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J. Takeuchi,∗c,d,e, f Carlos E. Colosqui,∗a, f

Theoretical analysis based on mean �eld theory indicates that solvent-induced interactions (i.e. struc-

tural forces induced by the rearrangement of wetting solvent molecules) not considered in DLVO

theory can induce the kinetic trapping of nanoparticles at �nite nanoscale separations from a well-

wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of

common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a

simple analytical model that is applicable to arbitrary materials and simple solvents to determine the

conditions for direct particle-surface contact or kinetic trapping at �nite separations, by using exper-

imentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle

size) as input parameters. Analytical predictions of the proposed model are veri�ed by molecular

dynamics simulations and numerical solution of the Smoluchowski di�usion equation.

Introduction

Predicting the conditions that would result in direct contact and
physical adhesion of nanoparticles to a solid surface in liquid me-
dia is critical for numerous nanotechnology applications such as
self-assembly of nanomaterials1–5, membrane-based separation
and nanofiltration6–8, colloidal stabilization,9–12 and enhancing
charge transfer at electrode-electrolyte interfaces,13–17 among
many others. Furthermore, the physical adhesion of nanoparti-
cles is an essential process in the hetero- or homoaggregation of
nanoparticles and its better understanding is critical to develop
accurate models for the environmental fate and toxicity of nano-
materials that are extensively used in industrial applications.18–20

The conventional analytical approach for modeling physical ad-
hesion and aggregation of nanoparticles in liquid media is cur-
rently based on the classical Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory, which considers van der Waals (vdW) and elec-
trostatic interactions by assuming a perfectly uniform solid and
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liquid medium (e.g., constant number density and permittivity
in the solid and liquid media).21–23 However, at nanoscale dis-
tances from a solid-liquid interface the wetting liquid is strongly
non-uniform and anisotropic with large spatial variations of the
local number density and/or permittivity induced by molecular-
level structures (e.g., hydration or solvation shells) with quasi-
crystalline order, anisotropic dipole orientation, and hydrogen
bond networks.24–27 The re-arrangement of these molecular
structures, and the corresponding changes in free energy, when
two wetted surfaces approach contact gives rise to so-called
solvent-induced interactions, of which the oscillatory structural
force and attractive/repulsive hydrophobic and hydrophilic forces
are among the most notorious examples.24,28–30 It is well estab-
lished that such type of solvent-induced interactions not consid-
ered in DLVO theory can dominate the near-contact dynamics of
planar surfaces in liquid.23,31–33

DLVO theory with the conventional assumption of a perfectly
uniform solid and liquid medium provides effective analytical ex-
pressions to prevent nanoparticle contact and aggregation from
the empirical or theoretical knowledge of (1) Hamaker constants
A parameterizing vdW forces and (2) the surface zeta potential
ζ (or diffuse-layer potentials) to determine the Electric Double
Layer (EDL) force at a given pH and ionic strength I.34–37 Sub-
stantial limitations must be expected when considering solely
DLVO interactions to predict the equilibrium and dynamic con-
ditions under which particle-surface contact in liquid media is
attained. At single-digit nanometer separation between wetted
surfaces, the change in free energy can present multiple local min-
ima and long-lived metastable states induced by solvent-induced
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interactions that are not considered in DLVO theory.23,38–41 Fur-
thermore, it is well-established that DLVO predictions alone can-
not account for the interfacial surface energy γ associated with the
degree of wettability of a surface and readily determined exper-
imentally from the reversible work W = −2γAc required to bring
two wetted surfaces into direct contact over a finite contact area
Ac. It is worth noting here that the solid-liquid interfacial surface
energy γ is negative in the case of wettable surfaces for which
liquid molecules reduce the free energy through contact with the
solid surface;42 the equilibrium contact angle for such surfaces is
less than 90 deg. according to Young’s law.43–45

This work proposes a compact mean-field model that considers
solvent-induced interactions in order to accurately predict physic-
ochemical and dynamic conditions under which nanoparticle con-
tact and physical adhesion is attained or prevented. The pro-
posed model including solvent-induced interactions predicts the
kinetic trapping of nanoparticles at a finite rage of distances from
the liquid-solid interface for critically low values of the Hamaker
constant (i.e., for critically weak vdW attraction) or high values
of the interfacial surface energy (i.e., for wettable surfaces). To
verify the modeling assumptions and analytical predictions we
perform numerical solution of the time-dependent Smoluchowski
diffusion equation and molecular dynamics (MD) simulations for
quasi-spherical nanoparticles of sizes between 2 and 4 nm near
contact with a planar surface having well-controlled surface en-
ergies. The proposed mean-field model, Smoluchowski equation
predictions, and MD simulations show good agreement and doc-
ument a critical role of solvent-induced interactions by trapping
nanoparticles at different metastable positions and controlling the
time scales required to attain thermodynamic equilibrium at the
particle-surface contact position.

Methods

Mean Field Theory We will consider that the potential of mean
force (PMF) U = UDLVO +US for a nanoparticle in liquid media
is composed of two contributions: (i) UDLVO from conventional
DLVO interactions in perfectly homogeneous media and (ii) US

from solvent-induced interactions due to reconfiguration of the
molecular liquid structure. For a spherical nanoparticle of radius
R and a planar wall, the PMF U = U(d) can be parameterized
by the separation distance d between the particle-liquid the wall-
liquid interface located at the wall-normal coordinate y = yw (see
Fig. 1a). In this mean-field description for which the particle-
liquid and wall-liquid interfaces are sharp (i.e., interfaces have
zero thickness), particle-wall contact is virtual and occurs at a
zero-dimensional point for which d = 0. We will consider that
physical contact actually occurs over a finite contact area Ac = πR2

c
defined by the effective contact radius Rc, as illustrated in Fig. 1a.

Due to spatial oscillations of the PMF resulting from solvent-
induced interactions and the nanoscale interfacial topography,
stable physical adhesion can occur at a finite separation distance
d0 for which U(d0) = min(U) is the global energy minimum, as
illustrated in Fig. 1b. The exact value of the stable adhesion dis-
tance d0 is highly specific to the particular physicochemical con-
ditions (e.g., surface energies magnitude and sign, Hamaker con-
stant and ionic strength) and the molecular structure (e.g., crys-

talline lattice type) and nanoscale topography of the nanoparticle
and wall surfaces (e.g., particle shape and faceting, nanoscale
surface roughness). Metastable adhesion is expected at a finite
set of distances dn ≃ d0 + nσ (n = 1,Nd) (see Fig. 1b) for which
the PMF U(d) has local minima with a period comparable to the
characteristic liquid molecule diameter σ ; such an energy profile
is typically produced by oscillatory structural forces.24,28,30,32,41

We will focus this analysis on the case of attractive particle-
wall vdW interactions (A ≥ 0) and wettable surfaces (γ < 0) un-
der near-contact conditions for which vdW forces dominate over
electrostatic EDL forces (i.e. ∂Uvdw/∂d ≫ ∂UEDL/∂d) and thus
UDLV 0 ≃ −AR/(6d′), where the shifted distance d′ = d +σ/2 ac-
counts for a finite-size repulsive core prescribed by the molecular
diameter. The studied conditions correspond to nanoscale sepa-
ration distances smaller than a critical value d∗ = (A/kBT )1/2 ×
(12πn0λD)

−1/2, where kB is the Boltzmann constant, T is the sys-
tem temperature, n0 is the ion number density in the liquid bulk,
and λD is the Debye screening length for the corresponding ionic
strength in an electroneutral system. For reference, d∗ ≃ 3 to 9
nm for a Hamaker constant |A|= 5kBT and a symmetric 1:1 elec-
trolyte in aqueous solution at concentrations between n0 = 0.1
and 10 mM. We further consider that the oscillatory structural
force associated to molecular layering is the dominant contri-
bution from solvent-induced interactions for the studied near-
contact conditions (i.e., for d ≲ 10-15 σ).24,28,30,32,41

We therefore adopt the heuristic expression for plane sur-
faces23,30,46 US =Uw exp(−d/σ)cos(2πd/σ) parameterized by the
“wetting” energy Uw = US(0) required to remove the liquid sepa-
rating the surfaces.

Potential of Mean Force Considering DLVO and solvent-
induced interactions for the studied near-contact conditions, the
nanoparticle PMF is modeled as

U(d) =−AR
6d′ +Uwe−

d
σ cos

(
2πd
σ

)
. (1)

The functional form of the PMF in Eq. 1 with multiple local min-
ima is illustrated in Fig. 1b. It is worth noting that modeling
solvent-induced interactions as a harmonic spatial oscillation of
period σ ceases to be a valid approximation for d ≤ σ , i.e., at
separations below one molecular diameter for which the particle
becomes partially inserted in the first solvation layer (see Fig. 1b).
Moreover, the separation for stable contact does not necessarily
correspond to the global minimum predicted at d0 ≃ σ/2 by Eq. 1
and is specific to the nanoscale surface topography and interfacial
surface energy value, as discussed above.

To complete the PMF formulation in Eq. 1 we consider that
the contact energy solely due to solvent-induced interactions,
Uw = −2γ̄πR2

c , is determined by the average interfacial energy
γ̄ = (γ1 + γ2)/2, where γi (i = 1,2) are the interfacial energies
of the particle-liquid and wall-liquid interfaces. To estimate the
effective contact radius for a quasi-spherical nanoparticle we pro-
pose the simple expression Rc = R

√
1− (1−δ/R)2 with δ ≃ σ , so

that the contact radius is determined from the area removed from
the first solvation layer when particle-wall contact is attained (cf.
Fig. 1a). The solid-liquid interfacial energy γi will be treated as a
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Fig. 1 Solvent-induced interactions and kinetic trapping. (a) Approach and contact of a spherical nanoparticle to plane wall immersed in liquid

characterized by the separation distance d ≥ 0. The �nite contact radius Rc is prescribed by the characteristic atomic diameter σ . (b) The nanoparticle

PMF U =UDLVO+US modeled by Eq. 1 (solid black line) has periodic minima at distances di (the red dashed line represents UDLVO). The stable contact

distance d0 and functional form of the PMF for d ≤ σ (dashed black line) is highly speci�c to the nanoscale interfacial topography and physicochemical

conditions. (c) Kinetic trapping and metastability conditions at discrete particle-wall separations for a nanoparticle of radius R = 2 nm & 20 nm,

Hamaker constant A = 0, 10, & 20 kBT , and interfacial energy magnitudes |γ̄| ≤ 1.5kBT/σ2. Gray shaded area: wall-particle separations satisfying the

metastability condition in Eq. 2. Blue shaded area: wall-particle separations for which Γ+ ≥ Γi according to Eq. 3, kinetic trapping occurs at the outer

boundary.

material property determinable from experimental measurements
or analytical means for two plane surfaces. The validity of the
modeling assumptions leading to Eq. 1 will be assessed by com-
parison of theoretical predictions with MD simulation results.

Metastable adhesion The solvent-induced interactions consid-
ered in Eq. 1 produce multiple energy minima for a finite set of
nearly periodic distances dn ≃ d0 +nσ (cf. Fig. 1b) that satisfy the
condition

e−
dn
σ

(
dn

σ
+

1
2

)2
≥ |A|

|γ̄|σ2 ×
(

Rσ

24π2R2
c

)
. (2)

The expression in Eq. 2 uses the estimate
√

1+4π2 ≃ 2π. Pre-
dictions from Eq. 2 are reported in Fig. 1c for a range of typical
values of (attractive) Hamaker constants (A = 0, 10, and 20 kBT )
and interfacial surface energy magnitudes (|γ| ≤ 1.5 kBT/σ2) for
a spherical nanoparticle of radius R = 2 and 20 nm. Metastable
adhesion occurs at finite separations from the wall for weak
particle-wall attraction and/or large magnitude of the interfa-
cial surface energies (cf. Fig. 1c). Substantial deviations from
Brownian diffusion and DLVO theory predictions, with a signifi-
cantly hindered contact dynamics, are expected under conditions
for which Eq. 2 is satisfied and multiple metastable states exist at
finite separations dn from the wall.

According to Eq. 2, mestastable adhesion occurs for Hamaker
constant magnitudes smaller than a critical value Am =

67.3|γ̄|πR2
cσ/R, for which there is only a metastable state at the

closest local minima from the wall d1 = d0 + σ . For the case
of quasi-spherical particles of radius much larger than the liq-
uid molecule diameter R ≫ σ and with a finite contact radius
Rc = R

√
2σ/R (see Fig. 1a), Eq. 2 predicts a (size-independent)

Hamaker constant magnitude Am ≃ 422.82|γ̄|σ2, above which
metastability is completely prevented and solely considering
DLVO interactions can describe accurately the contact dynam-
ics. This analysis thus predicts that exceptionally large Hamaker
constants, |A| > Am = 200-400 kBT , are required to prevent
metastable adhesion for the case of conventional hydrophilic sur-
faces in water for which |γ̄|= 0.5-1 kBT/σ2 (e.g., common metal
oxides and polymer surfaces).

Kinetic trapping When the particle is near a metastable posi-
tion dn with neighboring maxima in the forward/backward di-
rections (+/−) at d± = dn ± σ/2 and thus |d − dn| ≤ σ/2, one
can assume a probability distribution p(d, t) ∝ exp(−U/kBT ) that
is approximately governed by a diffusion equation with constant
translational diffusivity D. Hence one can estimate the charac-
teristic diffusive times T±(dn) = kBT/(DÜ±)× exp(∆U±/kBT ) for
crossing over the forward/backward maxima; here, Ü± ≡ Ü(d±) is
the PMF second-order derivative at the corresponding neighbor-
ing maxima and ∆U± =U(d±)−U(dn) are the energy barriers sep-
arating neighboring metastable states in the forward/backward
directions. At metastable separation distances dn, for which Eq. 2
is satisfied, the nanoparticle approach to the surface is approxi-
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mately described by a rate equation ḋ = σ × (Γ+−Γ−) with for-
ward/backward rates Γ± = 1/T±.

The “kinetic” trapping of the particle will occur when Γ+ ≥ Γ−
and the particle-wall separation d(t) cannot be further reduced by
biased thermally activated transitions between metastable states.
The kinetic trapping thus occurs at the farthest metastable sepa-
ration dn = d0 +nσ for which

U(dn −σ/2)−U(dn +σ/2)− kBT ≥ 0. (3)

Predictions from Eq. 3 employing the PMF U(d) modeled in Eq. 1
are reported in Fig. 1c, along with the conditions for satisfying
metastability (Eq. 2), for a range of conditions commonly en-
countered for nanoparticles of conventional metal oxides9,35,47,48

(e.g., Fe3O4, SiO2, TiO2) or polymeric materials.49–51 For wet-
table substrates with |γ̄| ∼ kBT/σ2, the kinetic trapping can oc-
cur farther than four molecular layers away from the wall (i.e.,
d ≳ 1 nm) (cf. Fig. 1c).

Critical conditions for contact The model in Eqs. 1-3 can es-
timate the conditions for which particle-wall contact is possible
by considering the nanoparticle shape and surface wettability.
Particle-wall contact requires avoiding kinetic trapping at the lo-
cal minima d1 = d0 +σ/2 closest to the wall, which according to
Eq. 3 is expected for Hamaker constants above a critical value

Ac =
(

0.465πR2
c |γ̄|− kBT

)
× (22.5σ/R), (4)

prescribed by the particle radius, contact area, and interfacial sur-
face energies of the particle-liquid and wall-liquid interfaces. It is
worth noting that Eq. 4 provides conservative estimates for the at-
tractive vdW forces needed to attain contact by solely considering
translational motion normal to the wall.

Hence, according to Eq. 4, a “large” quasi-spherical nanoparti-
cle with R ≫ σ and Rc ≃ R

√
2σ/R will attain contact for Hamaker

constants larger than the critical value Ac = 65.7|γ̄|σ2. As noted
in the previous section for the case of hydrophilic surface and
nanoparticle materials in aqueous solution, particle-wall con-
tact and stable physical adhesion at d = d0 requires rather large
Hamaker constants A ≳ 30-65 kBT . Additionally, Eq. 4 predicts
that contact and stable adhesion can still be attained for van-
ishingly small DLVO interactions with A ≃ 0, for sufficiently low
magnitudes of the interfacial surface energy |γ̄|< 0.685kBT/R2

c (cf.
Fig. 1c). For a vanishingly small Hamaker constant A ≃ 0, contact
areas Ac ≃ πσ2 of molecular dimensions would be required to at-
tain particle-wall contact for a hydrophilic particle and/or wall
surface.

Results and discussion

To assess the validity of the proposed mean-field model in Eqs 1-
4, we perform (1) numerical solution of the Smoluchowski diffu-
sion equation and (2) MD simulations for the contact dynamics
for quasi-spherical nanoparticles on a planar wall with different
interfacial surface energies. The employed mesoscale and atom-
istic models report the time-dependent rms distance, which en-
ables direct verification of analytical predictions for the kinetic
trapping of nanoparticles and contact conditions.

Smoluchowski diffusion equation The mesoscale description
of the contact dynamics is based on the time-dependent probabil-
ity density function p(y, t) for the center-of-mass position of the
nanoparticle along the y-direction normal to a plane wall located
at y = yw (cf. Fig. 1a). Assuming overdamped Brownian motion
with uniform thermal energy kBT , the evolution of the probability
density p(y, t) is governed by the Smoluchowski diffusion equa-
tion

∂

∂ t
p(y, t) =

∂

∂y

[
De−

U
kBT

∂

∂y
e

U
kBT p(y, t)

]
, (5)

where D is the nanoparticle translational diffusivity, and the PMF
U(d) defined in Eq. 1 is parameterized by the separation distance
d = yw −R− y. Eq. 5 is solved numerically for 0 ≤ y ≤ yw with
zero-flux boundary conditions ∂

∂y [e
U/kBT p(y, t)] = 0 at y = 0 and

y = yw. The nanoparticle diffusivity D is estimated from the con-
stant free-space diffusivity, considering that hindrance to the con-
tact dynamics is largely caused by solvent-induced interactions
rather than near-wall hydrodynamic friction; the validity of this
approximation is examined by comparison with MD simulations.

For a nanoparticle of radius R with an initial center-of-mass
position y(0) = 0 we define the root-mean-square (rms) displace-

ment normal to the wall ȳ(t) =
[∫ yw

0 p(y, t)y2dy
]1/2 and thus the

rms separation distance

d̄(t) = yw −R− ȳ(t). (6)

Far from the wall, where U(d) ≃ 0, Eq. 5 gives the con-
ventional expressions for free-space Brownian motion p(y, t) =
(4πDt)−1/2 exp(−y2/(4Dt)) and Eq. 6 gives d̄ = yw −R−

√
2Dt. We

therefore define the diffusive time TD = (yw −R)2/(2D) as a char-
acteristic time scale for nanoparticle-wall contact.

Molecular dynamics Atomistic simulations considering pair-
wise DLVO interactions are instrumental to verify the predic-
tions in Eqs. 1-3 based on the PMF U(d) formulated for con-
sidering solvent-induced interactions. For this purpose we per-
form fully atomistic MD simulations of the physical adhesion of
a single quasi-spherical nanoparticle onto a plane wall fully im-
mersed in a liquid (see Fig. 2a) using the open-source package
LAMMPS.52 Our MD simulations employ standard 12-6 Lennard-
Jones (L-J) potentials modeling hard-core and vdW pairwise in-
teractions from which collective molecular-level interactions that
control nanoparticle adhesion, including solvation and oscillatory
structural forces and other solvent-induced interactions, arise dy-
namically.53–55

As reported in Fig. 2a, the nanoparticle (p), plane wall (w), and
liquid solvent (l) are made of three different species having the
same atomic diameter σ and mass m. A quasi-spherical nanopar-
ticle of radius R = 3 & 6 σ (i.e., 2 & 4 nm diameter) is carved
out of a fcc lattice with uniform spacing ∆x = 41/3σ and the plane
wall is a “frozen” fcc lattice with the same uniform spacing ∆x (cf.
Fig. 2a). The particle and wall number densities np = nw = 1/σ3

are thus uniform and equal. The simulation domain (see Fig. 2a)
is a 3D periodic box fully filled with the liquid and confined along
the y-direction by the wall. The average number density of the liq-
uid is nl = 0.8/σ3. The pairwise L-J interactions between species
are parameterized to produce three different solid-liquid interfa-
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Fig. 2 Molecular dynamics simulations of nanoparticle contact. (a) Atomistic representation of the modeled quasi-spherical nanoparticle and solid

wall, and periodic simulation domain (Lx = 80σ , Ly = 42.5σ , Lz = 80σ) that is fully �lled with liquid. The particle-wall distance d = yw −R− |y| to
the top/bottom walls located at y = ±yw is computed from the center-of-mass normal coordinate y(t) reported by MD simulations. (b) Replica

MD simulations (colored lines) report di�erent center-of-mass trajectories y(t) for the same studied macroscopic initial condition and set of physical

parameters. The cases reported correspond to R = 6σ , A = 15.8kBT , and γpl = γwl =−0.34kBT/σ2.

cial energies γ = -0.23, -0.34, & -0.6 kBT/σ2 and three Hamaker
constants A ≃ 0, 5, 10 kBT for the particle-wall vdW interaction
in the model liquid solvent. The MD force field parameterization
and procedure to determine the interfacial surface energy is de-
scribed in detail in the ESI.

To determine the rms separation distance d̄(t) (Eq. 6) we com-
pute yrms(t) = (∑N

i y2
i /N)1/2 with N = 5 replicas of each studied

physical condition (cf. Fig. 2b) that are initialized with differ-
ent atomic positions and velocities producing a macroscopically
quiescent liquid with the targeted system temperature T = 300 K.
Each replica simulation (Fig. 2b) is initialized with the nanopar-
ticle at the center of the simulation domain and run over a time
interval Ts ≃ 5TD corresponding to nearly 5 diffusive times. While
the simulation time is sufficiently large so that the nanoparticle
reaches within three atomic layers from the wall in every simula-
tion, adhesion at finite distance from the wall or contact (either
at the top or bottom side) are observed as probabilistic events (cf.
Fig. 2b) with a likelihood prescribed by the surface energies of
the particle-liquid (γpl) and wall-liquid (γwl) interfaces and the
Hamaker constant for particle-wall interactions.

Nanoparticle near-contact dynamics Analytical predictions
for the transition to metastable dynamics (Eq. 2) and kinetic trap-
ping at finite separations dn > d0 (Eq. 3) are compared in Figs. 3-4
with the Smoluchowski equation and MD simulation results for
the time-dependent rms separation from contact d̄ −d0. The con-
tact distance d0 = σ/2 ± 20% is determined from the MD sim-
ulations for which direct particle-wall contact is observed. The
Smoluchowski equation with the PMF modeled in Eq. 1 and con-

stant particle diffusivity, and MD simulation results are in rea-
sonably good agreement under the studied conditions. Above
the critical separation for metastability predicted by Eq. 2 the
rms particle-wall separation predicted for pure Brownian motion
with constant free-space diffusivity D is in close agreement with
the Smoluchowski equation and MD simulations (cf. Fig. 3a &
Fig. 4c).

The set of results in Fig. 3 correspond to the modeled quasi-
spherical nanoparticle of radius R = 6σ , with moderately large
Hamaker constants A = 7.9-23.7 kBT and a set of nine different
conditions with weak-to-moderate particle-liquid interfacial ener-
gies γpl = -0.6, -0.34, & -0.23 kBT/σ2 and wall-liquid interfacial
energies γwl = -0.6, -0.34, & -0.23 kBT/σ2. The nine studied con-
ditions are therefore characterized by only six different values of
the average interfacial energy magnitude |γ̄|= |γpl +γwl |/2= 0.23-
0.6 kBT/σ2 (cf. Fig. 3a-f). The conditions studied in Fig. 3 cor-
respond to the case of an aqueous solution at room temperature,
and moderately hydrophilic substrates with interfacial surface en-
ergies γ̄ ≃ -37 to -10 mM/m2 and (solid-water-air) Young contact
angles θY ≃ 60-80◦ that are reported for conventional metal ox-
ide surfaces by different experimental techniques.56–59 For the
low interfacial energy magnitudes |γ̄| ≲ 0.3kBT/σ2, the nanopar-
ticles are able to eventually attain direct contact with the wall
after crossing the metastable dynamics region predicted by Eq. 2
but they do so at substantially longer times than predicted for
pure Brownian motion (cf. Fig. 3a-c). For critically large surface
energies (cf. Fig. 3d-i) the kinetic trapping of the nanoparticle
away from the wall is observed at the finite separations predicted
by Eq. 3, and reported in Fig. 1c, with metastable separation
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Fig. 3 Metastable contact dynamics and kinetic trapping. (a-f) Time-dependent rms separation d̄(t)− d0 from the contact position for a quasi-

spherical nanoparticle of radius R = 6σ , for three Hamaker constants A = 7.9, 15.8, & 23.7 kBT and six di�erent values of the average interfacial energy

magnitude |γ̄| = |γpl + γwl |/2 = 0.23-0.6kBT/σ2 (see �gure labels) for nine di�erent combinations of particle-liquid γpl and wall-liquid γwl interfacial

energies (see legends). MD simulation results (markers) are compared with numerical solutions of the Smoluchwoski equation (Eq. 5) and analytical

predictions for free-space Brownian motion (see legends). Grey shaded area: metastable dynamics region predicted by Eq. 2. Blue shaded area: region

with Γ+ ≥ Γ− predicted by Eq. 3 with kinetic trapping predicted at the region boundary.

distances up to three liquid molecule diameters for the case of
moderately wettable surfaces with an average interfacial energy
γ̄ ≃−kBT/σ2.

To further asses the validity of the analytical predictions for
kinetic trapping and contact conditions in Eqs. 3-4, we perform
an additional set of MD simulations for which the interfacial
surface energy magnitude of the particle and wall |γ̄| = |γpl | =
|γwl | = 0.34kBT/σ2 remains constant (with a moderate magni-
tude) as the Hamaker constant and nanoparticle radius is var-
ied. The case reported in Fig. 4a corresponds to the condition
modeled in Fig. 3d with a nanoparticle of radius R = 6σ and
γpl = γwl =−0.34kBT/σ2, but with a vanishing Hamaker constant
A = 0. Under this studied condition the particle becomes kinet-

ically trapped at a finite separation of two molecular diameters
from contact, due to solvent-induced interactions alone as pre-
dicted by Eq. 3 and reported in Fig. 1c for vanishing van der Waals
forces between the particle and the wall.

The additional case in Fig. 4b corresponds to the same condi-
tions reported in Fig. 3d, with A≃ 15.8 kBT and interfacial surface
energies γpl = γwl =−0.34kBT/σ2, but with a smaller nanoparticle
of radius R = 3σ . As predicted via Eq. 4, we find that reducing the
particle size, and thus the contact radius Rc, prevents the kinetic
trapping at finite separations and direct particle-wall contact is
observed (cf. Fig. 4b). The critical condition for contact in Eq. 4
is thus verified by MD simulations for the cases studied in Fig. 3
and Fig. 4 with small nanoparticles of radius R ≃ 1 to 2 nm and
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Fig. 4 Metastable contact dynamics and kinetic trapping: Time-

dependent rms separation d̄(t)− d0 from contact for two cases with

the same interfacial energy |γ̄| = |γpl + γwl |/2 = 0.34kBT/σ2 but di�er-

ent Hamaker constants and particle size. (a) R = 6σ & A = 0. (b) R = 3σ

& A = 15.8kBT . MD simulation results (markers) are compared with nu-

merical solutions of the Smoluchowski equation (Eq. 5) and analytical

predictions for free-space Brownian motion (see legends). Grey shaded

area: metastable dynamics region predicted by Eq. 2. Blue shaded area:

region with Γ+ ≥ Γ− predicted by Eq. 3 with kinetic trapping predicted

at the region boundary.

a substantial variation of surface energy magnitudes |γ̄| = 0.23-
0.6 kBT/σ2.

Conclusions

This work formulated and verified a mean-field model for predict-
ing the conditions to attain or prevent the metastable adhesion
and contact of nanoparticles to surfaces in liquid media by consid-
ering both conventional DLVO and solvent-induced interactions,
the latter parameterized by the interfacial surface energy that pre-
scribes the macroscale wetting properties of the nanoparticle and
wall surfaces. The proposed simple model employs a compact
set of experimentally measurable properties such as the interfa-
cial surface energy and Hamaker constant and therefore can be
applied to nanoparticles of arbitrary materials (e.g., crystalline or
amorphous, polar/non-polar) and simple molecular solvents. The
formulated model can predict the conditions for homo- and het-
eroaggregation of nanoparticles, colloidal stability of nanoparti-
cle suspensions, or nanoparticle-electrode contact in liquid media
with high electrolyte concentration and/or weak surface charge.
The proposed model can be readily extended to include the elec-
tric double layer force when this is necessary.

A key prediction of the proposed model is the kinetic trap-
ping of nanoparticles at finite nanoscale separations from con-
tact for the case of moderately to highly hydrophilic materials
(e.g., metal oxides, metals, and polymeric materials) dispersed
in aqueous media. The predicted kinetic trapping at single-digit

nanoscale separations from the wall leads to the effective preven-
tion of particle-wall contact and has significant implications for
understanding and controlling the contact and physical adhesion
of nanoparticles to liquid-solid interfaces. This finding is particu-
larly relevant to nanomaterials that are extensively employed in
diverse technological and industrial applications, and are subse-
quently released in the environment.

The validity of the analytical predictions is verified by compar-
ison with MD simulations studying quasi-spherical (crystalline)
nanoparticles with vanishingly small to large attractive van der
Waals interactions and a range of weakly to moderately wettable
surfaces. For moderate to large magnitude of the interfacial sur-
face energy, the analytical expression proposed for predicting the
contact conditions accounts closely for MD simulation results and
indicates that uncommonly large Hamaker constants are needed
to fully prevent kinetic trapping and attain stable physical adhe-
sion of small nanoparticles (i.e., smaller than 50 nm) at direct
particle-wall contact. The findings of this work highlight the im-
portance of considering solvent-induced interactions, prescribed
by the surface wettability and nanoscale surface topography, to
understand and ultimately control the adhesion, aggregation, and
contact dynamics of small nanoparticles in liquid media and the
faith of nanomaterials in the environment. In particular, the find-
ings of this work provide valuable insights to understand mass
and charge transport processes at liquid-solid interfaces that are
mediated by the contact and physical adhesion of nanoparticles,
macromolecules, and finite-size mass and charge carriers.
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