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Abstract

Understanding the water flow behavior on an anisotropic wetting surface is of practical 

significance in nanofluidic devices for their performance improvement. However, current 

methods of experiments and simulations face challenges to measure in real time and visually 

display the water transportation. Here, molecular dynamics simulation was integrated with 

our developed multi-attribute point cloud dataset and customized network of deep learning to 

achieve the mapping from the anisotropic wetting surface to static and dynamic behaviors of 

water molecules and realize the high-performance prediction of water transport behavior. 

More importantly, for the chaotic phenomenon of water molecule flow caused by thermal 

fluctuation and limited sampling, we proposed a nanoparticle tracking optimization strategy 

to improve the prediction performance of velocity field. The prediction results proved the 

deep learning framework proposed in this work owned superior performance in accuracy, 

computational cost and visualization, and had the potential of generality to model transport 

behavior of different molecules. Our framework can be expected to motivate the development 

of real-time water flow prediction at interface and contribute to the optimization and design 

of surface structures in nanofluidic devices.

Keywords

Nanofluidic; Wettability; Deep learning; Nanoparticle tracking strategy; Real-time 

visualization
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1. Introduction

With the advance of nanotechnologies, nanofluidic as a new frontier of fluid science and 

engineering has received increased attention in fields ranging from the bioengineering, drug 

discovery, energy and environmental engineering to the optical property tuning 1. When the 

fluid flow approaches the nanoscale ranging from 1 to 100 nm, the properties of flow become 

unique. Different from fluid flow at the macroscale, effects of gravity and inertia on fluid 

flow at the nanoscale can be ignored and the molecular behavior at the solid-liquid interface 

becomes dominant on controlling the transportation 2. Understanding the fluid flow at the 

nanoscale is increasingly crucial for the design and fabrication of various nanofluidic devices. 

Transport phenomena of fluids on carbon nanostructures, such as the velocity slip and the 

flow rate of water, have been widely studied using experimental and simulation methods in 

the past 3–6. Simultaneously, molecular dynamics (MD) method has provided the useful 

platform and knowledge for elucidating the nanoscale phenomena 7,8. A lot of MD studies 

focused on the investigation into profiles of liquid flow at carbon surface 9–12. In real 

applications, graphene is usually coated by a variety of metals, ceramics, and polymers 13. At 

such case, the physical discontinuity or chemical heterogeneity on such solid surface can 

consequently lead to the anisotropic wettability. If different parts of a surface own different 

physical and chemical properties, the distribution of liquid on the surface can be 

heterogeneous, which consequently has effects on the fluid flow properties at the interface. 

Although the study of water transport and diameter-dependent slippage has moved forward 

significantly, high economic cost of experiments like the generation of various striped 
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patterned surfaces, and high computational cost of MD simulations significantly hinder the 

further investigation on the interfacial flow properties at the anisotropic wetting substrate. 

Recently, data-driven deep learning algorithms show great advantages over traditional 

methods in several fields due to their low computational cost and high accuracy 14–24. 

Although a large amount of researches have explored the application of deep learning to the 

nanoscale, these deep learning frameworks usually focused on the solid by extracting low-

dimensional feature vectors to characterize the microscopic structure of ordered crystal 25, but 

the effective extraction of microscopic features of liquids faced challenges. In our previous 

work, point features of liquids were extracted in large quantities to succeed in predicting the 

two-dimensional (2D) distribution of density and temperature for liquids using our developed 

deep learning frameworks 26,27. Due to irregular surface geometry in flow channel, we 

proposed a three-dimensional (3D) deep learning network to accurately characterize the fluid 

flow properties in three dimensions, which sampled with dual channels and input multiple 

attributes of 3D data to extract structural characteristics of the anisotropic wetting substrate 

and the fluid dynamic properties.

In this study, datasets were built using molecular dynamics (MD) simulation, and deep 

learning approach was applied primarily to reveal both static (adsorption density distribution) 

and dynamic properties (fluid flow behaviors) of water molecules on the anisotropic wetting 

surface. Different distributions of hydrophilic platinum (Pt) on hydrophobic graphene were 

chosen to form an anisotropic wetting surface. The atomic/molecular input disorder issue of 

multibody system was solved. In addition, for the insufficient sampling of water molecular 
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velocity field based on MD simulated chaotic system, a customized nanoparticle tracking 

optimization strategy was proposed to adapt to different modeling tasks and helped to achieve 

more regular and stable prediction performance. Compared with the previous simulation 

work, the algorithm of deep learning in this work significantly reduced the computational 

cost. It took less than 1 second to complete the real-time mapping from the geometry 

structure of anisotropic wetting surface to the transport properties of water flow, as well as 

the visually output of the water adsorption behavior. The network structure has been used for 

thermodynamic prediction, while has not been applied to model fluid flow systems at solid-

liquid interface, which asked for datasets produced from MD simulation, training and testing 

of network and the interpretation of nanoparticle tracking optimization strategy. Some sets of 

deep learning predictions were displayed to take an insight into the landscape with high-level 

anisotropic interaction (referred to adsorption and flow of water molecules) between 

Pt/graphene substrate and water molecules. This work significantly indicated that the 

emerging paradigm in the field of nanofluidic is shifting to the visualization in real time, 

analysis based on the big data and the related disciplines where new knowledge is being 

learned, which can broaden the horizon of investigation into artificial surfaces with specific 

wetting properties and help to design microfluidic devices. 

2. Methods

2.1. Simulation models and initial configuration

We used molecular dynamics method to construct the liquid flow system, where 
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Pt/graphene acted as substrates and their anisotropic wetting surfaces can significantly affect 

interfacial transport properties of liquid 28–33. The developed modified Martini force field 34–37 

was used to construct the water and Pt/graphene surfaces, which was shown in Figure 1. We 

used coarse-grained model to study the molecular flow because the obtained flow patterns 

was smooth 38. The velocity distribution of the water model with an explicit hydrogen atom 

would be subject to great measurement error due to the light mass 30. In addition, the Martini 

force field tunes hydrophobicity and hydrogen bond properties by different parameterizations 

of the Lennard-Jones and the electrostatic interactions. Therefore, the effect of hydrogen 

bond that plays a key role in water flow at nanoscale has been included into the water model 

of Martini force field. Therefore, the Martini force field was assumed to be applicable to the 

present study.
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Figure 1. Water flow models where (a) Pt particles of the same size uniformly distribute on 

the graphene substrate. (b) Pt particles of the same size randomly distribute on the graphene 

substrate. (c) Domain of water flow from inlet to outlet containing three independent regions 

to drive flow, control inlet temperature and collect data. (d) The water, graphene, and Pt 

models.

In our force field, the nonbonded interactions are described as:
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According to our previous work, refined polarizable water model 39 was selected, in which 

four water molecules were simplified as a coarse-grained (CG) bead. Type Nda bead in this 

work was chosen as the Pt particle and  its contact angle of θ was about 23°, which was close 

to 25° contact angle of water-Pt at 300K in the experiment 40. Type C5 bead represented the 

graphene substrate, and its contact angle was about 119.95°. Interaction parameters of 

simulation setting can refer to our previous study 33,34. The surface area of graphene was 200 

× 400 Å2 for all models.

We constructed different substrate models. Firstly, in order to accurately quantify the 

influence of the size of Pt particles, as well as their distribution, on water flow, we assumed 

that Pt particles of the same size uniformly distributed on the graphene substrate, which was 

shown in Figure 1(a). In addition to these setting with regular distribution, we created 
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systems with randomly distributed Pt particles, each with a different number of Pt particles of 

different size (2-4nm), as detailed in Table 1. With our setting, effects of the Pt/graphene 

substrate structure on the surface wettability, as well as the corresponding fluid flow behavior 

at interface, were investigated.

Table 1. The details of the Pt/graphene substrate for uniform and random distribution of Pt 

particles and the sample number for the training set and test set*. 

* The parameters for Pt/graphene substrate consist of the size and number of Pt particles, the 

Pt content, and the distance between neighboring Pt particles (Pt-Pt distance). Pt-Pt distance 

in uniform distribution was assumed to be the same in the x and y directions.

2.2. MD simulation details

All MD simulations in this work were carried out by the large-scale atomic/molecular 

massively parallel simulator (LAMMPS) package. All three dimensions were set as periodic 

boundary conditions. Water molecules dispersed in the system randomly at the initial stage, 

and a Pt/graphene substrate located on the system bottom in the z-direction. The NPT 

simulations with T = 300 K and P = 1 atm spent 50 ns compressing the system in the z-

direction and equilibrating the system, and the time step of integration was 20 fs. 

Afterwards, it took 250 ns to implement fluid flow simulation with the NVE ensemble, 

Type Diameter 
range [nm]

Pt content 
range [wt%]

Number range 
of Pt particles 

Pt-Pt distance 
range [nm]

Sample number
(training set)

Sample 
number(test set)

Uniform 2 - 4 30 - 90 4 - 36 2.5 - 10.0 1.215×106 1.35×105

Random 2 - 4 10 - 90 2 - 64 1 - 10.0 1.215×106 1.35×105
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which was shown in Figure 1(c). There were three independent regions in the fluid domain: a 

forcing region to drive fluid flow, a temperature controlling region to control the inlet water 

temperature and a data collecting region to generate datasets. The fluid flow simulation was 

achieved by applying a constant flow-driving force Fy of 7×10−15 N in the y-direction to each 

water molecule in the forcing region (0.0 nm < y < 0.8 nm), which allowed the liquid flowed 

from the left boundary to the right boundary and across the periodic boundary to achieve a 

constant flow. In order to offset the additional energy introduced into the forcing region and 

ensure the energy conservation of system, the heat pump method 41–43 was introduced and the 

water molecules inside the temperature controlling region, ranging from 0.8 nm to 1.6 nm 

along the y-direction, were set at 300 K by a Langevin thermostat with a damping coefficient 

of 100 fs. This artificial procedure of energy addition and extraction has been reported to well 

match the velocity distribution of Maxwell-Boltzmann at 300 K 41. The data collecting region 

was from 10 nm (yin) to 30 nm (yout), following the forcing region and temperature controlling 

region, where water molecules flowed on the graphene substrate covered by platinum 

particles. The time step of the simulation was set as 20 fs. Parameters such as the size of the 

region and the magnitude of the extra force were chosen based on parameters reported by 

previous work 41,44. After the simulation system reached a steady flow state with constant 

centroid flow velocity, data collection was conducted during the last 200 ns. Density and 

velocity averaged data obtained from a 20 ns run of simulation (average data for 1×106 time 

steps) were taken as a case and 9×104 cases were obtained in each MD simulation. 
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2.3. Dataset generation and deep learning network

This section briefly introduced how datasets were generated and what was the proposal of 

deep learning network. More details can be consulted from the Section S1 in the Supporting 

Information. The present study applied deep learning on reconstructing systems of solid-

liquid interface to achieve the goal that the Pt/graphene substrate structure was mapped to the 

water molecule transport landscape. As a result, a deep learning network was put forward, 

which adopted dual input and sampling channels to extract two types of point clouds and 

respectively represent the properties of Pt/graphene substrate and water molecules in a 

flexible data format (Figure 2). The related MD insufficient sampling problem for velocity 

field and the proposal of nanoparticle tracking optimization strategy were detailedly stated in 

Sections 3.2 and 3.3. We constructed four deep learning datasets (static adsorption properties 

of water molecule and dynamic flow properties under uniform or random distribution of Pt). 

The solid point cloud characterizing the Pt/graphene structure could be expressed as  

, where  represented the total number of points in the solid point cloud in a 1 1{ }N P 1N

sample, and  represented the properties of the solid including coordinates of each point and 1P

molecular type labels. The liquid point cloud that characterized the water adsorption or water 

flow could be expressed as , where  represented the total number of points in the 2 2{ }N P 2N

liquid point cloud of water molecules in a sample, and  represented the transportation 2P

properties of water molecules including spatial coordinates, density or velocity components 

in three directions of water molecules. For the four datasets, each dataset randomly produced 

a training set and a test set, and their ratio is 9:1 (Table 1). In order to increase the size of the 
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deep learning dataset, we randomly sampled a molecular dynamics simulation model with a 

time difference of 20 fs (one computational time step). That was, we considered Case 1 (0 ns 

to 20 ns) and Case 2 (20 fs to 20 ns +20 fs) as two different deep learning samples, and 9×104 

cases were obtained in each MD model.

Figure 2 Generation of two types of point cloud datasets.

Our previous work has explained in detail the design, as well as advantages, of the deep 

learning network proposed in this work, such as the dual channel, fully connected layer 

shared weight, and the impact on prediction errors 45,46. Figure 3 showed the network using 

two input and sampling channels to receive and process the solid and liquid point cloud, 

respectively. The description for the input module, sampling module, feature stitching 

module, and output module can be learnt from the Supporting Information in the Section S2, 

and the network training and testing process were stated in the Section S3 of the Supporting 

Information. 
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Figure 3 Construction of the deep learning network.

2.4. Evaluation of prediction performance 

The error function of mean relative error (MRE) was selected to traverse the error at each 

mesh point, which can be used to quantitatively estimate the difference between results of  

MD simulation and deep learning prediction. MRE was calculated as below:

(5)
2

1
2

2

ˆ( )1ˆ( , ) 100%
N

i ii

i

y y
MRE y y

N y



 

where  was the magnitude of adsorption density or velocity on one mesh from MD y

simulation,  represented the corresponding predicted result of deep learning, and  ŷ i

represented the mesh sequence. MRE results for all samples of the test set were presented by 

averaging them.

For results of visualization from MD simulation and deep learning, the adsorption density 

and flow velocity distribution in different regions of the system were respectively displayed 

using 2D cross-sectional views.
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To more comprehensively evaluate the prediction performance and analyze the transport 

mechanism, 15 cases of the test set were selected, where Pt particles uniformly distributed on 

the substrate. The size and number of Pt particle ranged from 2 nm to 4 nm and from 4 to 36, 

respectively. The overall adsorption amount and velocity of the selected models were 

calculated and compared to further reveal the influence of the Pt/graphene structure on the 

wettability and fluidity. Adsorption amount, which could quantify the Pt/graphene surface 

wetting state, were evaluated by estimating the total mass of water molecules within 0.66 nm 

of the graphene or Pt surface. The value of 0.66 nm was obtained from the first minimum of 

radial distribution functions of the water, g(r), surrounding Pt or graphene surface as shown 

in Figure 4.

Figure 4 Radial distribution functions of the water surrounding Pt or graphene.

The average velocity components in the y-direction at denoted z coordinate positions 

(vy(z)) were evaluated in the data collecting region from yin to yout by:

(6)
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where  and  were the local density and local velocity of y-direction ( , )y z ( , )yv y z

components at corresponding y and z coordinates positions. Similarly, the average velocity of 

x- and z-direction components, marked as vx(z) and vz(z), were also calculated by Eq. (5). The 

overall average velocity  in the data collecting region were calculated by:yv

(7)0
( )

H

y
y

v z dz
v

H
 

where H was the height of the channel in the z-direction.

3. Results and discussion

3.1. Prediction of the static adsorption behavior of water

Based on two physical fields (scalar field of density distribution and vector field of 

velocity distribution), the prediction performance of our deep learning algorithm, as well as 

advantages in computational cost and visual output, were discussed in the following sections 

by compared with previous experiments and simulations. Meanwhile, the relationship 

between the anisotropic wetting surface structure and the static adsorption property of liquid 

molecules was illustrated through prediction results of deep learning.

In Figure 5, results of MD simulation and deep learning prediction were visually 

compared, where the 2D density distribution of water on the x-y plane were taken from three 

different layers from the bottom to the top in the z-direction, and their quantitative analysis 

were conducted. The adsorption density distributions of two methods were in great agreement 

and the values of MRE were 8.35±3.42% and 9.56±4.97% for uniformly distributed Pt and 

randomly distributed Pt cases, respectively. These well consistent calculation results were 

analyzed to clarify the mechanism of water adsorption behavior. 
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Figure 5 Results of MD simulation and deep learning (DL) prediction for visual comparison 

and quantitative analysis. 2D density distribution of water on the x-y plane for uniform 

distribution (d = 3 nm, number of Pt = 9) and random distribution of Pt at (a) layer1, (b) 

layer2, and (c) layer3. (d) MRE analysis. (e) The adsorption amount of water molecules on 

the substrate of Pt/graphene as a function of Pt number for cases with different Pt sizes.

As shown in Figure 5(a), in layer1 from the 0 (graphene surface) to 0.5 nm (z-direction), 

the density patches of liquid were concentrated on the sites of hexagon structure of graphene 
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surface, and therefore a regular and sparse density distribution of water molecules was 

observed. Higher density liquid patches appeared around the hydrophilic Pt particles than 

around the hydrophobic graphene surface, which indicated the packing of liquid molecules at 

the Pt surface. As shown in Figure 5(b), in layer2 from 1 to 1.5 nm (z-direction) where liquid 

was slightly further away from the graphene substrate, high-density patches also appeared 

around the Pt particles in a similar manner with the first adsorption layer. However, they 

were slightly lower than those in layer1 because water molecules in layer2 only adsorbed 

onto the Pt surface, while water molecules in layer1 were located on the junction edge 

between the Pt and graphene and consequently were attracted by both Pt and graphene. 

Moreover, a multilayer adsorption structure of liquid was generated slightly distant from Pt 

particles. As shown in Figure 5(c), in layer3 from the top of Pt particles to 0.5 nm above Pt 

particles (z-direction), water only gathered on the region of accessible Pt particles tips, and 

other regions displayed a uniform density distribution due to the disappeared interface effect 

of Pt. For systems with uniform distribution, water molecules were uniformly adsorbed 

around the Pt to form an adsorption layer structure. For systems with random distribution, 

when the gap between the adjacent Pt particles was too small, water molecules could not 

enter, and the adsorption was almost 0, which was also reproduced by our deep learning 

networks.

As shown in Figure 5(e), we calculated and compared the adsorption amount of water 

molecules on the substrate of Pt/graphene as a function of Pt number for cases with different 

Pt sizes, and the adsorption amounts of water calculated using two methods were also in great 
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agreement. With the increase of the Pt number, although the graphene surface area shrunk, 

the adsorption of water molecules onto the whole Pt/graphene substrate increased, which 

indicated the whole wettability of Pt/graphene substrate increased. Moreover, the increase of 

the Pt size also improved the water adsorption. The localization of water surrounding the Pt 

surface was since that Pt particles were hydrophilic. When the content of hydrophilic Pt 

particles was about 60 wt%, the adsorption amount of water molecules could reach 1.5 

μg/mol at Pt particle diameter d = 2 nm (the Pt particle number was 36), while the adsorption 

amount of water molecules was 1.2 μg/mol at d = 4 nm (the Pt particle number was 4). 

Therefore, when the Pt content was the same, smaller size of Pt particles meant larger surface 

area of exposed Pt particles, which resulted in the larger amount of adsorbed water molecules.

3.2. Prediction of the dynamic water flow behavior

For the vector velocity field of water, the visual comparison and quantitative analysis of 

MRE were shown in Figure 6. MRE were 197.42±47.35% and 256.84±63.49% for uniformly 

distributed Pt and randomly distributed Pt cases, respectively. It is worth mentioning that 

using existing datasets and networks to accurately predict the velocity field of water 

molecules remained a challenge. We explained the reason from the data level: compared with 

the adsorption behavior shown in Section 3.1, the prediction error of velocity field increased 

significantly, which was mainly due to the difference in the source of datasets from MD 

simulation results of two transport behaviors. With the change of Pt/graphene structure, the 

water molecules in the adsorption layer showed a very regular and ordered arrangement. 

Therefore, the deep learning network can succeed in uncovering the relationship between the 
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anisotropic wetting surface structure and the adsorption behavior of water. However, the 

negative side of current MD simulation was its practical restriction in systems with small size 

(up to about 200 Å), short timescales (10-9 second) and drastic thermal and statistical 

fluctuations 47. The discussion of the system size effect was in the Section S4 in the Support 

Information. As a result, the thermal fluctuations prevented us from precisely acquiring the 

local velocity, and the 2D velocity distribution was still noisier 38. We tried to alter the mesh 

size to balance local random fluctuations of velocity according to previous multi-scale 

optimization strategies, which dealt with temperature distribution data 26,27. However, since 

the current mesh size exceeded the maximum size value (1 Å) in previous studies, the 

reduction of resolution and distortion of prediction results, caused by the previous multi-scale 

strategy, were unacceptable and it was necessary to propose a new optimization scheme.

Figure 6 Visual comparison and quantitative analysis between MD simulation and DL 

prediction results using Cartesian grid method for the generation of datasets. (a) Visual 

comparison of molecular velocity distribution. (b) MRE analysis.
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3.3. Nanoparticle tracking optimization strategy

The flow of water molecules exhibited the chaotic phenomenon of multi-body system, 

that was, local particles had random and irregular motions with uncertain and unpredictable 

behaviors. Researches on deep learning nowadays had achieved real-time prediction for the 

state evolution of large-scale spatiotemporal chaotic systems with unprecedented high-quality 

prediction results 48–50. Combining these studies and the method innovation of deep learning 

in point cloud data processing, we proposed a nanoparticle tracking optimization strategy to 

improve the prediction performance of water molecular velocity field. In previous datasets, a 

sample was the average result of the water molecular velocity on the Cartesian grid for 20 ns 

(1×106 time steps). However, this average result did not contain the spatial coordinate 

information of water at each time step. The molecular interactions, as well as the molecular 

density characterized by molecular distribution, showed a strong correlation with the 

molecular velocity 51,52. Moreover, although the molecular distribution in each time step was 

relatively disordered, it showed a statistically significant regularity within a longer interval. 

The methodology and theoretical support of nanoparticle tracking strategy was to use this real 

spatial distribution with statistical significance to guide the network to learn the velocity of 

water molecules. For the dataset, we extracted the MD simulation results of each time step 

from each 20 ns simulation and replaced the coordinate and velocity of each Cartesian grid in 

the water molecule point cloud  with the real space coordinates and the corresponding 2P

velocity of each water molecule, as shown in Figure 7. Here, it should be noted that the 

spatial distribution of molecules could be easily obtained from the density distribution, and 
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the feasibility of density distribution prediction have been demonstrated in the Section 3.1. 

Therefore, the acquisition of molecular space coordinates would not limit the implementation 

of deep learning frameworks. During the training process, batch size was changed to 1024 

(data of 1024 time steps was input each time) and a time window function 48,53 was added to 

feed the data of one batch into the network in chronological order, which prevented sample 

selection bias introduced by random input. Through the above operations, the spatial 

distribution of molecules in each time step was abstracted as a statistically significant spatial 

distribution within a longer interval, which could enable the guidance of the molecular spatial 

distribution for velocity prediction and help the network to remove the noise in the chaotic 

system. In addition, for a sample, compared with the original Cartesian grid method (4000000, 

it was equal to the total number of meshing 200×400×50) , the amount of improved point 

cloud data (150000, it was equal to the number of particles) was significantly reduced, which 

reduced the computational cost and feature extraction pressure of the network. In addition, 

the proposed network had good compatibility with input and output point clouds of different 

formats, which had also been proved in previous studies 45,54. For testing,  and the 1P

coordinates of the water molecules in  at each time step within 20 ns simulation were 2P

entered, and all the output should be averaged into one prediction result.
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Figure 7 Nanoparticle tracking optimization strategy.

Figure 8 showed the visual comparison and quantitative analysis between the results 

obtained from the training and testing of nanoparticle tracking datasets, as well as the 

corresponding MD simulation results. MRE, as shown in Figure 8(c), decreased to 93.69±

28.42% and 117.30±33.57% for uniformly distributed Pt and randomly distributed Pt cases, 

respectively. Here MRE analysis using modified network was still as high as > 100%. 

Nevertheless, the flow of water molecules was originally the chaotic phenomenon of multi-

body system, the thermal fluctuations prevented us from precisely acquiring the local velocity 

52. In addition, the numerical methods and the finite precision arithmetic of the computer also 

directly introduced noise into the velocity of solution, so that for practical purposes the 

system was irreversible although the equations of motion were reversible, and the velocity 

field strength must be determined by trial and error 53. Therefore the high mean relative error 

of the prediction data was originated from the nosier of 2D velocity distribution obtained 

from the MD simulation results as indicated in the previous study. Although velocities of 

individual atoms were subject to error, but the previous study indicated that this did not 
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present a serious problems because the realistic flow patterns still emerged from the 

simulation 53. It has been demonstrated that deep learning method could also reproduce some 

local details of MD simulation results, for example, the water flow obtained from two 

methods both showed a sharp change of velocity around the Pt particles, which was caused 

by the collision between water molecules and Pt particles. Nevertheless, only the cross-

section of the first layer was shown as an example because the 2D velocity distribution on the 

cross-section was still noisy in MD simulations due to the thermal fluctuation and limited 

sampling, which was also reflected in deep learning results. For chaotic systems, we paid 

high attention to the overall attributes with statistical significance. Figure 8(b) displayed two-

dimensional distribution (1D) velocity distribution for three velocity components in the z-

direction and results of two methods showed great consistency. In fact, the prediction results 

of deep learning even showed a more stable regularity. The velocities of water flow vy was 

very low near the graphene surface, and gradually increased as the water away from the 

graphene surface. Molecular interaction between graphene surface and water molecules was 

responsible for the decreased flow velocities at the surface. The water flow velocity in the 

region, where there were 0-3 nm Pt particles, was seemingly unstable, and the flow 

instabilities for water passing through a series of obstacles had also been reported in the 

previous study 38. As the water flowed far away from the Pt particles, the flow velocity 

gradually increased and approached the classical flow behavior, because the flow was less 

affected by the boundary surface. Although vx and vz, which were not at the flow direction, 

were almost zero, the slight fluctuation of vx could still be observed, associated with the 
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change of flow direction after the collision to obstacles.

Figure 8 Visual comparison and quantitative analysis between the results obtained from the 

training and testing of nanoparticle tracking datasets and the corresponding MD simulation 

results. (a) 2D velocity distribution of water on the x-y plane for uniform distribution (d = 3 

nm, number of Pt = 9) and random distribution of Pt at layer2. (b) 1D velocity distribution for 

three velocity components along the z direction. (c) MRE analysis. (d) The average water 

velocity  comparison in the evaluation region as a function of Pt number for cases with yv

different Pt sizes.

Figure 8(d) showed the comparison of average water velocity  in the data collecting yv

region as a function of the Pt number for cases with different Pt sizes. The average velocity of 
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the liquid became lower with the increase of the Pt number in the graphene substrate. 

Comparing among cases with different sizes of Pt particles, the increase of the Pt size 

resulted in that the flow velocity  slowed down considerably. The adverse effect of Pt yv

particles on water flow could be divided into two aspects. Firstly, the presence of obstacles in 

the flow could generate eddies due to vorticity and even raise reversed flow due to that water 

crashed Pt blocks. Hence, with the increase of the Pt particle size and number, water flow 

was significantly hindered and consequently the water velocity slowed down 38. Secondly, the 

strong interaction between Pt and water was beneficial for water to cling to the Pt surface. As 

a result, larger exposed surface area of Pt obstacles would be in favor of trapping more water 

molecules as surface adsorption layers, which narrowed the flow channel and reduced the 

velocity of water flow. When the Pt content was about 60 wt%,  at d = 2 nm (the Pt yv

particle number was 36) was much lower than that at d = 4 nm (the Pt particle number was 4). 

We had discussed in the Section 3.1 that if the Pt content was the same, larger Pt number, but 

not larger Pt size, was more favorable to the increase of the exposed Pt surface area, which 

resulted in an increase in the overall wettability of the Pt/graphene surface, and therefore  

greatly blocked the water flow.

3.4. Evaluation of computing efficiency

When the training process was over, the adsorption or flow behavior of water molecules 

could be obtained within 1 second with the solid and liquid point clouds in the test set as 

input. For MD simulation, the simulation time for one model was about 5 hours with the CPU 

server configured as the Intel Xeon Gold 6148 2.4 Ghz × 2 CPU (320 cores). The computing 
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efficiency of deep learning was improved by about 18000-fold. Though it took a certain 

amount of time (about 60 hours) for the deep learning algorithm to train the network, only 

once network training needed to be conducted and so that all prediction outputs of all models 

in the test set can be received. Compared with the traditional experimental or simulation 

methods, our deep learning algorithm could visually predict the water transport landscape at 

the anisotropic wetting surface in real time.

3.5. Universal demonstration of proposed deep learning algorithm for nanoflow system

Deep learning algorithms based on data-driven became more and more popular in the 

field of engineering, physics and medicine 55–57. In this work, deep learning was applied to 

model the liquid flow system on an anisotropic wetting substrate surface, to predict the water 

transport landscape and to reveal the flow mechanism at the nanoscale under the molecular 

interaction between water and Pt/graphene surface. The feature point of the collaboration 

research of MD simulation and deep learning is to effectively extract a large number of 

micro-features of liquid and anisotropic wetting surface of solid. In the present study, the 

point feature of water molecules and Pt/graphene substrate with micro geometry was 

extracted as input, and the static and dynamic properties of water molecules at the nanoscale 

as output. Our proposed deep learning algorithm had strong universality and succeeded in the 

application of predicting water static and dynamic properties for systems with different input 

of control variables. The atomic species and 3D spatial coordinates in the solid cloud  acted 1P

the role of fixed inputs. For the regularly distributed scalar density field of water adsorption, 

the Cartesian meshing result and the corresponding density in the liquid point cloud  were 2P
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used as the input. For the locally disordered vector velocity field, the real spatial coordinates 

of water molecules in  in the nanoparticle tracking datasets and the corresponding 3D 2P

velocity components were used as inputs. In this work, input control variables of the network, 

that was the attributes of point cloud, were up to but not limited to 11, including Pt and 

graphene types and 3D coordinates, 3D coordinates and 3D velocity components of water 

molecules, and output results of prediction were chosen as scalar or 3D vector as needed. 

Looking ahead to the future work, we could apply our algorithm on the prediction of micro-

scale transport of other molecules, such as polymer acting as the liquid point cloud . In 1P

such case, molecular type labels (0, 1 and 2) could be used to represent Pt, graphene and 

polymer. In addition, some real properties of polymer molecules, such as the steric 

configuration, the bond angle, the bond energy and the charged properties of atoms/molecules, 

could play the role of the input to build a more real deep learning dataset. For example, when 

considering the charge properties of atoms/molecules, we could add a dimension to  which 1P

was the amount of charge carried by each atom on the substrate. Alternatively, we could 

populate this dimension with the external electric field values (of the same value) of the 

system as a whole. Exactly which option could lead to better predictive performance was 

subject to experimental verification but was methodologically feasible and easy to implement. 

The Cartesian meshing results and corresponding polymer concentrations in  were also 2P

used as inputs. All in all, to improve the performance of our current micro/nanofluidic 

predictions and predict flow behaviors of macromolecules, more technical details need 

further exploration.
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4. Conclusion

In this work, a customized framework of deep learning was proposed to uncover the flow 

and adsorption mechanism of water at anisotropic wetting surface. Taking different input 

parameters into account, our framework of deep learning can efficiently distinguish the local 

wettability according to the surface pattern of Pt/graphene substrate with a high level of 

precision and visually display the distribution of scalar adsorption density, as well as the 

vector velocity field of fluid flow, which can efficiently promote the development of current 

experiments and simulations. Furthermore, we demonstrated the extension potential of the 

proposed framework of deep learning in studying the micro flow phenomena of complicated 

molecules. We expected that deep learning method can be beneficial for the fabrication and 

development of nanofluidic devices. 
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