biodiesel Production Network
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series data of each state variable in response to perturbations in
control variables (CVs) for each of the industrial nodes, thus fa-
cilitating dynamical modeling. The control variables and state
variables (SVs) to obtain the time series data for all the 5 indus-
trial nodes is given in Table 1, along with the underlying details
for the characteristics of each of the variables such as composi-
tion of the stream. For this work, the CVs have been chosen as
the input stream flow rates in each of the nodes that represent
material flow streams, therefore providing an ease in the cou-
pling of industrial nodes and drive the overall network dynamics.
These CVs were also selected in such a way that the reduced order
surrogate models can be used to study the overall material flow
dynamics aligned with the sustainability goals such as total car-
bon sequestration, additional resource consumption and carbon
neutrality of the whole production network over long term. Each
node was run for different number of hours, and the total amount
of time for each node is given in Table 1. Based on the dynamical
simulation runs, a total of 10,000 data points were generated for
each node in the network, which was fed to SINDy algorithm. For
training the ML model, a total of 9000 data points were used as
a training set and 1000 data points were reserved for the surro-
gate model accuracy testing. The obtained data was standardized
before training the model, a standard protocol followed in the
domain of ML.

3.1.2 Step 2 : Surrogate Dynamical Models Construction for
Nodes in Algal Biodiesel Industrial Network:

The Table 2 shows the characteristics of final surrogate models
identified for each node using the SINDy algorithm. The final
complexity of the models is signified by the number of terms
present in the surrogate model with the sparsification approach
of SINDy. This implies that the number of terms in the Ordinary
Differential Equations (ODEs) for each of the state variables is
counted and the net sum calculated is presented as the complexity
of the model. Additionally, the column for the model complexity
with regularization parameter λ = 0 shows the number of terms
in model had it been the case of nonlinear regression and there
was no sparsification involved. As can be seen for each node, non-
linear regularization approach provides a less complex model i.e.
a reduced order model that captures the overall dynamics of the
nodes. This leads to ease of system interpretability and reducing
computational load to simulate dynamics of industrial node cou-
pling. Hence, the approach of creating reduced order surrogate
models can provide a powerful tool for studying overall network
dynamics of coupled industrial production networks as compared
to mechanistic model simulations over long term due to lower
computational needs.
Optimization: The surrogate models were obtained using the
optimization approach of sequentially thresholded least square
(STSLQ)45 for the Algae Growth, Pretreatment, Fermentation
and Extraction, and Anaerobic Digestion nodes in the network,
and sparse relaxed regularized regression(SR3) approach47 for
the Purification node in the SINDy algorithm. These optimizers
are computationally more efficient than LASSO and converge in
a lesser number of iterations towards a sparse solution, providing
bounded ODEs with good accuracy.

Regularization for Sparsification of Models : For obtaining the
accurately performing bounded ODEs based on the regulariza-
tion approach, the selection of appropriate regularization hyper-
parameter λ becomes important. Figure 5 shows the selection of
λ for the pretreated slurry state variable in the Pretreatment in-
dustrial node. It can be seen in this figure that model complexity
is reduced as the regularization parameter λ increases. However,
model accuracy measured by R2 shows that it remains reasonably
close till λ = 7. Hence, models of lower complexity at λ = 7 were
selected as surrogate models to represent the dynamics of this
block. The final values of the regularization hyperparameter λ for
all blocks were selected using same graphical approach and are
given in Table 2. This approach is not bound with the choice of
the accuracy metric since any other accuracy metric will provide
the similar kind of behavior of finding the knee where the accu-
racy will have a sudden drop at the hyperparameter value. The
Figure 5 represents the relation of model accuracy vs regulariza-
tion parameter for the Pretreatment industrial node in the Algae
Biodiesel network. Additionally, the figure shows the reduction
in the complexity of the model as the regularization parameter
increases. In the figure, the first knee point for the accuracy plot
happens at λ = 7, which is then selected as the regularization
parameter for the model. The selection of such a non zero regu-
larization parameter has led to a reduction of model complexity
from 168 (λ = 0) to 45 (λ = 7).

The Figure 5 also contains the final learned model for the state
variable of stream flowrate of pretreatment slurry of the Pretreat-
ment node at λ = 0 and λ = 7 for comparison. The model at
λ = 0 is same as the model at λ = 7 after the first iteration (of the
optimisation). Before the second iteration, the coefficients with
absolute values less than 7, for instance the terms like x6, x4x6,
x52 and others, are set to zero. These terms, therefore, don’t ap-
pear in the final model at λ = 7 . Terms like x0u22 and x42u2
with high absolute values at λ = 0 don’t appear in the equation at
λ = 7 because their coefficients in the subsequent iterations have
become less than 7, and therefore were set to zero.
Model Characteristics : For most of the nodes in the algal
biodiesel production network, the accurately performing surro-
gate models had second or third order polynomial function cap-
turing the nonlinearity of different SVs while the node demon-
strating the purification process also shows Fourier terms which
possibly captures the periodic behavior of the state variables in
the system. A total of 20 ODEs representing the 20 SVs were
obtained, which describe the dynamics of each block in reduced
order form driven by the specific set of CVs as given in Table 1
and the model characteristics shown in Table 2.

An example, surrogate model obtained for dynamics of algae
growth industrial node is shown in Figure 4 along with the pro-
cess flow diagram for this node. This model captures the overall
dynamics of algae growth node as ODEs for SVs of biomass flow
rate, evaporator loss rate, separator loss stream as density stream,
and reactor temperature in response to perturbations to inputs of
flowrate of algal complex and CO2. From the Figure 4, it is ob-
served that the surrogate model for the algae growth node has
a complexity of 38 (defined as total number of terms). In con-
trast, if the regularization approach was not taken and the model
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is identified by nonlinear regression, the complexity would have
been 336, thereby making it a challenging task to analyse and
physically interpret the model. Thus, applying the regularization
technique reduced the number of terms in the model by almost
10 folds. The identified ODEs for the rest of the industrial nodes
that captures the dynamics are given in detail in SI Section 3.

3.1.3 Step 3: Model Validation and Accuracy Estimation of
Surrogate Models for Algal Biodiesel Industrial Net-
work:

The ODEs obtained as surrogate models for state variables of
each node are IVPs which were solved using LSODA solver of
Python. Due to the multiple time scale of variations of differ-
ent state variables i.e. some variables varying at more rapid rate
than other variables in system, these ODEs were stiff, thus lead-
ing to anomaly during integration. In order to solve the stiffness
challenge, the integration for the system of ODEs is therefore per-
formed with an extremely small time step of the order 10−5.51

For solving the ODEs obtained using the LSODA solver with an
extremely small time step, the dataset of control variables has
been expanded using the cubic interpolation technique between
two subsequent data points in order to generate optimal number
of data points. Since the time step of 0.00005 hours has been
used in the integration of ODEs for most of the nodes, the inter-
polation required to generate t/0.00005 data values, where the ’t’
signifies the total time of Aspen Dynamical simulation.
Qualitative Testing: The integrated values were used for qualita-
tive accuracy testing by constructing the dynamical reconstruc-
tion plots for state variables and comparing against the originally
obtained data from mechanistic simulations. The reconstruction
plots for each node has been shown from Figures S13-S17 in the
SI section 4, where the reconstruction has been plotted for the
entire dynamical simulation time taken by the individual nodes.
An example is shown in the Figure 6, where the reconstruction of
state variables for each state variables in the Algae Growth node
has been plotted for a smaller time frame. The graph in blue signi-
fies the originally obtained data from the Aspen Dynamics simula-
tion, while the graph in orange portrays the array of numerically
integrated values obtained from the surrogate mathematical mod-
els. From the visual representation of the reconstructed plots, it
is evident that the surrogate mathematical model performs well
for the entire set of the dynamical data that has been obtained
for most of the non-temperature based state variables. The poor
reconstruction of temperature-based state variable is due to the
absence of energy balance in the node. This implies that the
mechanistic models that has been designed portrays an optimal
material balance but fails to account for the energy balance. The
design can be further improved via utilization of heat exchangers
at precise location in the node structure flow diagram which will
regulate the temperature parameter, thus enabling SINDy to ef-
fectively learn from the new training data set for the temperature
state variable and allowing a better reconstruction plot for this
state variable.
Quantitative Testing: Integrated values were also used to calculate
RMSE for quantitative accuracy testing using equation 4. RMSE
was calculated against the test data set of 1000 data points re-

served from the originally obtained data. The model performance
is classified to be better when the value of the RMSE score is low.
The RMSE score for each node has been tabulated in Table 2.

After the visual and quantitative validation, the ODEs were ac-
cepted as surrogate models for further investigation of network
dynamics. It is to be noted that most of the white-box ML algo-
rithms which aids in the system identification and interpretation
often offers lower accuracy than other black-box predictive al-
gorithms, however provide ODEs that can be coupled to study
overall network dynamics. Additionally,the surrogate models ob-
tained upon the use of SINDy algorithm also accumulates errors
while undergoing numerical integration procedure, therefore the
low accuracy is also accounted due to the numerical integration
operation.

3.2 Coupled Nonlinear Dynamics Analysis for Sustainability
Assessment of Algal Biodiesel Industrial Network

The validated surrogate models as ODEs were next utilized for dy-
namical sustainability assessment of overall network. To achieve
this goal, we first couple the individual node models for obtaining
overall dynamics of network 3.2.1 and then evaluate the dynami-
cal carbon footprint of overall network along with potential time
for sequestering energy related emissions using the algal biodiesel
network 3.2.2.

3.2.1 Coupling Dynamical Models of Nodes for Overall Algal
Biodiesel Network Dynamics

In order to couple the surrogate models of individual nodes to ob-
tain overall network dynamics, we first identify the coupling vari-
ables to link the dynamics of each node following the approach
shown in Figure 3. The variables mapping to exchange of materi-
als between nodes are used as the coupling variables. For exam-
ple, the coupling parameter between the Algae Growth Block and
the Pretreatment Block in the network is the “BIOMASS” stream-
flow. Other coupling variables for all the other nodes are shown
in Figure 7, where the green arrows signify the control variable
for node dynamics, the black arrows signify the state variables,
and the blue arrows signifies the state variables which are also the
coupling parameter. Once all the coupling variables are identified,
the surrogate ODEs for each block are modified by renaming the
SVs to link the ODEs of two nodes which creates a coupled ODE
model for overall network dynamics. This modification leads to
the variable name alteration of the control variable of the subse-
quent node with the name of the SV of the direct previous node.
The modified ODEs that represent a coupled ODE model for over-
all algal biodiesel network dynamics is given in SI section 3. This
coupled ODE model is next numerically integrated for different
initialization values of the SVs found at t=0, for a specific set of
the CVs and perturbation signals to CVs.

3.2.2 Sustainability Assessment of Algal Biodiesel Industrial
Network via Coupled Dynamics:

The coupled ODE model representing overall network dynamics
is solved using LSODA solver from solve_ivp class in Python. The
numerical integration operation was run for an overall compute
time of 50 hours for the time step of 0.00005 hours, generating

10 | 1–20Journal Name, [year], [vol.],

Page 10 of 20Sustainable Energy & Fuels



Industrial Node State Variables Regularization
Approach

Regularisation
Hyperparameter (λ) Function Library RMSE Score Complexity Complexity (λ = 0)

Algae Growth 4 STLSQ 8 Polynomial
(Degree=3) 11.551 38 336

Pretreatment 3 STLSQ 7 Polynomial
(Degree=3) 4.908 45 168

Fermentation &
Extraction 5 STLSQ 0.2 Polynomial

(Degree=3) 0.431 24 140

Purification 4 TrappingSR3 0.1 Fourier
(Exclude=cosine) 8.156 30 30

Anaerobic
Digestion 3 STLSQ 3 Polynomial

(Degree=2)) 4.102 8 63

Table 2 Characteristics of the Surrogate model obtained upon the implementation of SINDy, and the performance of the model in terms of the RMSE
score metric

Fig. 4 Surrogate mathematical model for the Algae Growth Node in the Algal Biodiesel Production Network
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Fig. 5 Correlation of the Accuracy and Complexity with the regularization hyperparameter. When the hyperparameter exceeds the value of 7, there
is a stark drop in the accuracy.The equation below for the pretreated slurry state variable distinguishes between the complexity for hyperparameter
value of 7 and 0 respectively.
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Fig. 6 Dynamical Reconstruction visualization plotted for a time length of 10 hours of the 4 state variables obtained for the Algae Growth Industrial
Node in the Algal Biodiesel Production Network.

Fig. 7 Block Flow Visualization of the Algal Biodiesel Production Network functioning in the coupled manner with the material exchange shown
among the 5 individual industrial systems.

Journal Name, [year], [vol.],1–20 | 13

Page 13 of 20 Sustainable Energy & Fuels



dynamic projection of network for 50 hours. In this algal biodiesel
network, each node has it’s own dynamics of CO2 emissions and
sequestration. Particularly, the Algae Growth node sequesters
high amount of CO2 while also generating small amount of CO2,
whereas the Fermentation & Extraction node and the Anaerobic
Digestion & CHP node are the major sources of CO2 emission.
With the use of solved values obtained via the numerical integra-
tion of coupled surrogate ODEs models, optimal decision making
can be enforced to reduce the carbon footprint of the entire net-
work by accounting for the dynamics, eventually strategizing to-
wards carbon neutrality of the whole industrial network, as we
show in following analyses.
(a) Dynamic Carbon Footprint of Algal Biodiesel Industrial
Network:

To calculate dynamic carbon footprint for network, the streams
(SVs) representing CO2 sequestration and emissions were calcu-
lated over time using numerical integration of coupled ODEs for
50 hours. The CO2 sequestration streams are G300 and CO2-
Rec in the Algae Growth node, where G300 is also a CV whereas
CO2-Rec is a standalone input state variable (showing resource
consumption). The CO2 emissions stream are O-EVAP in Algae
Growth node, stream 230 from Fermentation & Extraction node
and stream FLUGASLP from Anaerobic Digestion & CHP node.
Simulation of coupled ODEs for whole network enables calcula-
tion of net CO2 footprint in the network accounting for all internal
non-linear dynamics of each node and node interactions.

With the given perturbation, the total CO2 sequestered
over 50 hours is 4516196.43 kg in whole network, calculated
by numerical integration and adding the streams G300 and
CO2-REC. Similarly, the array of values obtained after numerical
integration of coupled ODEs for the streams O-EVAP, 230,
and FLUGASLP were combined for the run of 50 hours, and
again integrated using the Simpson method to obtain the total
amount 3031126.96 of CO2 generated in the network. Net
carbon footprint is calculated by subtracting the amount of CO2
sequestered with the amount of CO2 generated, thus giving
us the net carbon footprint of -1485069.47 kg of CO2, thus
establishing that the network in the entirety of its operation has
consumed 1485069.47 kg of CO2 for the 50 hours of processing.
Visually, temporal CO2 sequestration and emissions are shown in
Figure 8 and area under the curve gives the total sequestration
and emissions over the time scale.

(b) Identification of Optimal Control Parameter value to
create a Carbon Negative Algal Biodiesel Industrial Network
- Next, we utilize the dynamic profile of CO2 emissions and se-
questration to identify the values of control variables that lead to
maximum difference between rate of CO2 sequestration and rate
of CO2 emissions. For this production network where the coupled
ODEs have been solved for 50 hours, the time stamp of maximum
difference occurs at 31.45 hours, as observed from Figure 9. This
indicates that if the entire network is operated with the control
parameter obtained at t = 31.45 hours from the data set of
control variables, the network will achieve the best case scenario
of carbon negativity, always sequestering specific amount of CO2.
This provides the optimal value of control variable to operate

network in steady state for maximum net carbon sequestration.
The control variables for the entire network are the four stream
flow rates viz. G120 and G300 in Algae Growth node, 170 in
Pretreatment node, and 520 in Anaerobic Digestion node (refer
to Figure 7 for stream composition). An important step is the
validation of hypothesis about the network representing the best
case scenario for carbon negativity, which was performed by
running the Aspen steady state simulation on the mechanistic
models with the values of control variables found at 31.45 hours
while the stand alone stable input values being the same, since
they do not change.

Furthermore, in order to establish that the parameter values at
t=31.45 hours leads to the best case carbon negative ecosystem,
the hypothesis was tested by extracting the values of the control
parameters at the time stamp of 22.85 hours, which is the worst
case carbon negative scenario, and at a random time stamp of
19.9 hours which is neither the best case C-negative nor the
worst case C-negative. Again, the "worst case carbon negative"
here implies that the network stays carbon negative, but here
the difference between the rate of CO2 sequestration and the
rate of CO2 generation is minimum. Therefore, the parameters
found at these three time stamps were used to run the Aspen
steady state simulation and the hypothesis was validated with
the sequestration rate value obtained for the best case C-negative
scenario to be the highest while the value found out at the
worst case C-negative scenario to be the lowest. From these
simulations at steady state, the carbon negative rate (rate at
which CO2 is being sequestered) for the best case was found
out to be 29750.34 kg/hr, while the carbon negative rate for
the worst case and random case scenario was evaluated to be
28956.14 kg/hr and 29687.11 kg/hr respectively.
The evaluated values of the sequestration rate upon validation
implies that the optimal control parameter for the best case
carbon negative scenario for the network exists at t= 31.45
hours for a 50-hours coupled operation. The four control variable
values extracted for each of the three cases are shown in Figure 9.
Thus, utilizing the overall dynamics of network, we can identify
the optimal value of control variables to operate this network
at steady state for creating a net carbon negative industrial
network. This steady state rate of carbon sequestration in the
network is next used to calculate the time required for mitigating
the energy related emissions in a region.

(c) Time to Sequester Regional Energy Related CO2 Emissions
using Algal Biodiesel Network - We utilize the best case carbon
sequestration scenario of 29750.34 kg/hr based on the optimal
control variables at t=31.45 hours to operate the industrial net-
work at steady state. At this rate, the algal biodiesel network will
sequester 2.60X108 kg CO2/year. Table 3 provides spatial accu-
mulation of the US states into 9 major geographical regions52,
where the time (in years) to sequester the energy related CO2
emissions present for a particular year from 1970 to 2050 has
been detailed for different number of the algal biodiesel net-
work. These three cases involve 50, 75, and 100 of the same bio-
diesel network giving a total algal biodieselthroughput of 6.273
MMT/yr, 9.41 MMT/yr, and 12.546 MMT/yr respectively. These
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Fig. 8 Net amount of CO2 sequestered evaluated upon calculating the area under the curve of the net CO2 sequestration rate (green), and Net
amount of CO2 produced evaluated upon calculating the area under the curve of the net CO2 production rate (red)

Fig. 9 Control parameters obtained for the three scenarios of Carbon negative network via the implementation of the proposed hybrid mechanistic
machine learning approach
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values are close to existing capacity of soybean biodiesel produc-
tion with 68 plants operating at the capacity of about 10.009
MMT/yr53, hence the proposed expansion for biodiesel produc-
tion capacity seem reasonable.

Table 3 shows the time required to sequester energy related
emissions in various regions for different years and future projec-
tions using this algal biodiesel network. As can be seen, increas-
ing the number of plants allows to mitigate the carbon emissions
sooner, hence rapid efficient investments into algae based tech-
nology can provide sustainable solution to both energy crisis and
goal of removing atmospheric carbon emissions. From the Table
3, it can be inferred that the Mountain and New England region
has the shortest set of time frame among other regions required
to neutralize the CO2 footprint, with the future outlook for 50
biodiesel networks being in the order of 35 years and 11 years re-
spectively. On the contrary, the West South Central and the East
Midwest regions requires longer time to neutralize among other
regions, where the future outlook for 50 biodiesel networks has
the time magnitude of the order of 90 years and 68 years respec-
tively. This kind of analytical inference provides the insight on
the spatial distribution of such algal biodiesel networks that can
be established in the entire US region for the sequestration of
energy related CO2 in an optimal timeframe, for instance, more
biodiesel network plants in the West South Central and East Mid-
west regions while lesser plants in the Mountain and New Eng-
land regions can be established from a set of N such networks.
The amount of N here has been hypothetically varied among three
different values of 50, 75, and 100 networks, however, from the
viewpoint of realistic establishment and set up of these plants it
is important to set the limit of such networks in accordance to the
availability of the chemical precursors and supply of the upstream
materials required to be processed into algal biodiesel.

In our work, the mechanistic model has been designed based on
the plant situated at NREL in Colorado. Using the energy-related
CO2 emission in Coloardo for the year 2020 of 79.9x109 kg54,
the time taken to completely neutralize the emission through the
presence of 10 algal biodiesel carbon sink was calculated using
Equation 5, which gives a value of approximately 36 years. This
implies that if there exists 10 such algal biodiesel networks op-
erating with the same control technology in the state of Col-
orado, the atmospheric energy-related CO2 accumulated in the
year 2020 will be neutralized completely in 36 years. The high
values of years shown in Table 3 needed to neutralize energy re-
lated emissions in different US region indicate that more aggres-
sive policies need to be implemented for achieving the goal of
creating net zero systems.

4 Conclusions
The hybrid mechanistic machine learning approach proposed in
this work provides a robust computational approach for studying
overall dynamics of industrial networks. Utilizing the surrogate
models built for dynamics of each individual nodes and coupling
these models to study the overall dynamics of resource consump-
tion and emissions etc, help in evaluation of the industrial net-
work to meet the sustainability goals over time. As industrial
networks are large complex systems, modeling the dynamics of a

whole integrated industrial network with large number of nodes
proves to be challenging and computationally prohibitive. Hence,
this data driven approach to build surrogate models overcomes a
major challenge to study overall dynamics of industrial networks
by preserving the essential dynamics of each nodes in the surro-
gate models. The nonlinear mathematical surrogate models that
are obtained capture the precise functional relation among sev-
eral parameters existing in the state space and control space of
the industrial network, thus giving insight into key variables ef-
fecting the overall dynamics of the network.

A crucial aspect of sustainability assessment of such complex
networks is temporal behavior of the overall system under vari-
ous external forcing functions and accounting for the nonlinear
interactions between the nodes. Existing sustainability assess-
ment methods such as process life cycle assessment (LCA) or dy-
namic LCAs do not address this aspect and focus mainly on the
linear extrapolation of relationships between two nodes of the
system, thus missing a true dynamic evaluation of the overall sys-
tem. Here, as the surrogate model coupling allows for accounting
for nonlinear interactions between nodes, this approach is able
to capture the dynamical behaviour of overall system for evalu-
ation of resource consumption and emissions etc. Utilizing this
strength of the proposed approach, we demonstrate calculation
of net carbon footprint for the industrial networks. It is more
precise to analyze the carbon footprint using the mathematical
model, where the precision can be attributed to capturing the
nonlinear relation of the flow of CO2 with other industrial vari-
ables existing in the state space and control space. In our case
study, the algal bio-diesel network is a carbon sink as the net car-
bon footprint comes out to be negative. This provides a way to
accurately evaluate the net carbon footprint of emerging indus-
trial networks based on carbon capture technologies accounting
for complex dynamics of interactions between different industries
in the network. Hence, this proposed approach can be applied to
quantify the carbon footprint of various industrial networks utiliz-
ing the data collected from each industrial nodes and developing
dynamic models for each node. Such data collection will become
easier as more industries adopt automated manufacturing pro-
cesses and sensor data is readily available.

Another crucial aspect for emerging industrial networks is iden-
tifying the design and optimal parameters for most sustainable
network. Most sustainability assessment methods provide a com-
parative analysis of different designs, thus showing if one design
is better than other. However, these methods do not help in iden-
tifying the most sustainable design by analyzing the dynamics of
overall system under consideration. In this hybrid mechanistic
machine learning approach, the surrogate models not only inform
the industries about the mathematical relation between state vari-
ables and the underlying governing equation that exists behind an
industry operation, but can also be used to inform the industries
on how to effectively design the process and identify the opti-
mal values of control variables of the overall network to meet
the sustainability goals. This has been demonstrated in the un-
dertaken case study where the surrogate model for the coupled
algal biodiesel industrial network has successfully provided the
information on the values of 4 principal control parameters viz.
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n = 50 RDB THROUGHPUT = 6.273 MMT/year
Region/Year 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Pacific 36.4 39.5 43.5 42.3 48.4 48.7 53.3 54.2 49.3 48.5 43 46.3 46.6 45.5 46.1 47 48.6

Mountain 16.9 22.1 26.8 29.1 34 36 42.2 45.3 44 42.4 37.4 35.1 34.4 34 34.9 35.6 36.5

West Midwest 29.1 32 34.6 34.8 37.7 41.6 45.5 47.6 47.6 44.7 39.8 38.6 38.8 38.3 37.6 38 38.5

East Midwest 90.5 91.6 88.9 81.2 85.1 89.2 97.5 98.6 90.1 82.3 68.5 70.4 67.2 66.4 67.5 68.4 69.6

New England 18.3 16.6 14.8 14.8 16 15.6 17.1 17.8 15 14.2 11.9 12.5 11.8 11.6 11.5 11.4 11.5

Middle Atlantic 67.3 59.9 58.6 51.5 54.3 55.2 57.5 58.2 51 47.7 39.3 45.3 43 41.8 41.6 42.6 43.1

West South Central 55.5 62.1 77 75.7 84.1 88.7 98.7 94.6 92.5 93.4 88.3 88.7 90.3 91.1 90.6 92.1 95.4

East South Central 28.5 30.8 33.6 33.3 35.8 41 44.8 46 42.8 38.3 32.4 32.7 29.6 28 28 28.7 28.9

South Atlantic 54.6 58.3 66.4 67.4 73.8 79.6 91.4 97 89.1 80.3 68.4 70 69.9 67.7 68.1 68.6 70.2

n = 75 RDB THROUGHPUT = 9.41 MMT/year
Region/Year 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Pacific 24.3 26.3 29 28.2 32.2 32.4 35.5 36.1 32.9 32.3 28.6 30.9 31 30.4 30.8 31.3 32.4

Mountain 11.3 14.7 17.9 19.4 22.7 24 28.2 30.2 29.4 28.2 24.9 23.4 22.9 22.7 23.2 23.7 24.3

West Midwest 19.4 21.3 23 23.2 25.1 27.7 30.3 31.7 31.7 29.8 26.5 25.8 25.9 25.5 25.1 25.3 25.7

East Midwest 60.3 61.1 59.3 54.2 56.7 59.5 65 65.7 60.1 54.9 45.7 46.9 44.8 44.3 45 45.6 46.4

New England 12.2 11.1 9.8 9.9 10.7 10.4 11.4 11.9 10 9.5 7.9 8.3 7.8 7.7 7.7 7.6 7.7

Middle Atlantic 44.9 39.9 39 34.3 36.2 36.8 38.3 38.8 34 31.8 26.2 30.2 28.7 27.9 27.7 28.4 28.7

West South Central 37 41.4 51.3 50.5 56 59.1 65.8 63.1 61.7 62.2 58.9 59.1 60.2 60.7 60.4 61.4 63.6

East South Central 19 20.5 22.4 22.2 23.9 27.3 29.8 30.6 28.5 25.6 21.6 21.8 19.7 18.7 18.6 19.1 19.3

South Atlantic 36.4 38.9 44.3 44.9 49.2 53 60.9 64.7 59.4 53.5 45.6 46.7 46.6 45.1 45.4 45.7 46.8

n = 100 RDB THROUGHPUT = 12.546 MMT/year
Region/Year 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Pacific 18.2 19.7 21.8 21.2 24.2 24.3 26.6 27.1 24.7 24.2 21.5 23.1 23.3 22.8 23.1 23.5 24.3

Mountain 8.5 11 13.4 14.6 17 18 21.1 22.7 22 21.2 18.7 17.6 17.2 17 17.4 17.8 18.3

West Midwest 14.6 16 17.3 17.4 18.8 20.8 22.8 23.8 23.8 22.4 19.9 19.3 19.4 19.1 18.8 19 19.3

East Midwest 45.3 45.8 44.4 40.6 42.6 44.6 48.7 49.3 45.1 41.2 34.3 35.2 33.6 33.2 33.7 34.2 34.8

New England 9.1 8.3 7.4 7.4 8 7.8 8.6 8.9 7.5 7.1 5.9 6.2 5.9 5.8 5.7 5.7 5.8

Middle Atlantic 33.7 30 29.3 25.7 27.2 27.6 28.7 29.1 25.5 23.9 19.6 22.6 21.5 20.9 20.8 21.3 21.6

West South Central 27.8 31.1 38.5 37.9 42 44.3 49.3 47.3 46.3 46.7 44.2 44.4 45.2 45.6 45.3 46.1 47.7

East South Central 14.3 15.4 16.8 16.6 17.9 20.5 22.4 23 21.4 19.2 16.2 16.4 14.8 14 14 14.3 14.5

South Atlantic 27.3 29.2 33.2 33.7 36.9 39.8 45.7 48.5 44.5 40.1 34.2 35 34.9 33.8 34 34.3 35.1

Table 3 Total time required (in years) to sequester the regional energy-related CO2 emissions that are generated for the year 1970 up till for the year
2050 using three different capacities of the algal biodiesel network utilized in this research
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flowrate of the algal complex, flowrate of the CO2 required for
algal growth, flowrate of water required for pretreatment, and
flowrate of lipid impurities to anaerobic digestion. The operation
of the industrial network at the optimal value of these control
values (identified from dynamics of emissions and sequestration)
sequesters the highest amount of CO2 in the network at a rate of
29750.34 kg/hr. Such utility of surrogate models for coupled dy-
namics of overall network bridges an important research gap ex-
isting for the sustainable design of the industrial networks. Again,
industries implementing IOTs can use sensor data to develop sur-
rogate models that can be used in the proposed approach for in-
forming the design of industrial networks towards net zero emis-
sions operation or net carbon negative operation.

Subsequently, with the control values set and the network
operating at the best possible carbon sequestration rate, the
time necessary for complete neutralization of energy-related CO2
emissions in a particular region can be evaluated based on the
available valid data for different years. Such type of surrogate
model facilitated assessment for a regional industrial network can
aid the policymakers and government organization to effectively
make the decisions and implement the policy for the establish-
ment of industrial carbon sinks at certain geospatial locations
where the years for net neutralization of energy-related CO2 is
well optimized. In each of these applications, the hybrid mecha-
nistic machine learning approach offers a unique advantage over
traditional methods. Via a combination of the strengths of mech-
anistic modeling and machine learning, it can create accurate and
reliable surrogate models of complex systems which can capture
the dynamics of the system, allowing for the design of macroscale
network. Since this approach is flexible and modular as data from
different systems can be integrated, it can therefore be applied to
a wide range of systems and processes, from plant scale, supply
chains, industrial symbiosis and waste management. Addition-
ally, since the hybrid approach is data-driven, it can learn from
the data as and when available from sensors, allowing it to con-
tinuously improve its models and predictions as more data be-
comes available. This makes it a powerful tool for dealing with
the complexity and uncertainty of real-world manufacturing in-
dustrial networks.

However, the approach will face some challenges as the com-
plexity and size of the industrial network increases. These chal-
lenges include handling of stiff nonlinear surrogate models, it-
erative training for varying dynamic regimes, and significant do-
main expertise to facilitate the coupling of ODEs. These chal-
lenges can easily be overcome with the increase in computational
power, utilizing advanced numerical integration methods specifi-
cally designed for stiff systems such as LSODA used in this work,
higher availability of sensor data from automated manufactur-
ing systems, etc. The domain expertise is an invaluable skill and
cannot be replaced in the foreseeable future. Furthermore, the
non-availability of the temporal data that have been used in the
algorithm can prove to be a big challenge in benchmarking and
validation of the models since the data are often proprietary in
nature. However, the models can be regenerated and updated ac-
cordingly upon the availability of the data, thus maintaining the
novelty of the proposed methodology and assessment technique.

The proposed approach of amalgamating mechanistic modeling
with the machine learning approaches set forth a novel way of
nonlinear dynamical assessment technique and design of indus-
trial networks in the domain of sustainability science and indus-
trial ecology. Resonating with the emphasis on the transition to-
wards dynamical sustainability assessment55, this research study
proves to be one of the first steps amidst upcoming novel tech-
niques that exists enabling in an efficient quantification and as-
sessment of the sustainability metrics of the industries. As physics
informed machine learning approaches have shown great promise
in novel material discovery , chemical engineering design , reac-
tion pathways etc, this paper demonstrates that design of com-
plex industrial networks can benefit significantly from this hy-
brid approach. While, in this work we have only used SINDy
approach, numerous other algorithm can be used to improve the
interpretable surrogate models for the industrial systems. Fur-
ther, the approach is scalable to expand the size of network, as
new industries can be added in the system with their own sur-
rogate model for the new node. For instance, in our case study
of the algal biodiesel production network consists of 5 industrial
systems for which the surrogate models have been coupled. The
networked surrogate model for these 5 industries can be changed
with the addition of an extra industrial system of hydrogen pro-
duction process where the exchange of hydrogen gas takes place
between the hydrogen production and the purification process.
Thus, in this way any existing industrial network of interest can
be expanded if a new industrial system is introduced with which
there exist certain material interdependency. If the regional in-
dustrial network needs to test a novel technology, it can also be
inserted as a surrogate model to simulate and design the network.
The technique can also be expanded to study other sustainability
metrics such as water consumption, other resource consumption
etc that are relevant for the network, thus a multivariable design
space for sustainable operation of the industrial network can be
explored. Assessment of dynamical impacts of circular economy
implementation via reuse of waste material (such as waste water)
is also feasible through this approach.

In conclusion, to meet the future goals of sustainable devel-
opment, a macroscale design assessment of industrial networks
is necessary accounting for the dynamics of overall networks.
This hybrid mechanistic approach helps in dynamical coupling
between several individual industrial nodes, thus helping to eval-
uate design space for using emerging technologies in a synergis-
tic manner with existing industries. The approach also provides
modularity to study overall dynamics of industrial networks, as
the recovered surrogate models can be coupled with many sys-
tems. The coupled dynamics of overall network(s) can be used to
inform the most sustainable design for emerging industrial net-
works in term of overall resource requirement, carbon capture
potential and emissions by accounting for the non-linear interac-
tions between different nodes of the networks over time.
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