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Abstract: In this work we study the 2 resonances of a two-site model system designed to mimic a 
smooth transition from the 2g temporary anion of N2 to the 2 temporary anion of CO. The model 
system possesses the advantage that scattering and bound state (L2) methods can be directly compared 
without obfuscating electron-correlation effects. Specifically, we compare resonance parameters 
obtained with the complex Kohn variational (CKV) method with those from stabilization, complex 
absorbing potential, and regularized analytical continuation calculations. The CKV calculations provide p-
wave and d-wave widths, the sum of which provides a good approximation of the total width. Then we 
demonstrate that the width obtained with modified bound state methods depends on the basis set 
employed: It can be the total width, a partial width, or an ill-defined sum of partial widths. Provided the 
basis set is chosen appropriately, widths from bound state methods agree well with the CKV results.

1 Introduction

Anion states lying energetically above the ground state of the neutral molecule can be probed 
experimentally by electron scattering1-4 or, in the case of systems with a bound ground state anion, by 
photodetachment spectroscopy.5 Such anion states, termed temporary anions (TAs), are subject to 
decay by electron detachment. Despite lifetimes typically as short as a few fs, temporary anions play an 
important role in a wide range of processes including electron-induced DNA damage6-8 and the 
operation of certain laser systems.9 As such there is considerable interest in developing robust 
computational methodologies to model electron capture and detachment.10-34 

A TA can be characterized by a complex resonance energy ERes,

ERes = Er - i/2 (1)

where Er is the real part of the resonance energy relative to the neutral molecule and , the resonance 
width, is inversely related to the anion lifetime.35 There are various types of TAs.1-3 Here our focus is on 
TAs that result from electron capture into empty valence orbitals of closed-shell neutral molecules. Such 
TA states often dominate low-energy electron-molecule scattering cross sections and are termed shape 
resonances, emphasizing the fact that the finite lifetime is due to the shape of the potential that derives 
from the combination of short-range forces and angular momentum contributions.1-3,36 In the case of 
non-zero angular momentum, this leads to a barrier through which the electron must tunnel in the 
attachment and detachment processes.  The charge distribution of the orbital involved in the electron 
capture is crucial in determining the angular distribution of resonant electron scattering. 

As noted above, several computational methods have been introduced for characterizing temporary 
anions and other resonances. One class of methods including the complex Kohn variational (CKV) 
method and the R-Matrix methods10-12 is based on scattering theory and provides quantities such as the 
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T-matrix and eigenphase sum. These quantities lead directly to cross sections and can be used to 
calculate resonance energy and width. 

Accurate characterization of resonances of polyatomic molecules with scattering methods, however, is  
computationally very demanding due to the role of electron correlation.  State-of-the-art scattering 
calculations tend to use configuration interaction treatments which make it hard to treat electron 
correlation effects in the ground state neutral and the anionic states in a balanced manner.  Bound 
state methods have the advantage of being able to use high-level electronic structure algorithms 
to treat the anion as well as neutral systems, particularly methods that are size consistent and 
size-extensive, thus allowing for a balanced treatment of electron correlation in the neutral and 
anionic states. For this reason, many computational studies of temporary anions of polyatomic 
molecules have employed modified bound state methods employing L2 wave functions.  These include 
the stabilization method,15-21 regularized analytic continuation (RAC),22-24 and the complex absorbing 
potential (CAP) method.25-30 Details of the CKV, stabilization, RAC, and CAP methods will be given below.  

For the well-studied 2g valence anion of N2, bound state16,17,20,29,32-34 and scattering calculations carried 
out with high level treatment of electron correlation14 have been found to give similar resonance 
parameters. Yet, as will be discussed below, this is not necessarily the case for the resonance widths for 
heteronuclear diatomic molecules or large organic molecules such as anthracene for which multiple 
partial waves contribute to the various TA resonances.37

In this work we consider a one-electron model system for which we can vary the asymmetry of the 
potential and for which we can apply both scattering and bound state methods of treating a resonance, 
facilitating comparison of resonance parameters obtained from the two approaches.  In addition, use of 
a one-electron model eliminates effects of electron correlation on the resonance parameters and allows 
the use of highly flexible one-particle basis sets. The model potentials will be used in calculations 
extracting both partial (angular momentum dependent) and total widths using the various approaches.  
The direct comparison of three bound state methods and a scattering-based approach on the same non-
spherical potential, with basis sets that give well-converged results, is a distinctive contribution to the 
field.

For spherical target systems the scattering problem is naturally treated in terms of partial waves, for 
which the electron orbital angular momentum, characterized by the quantum number Ɩ, is a good 
quantum number.  However, for molecules Ɩ is not a good quantum number and more than one value of 
Ɩ contributes to the resonant scattering process.  For small highly symmetric molecules the lowest, 
symmetry-allowed value of Ɩ (Ɩ = 2 in the case of the 2g valence anion of N2) dominates the scattering 
via the lowest energy shape resonance.  However, in general two or more partial waves are important, 
with the shape of the orbital involved in electron capture being a major factor in determining the partial 
widths. For example, for the 2  shape resonance of CO- inclusion of both p and d partial waves is 
necessary for accurate calculation of the differential scattering cross section and vibrational excitation 
cross sections in the energy region of resonance. 18,38-42 This can be seen qualitatively from examination 
of the shape of the lowest energy valence * orbital of neutral CO: Because this orbital has different 
contributions of the p orbitals on the two atomic sites, it has sizable Ɩ = 1 and 2 components. In 
polyatomic molecules, such as anthracene, even though the overall symmetry is high, there can be 
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strong admixture of several Ɩ values in partial wave expansions of the low-lying * orbitals.37 Moreover, 
in a many-electron system, electron correlation effects impact the relative importance of the various 
partial waves.

In resonances where two or more partial waves are important, prediction of the angular distribution of 
the scattered electrons requires a weighted contribution from the relevant partial waves.  Chang 
presented a methodology, based on frame transformation theory, that determines angular distributions 
without the assumption that Ɩ is a good quantum number.40,41 Implementation of Chang's approach 

requires Ɩ-dependent probabilities for electron capture (and detachment) that are of the form  , 
Γ𝑙

2𝜋
where  is the partial width associated with the Ɩth partial wave. For narrow resonances, the individual Γ𝑙
partial widths sum to , the total width in eqn (1).43 Although it is usually assumed that the leading Γ
partial wave has the greatest partial width, this is not necessarily the case as shown in Ref. 18. 

Surprisingly, in most studies of TAs using bound state methods the nature of the widths obtained has 
not been addressed. We note that Bentley and Chipman considered complexities associated with 
extracting widths from stabilization calculations for a resonance that can decay into different states.44 

Specifically, they showed that depending on how the calculations were carried out, the widths obtained 
were neither partial nor total. Moreover, we have found in applying the stabilization method as 
normally employed to polyatomic molecules very different widths result depending on the range of data 
used, suggesting that the calculations may not give accurate total widths in all cases, but rather some 
combination of partial widths with improper weighting.  This suggests that the issue raised by Bentley 
and Chipman is present in systems in which different partial waves are important in electron capture 
and detachment.  

Stabilization calculations as usually carried out on molecules employ diffuse atomic basis functions of 
the appropriate symmetry on all relevant atoms.  In the 2016 study of the 2 resonance of CO- in Ref. 18 
it was demonstrated that by employing instead single center expansions of diffuse p or diffuse d 
functions in the one particle basis set used in the calculations, separate p-wave and d-wave widths could 
be obtained. 

To further investigate the issues raised above, we consider a model potential consisting of two spherical 
Gaussian wells. When the wells are identical, the system serves as a model for the 2g TA state of N2 for 
which the resonance is well characterized as d-wave.  By making the two wells nonequivalent, both p-
wave and d-wave character become important, similar to the 2 TA state of CO. The model system 
employed permits tuning the degree of asymmetry and, hence, the relative importance of p- and d-wave 
components. As a result, it is relevant for describing changes that could occur upon geometric distortion 
or describing the impact of mixing of partial waves in an unfilled orbital in a polyatomic molecule. The 
lowest energy resonance of this model potential is characterized using the CKV, stabilization, CAP, and 
RAC methods. 

The goals of the current study are (1) to investigate whether the approach used previously in 
conjunction with the stabilization method to obtain partial widths of the 2 TA state of CO18 also works 
with other bound state methods, such as CAP and RAC, (2) to explore whether the partial widths 
obtained from bound state methods agree with those from scattering calculations, and (3) to analyze 
the sensitivity of the widths from stabilization calculations to the choice of basis set.
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2 Methodology

To examine the nature of the resonance widths obtained from various theoretical methods we employ a 
one-electron system with two attractive Gaussian wells.  Site 1 is located at (0, 0, 1) bohr, and site 2 is 
located at (0, 0, -1) bohr with position vectors r1 and r2, respectively.  The potential has the form

(2)𝑉 = 𝑉01𝑒 ― 𝛽1|𝒓 ― 𝒓𝟏|2
+ 𝑉02𝑒 ― 𝛽2|𝒓 ― 𝒓𝟐|2

V01 is fixed at -36.135 hartrees (Eh) and β1 is fixed at -6.0 bohr -2.  The parameters for site 2 are 
systematically varied, taking the values in Table 1.

TABLE 1. Parameter sets for site 2 in the
model potential defined by equation 2. 
Set   V02 (Eh)   β2 (bohr-2)
A -36.13500      6.000
B -36.13995      5.960
C -36.14490      5.920
D -36.14985      5.880
E -36.15480      5.875
F -36.15975      5.850

Set A corresponds to a symmetric double well potential, while sets B through F are increasingly more 
asymmetric double well potentials. Only states of  symmetry are considered.  With the given 
parameters, the potential supports one bound state of  symmetry and a low-lying  shape resonance 
which is the focus of this study. The system is treated with four different theoretical methods described 
below.  

2.1 Complex Kohn variational method

We consider resonance parameters obtained from the CKV method10,12 to be most definitive as this 
method explicitly considers the continuum, thus avoiding the need for additional steps, e.g., analytic 
continuation or modifying the potential, required in the bound state methods to obtain the complex 
resonance energy. For the CKV calculations the outgoing trial wave function is

  (3)𝜓𝑡𝑟𝑖𝑎𝑙
𝑙𝑜𝑢𝑡𝑚𝑜𝑢𝑡 = ∑

𝑙𝑖𝑛

[𝑓𝑙𝑖𝑛(𝑟)𝛿𝑙𝑖𝑛𝑙𝑜𝑢𝑡 + 𝑇𝑙𝑖𝑛𝑙𝑜𝑢𝑡𝑔𝑙𝑖𝑛(𝑟)]𝑌𝑙𝑜𝑢𝑡𝑚𝑜𝑢𝑡(𝑟)

𝑟 + ∑
𝑘,𝑖𝑐𝑘,𝑖𝜑𝑘,𝑖(𝒓𝒊)

where the   are real spherical harmonics, the  are Gaussian type basis functions centered 𝑌𝑙𝑚(𝑟) 𝜑𝑘,𝑖(𝑟𝑖)
at site i, and ri is the position vector relative to the origin.  fƖ and gƖ, are the regular and outgoing Ricatti-
Bessel functions, respectively. The wave function in the region where the potential is nonnegligible is 
described by 15 even-tempered Gaussian p functions starting at exponent 700, decreasing by a factor of 
2.5, and centered at both r1 and r2. For the model potentials of interest, well converged results are 
obtained using only Ɩ values of 1, 2, and 3 and m was restricted to 1, consistent with  symmetry.  The 

matrix elements in eqn (3), found as variational parameters in the CKV calculation, can be used to 𝑇𝑙𝑖𝑛𝑙𝑜𝑢𝑡

calculate differential and integral cross sections.  The inclusion of the subscripts on quantum numbers 
indicating electron capture (in) or detachment (out) are used here to emphasize a simple physical 
picture, in lieu of the more traditional Ɩ and Ɩ. In the context of the frame transformation approach of 
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Chang40,41, matrix elements for which  imply a change in the orbital angular momentum of the 𝑙𝑖𝑛 ≠ 𝑙𝑜𝑢𝑡

electron during the scattering event.  In real, molecular situations the total angular momentum is 
conserved by a concomitant change in the rotational angular momentum, with the small change in the 
magnitude of the momentum of the scattered electron being ignored because it is not resolvable in 
typical experiments. Additional details of the CKV method can be found in reference 12.

The extraction of the resonance parameters from the CKV data proceeds via Breit-Wigner 
approximation. Taylor45 showed that the Breit-Wigner approximation applied to a resonance formed by 
capture of the Ɩin partial wave and decaying via the Ɩout partial wave (assuming the magnitude of the 
entrance and exit momentum of the electron is the same) leads to the following form for the absolute 
square of the scattering amplitude, |𝑓𝑙𝑖𝑛,𝑙𝑜𝑢𝑡

|2

 , (4)|𝑓𝑙𝑖𝑛,𝑙𝑜𝑢𝑡
|2 =

(𝛤𝑙𝑖𝑛
2 )(𝛤𝑙𝑜𝑢𝑡

2 )
𝑘2((𝐸 ― 𝐸𝑟)2 +

𝛤2

4 )
where is the partial width for Ɩin, governing the probability an electron with that orbital angular Γ𝑙𝑖𝑛

momentum being captured and is the analogous partial width for electron detachment. The total Γ𝑙𝑜𝑢𝑡

width,  in the present work is taken as the sum of the sum of the partial widths, which is rigorously 
true only for narrow resonances.  In the present work Ɩin and Ɩout are limited to being either one or two, 
since for the potentials of interest T33, T23 and T13 are negligible over the range of energies considered.  

Since  ,|𝑇𝑙𝑖𝑛,𝑙𝑜𝑢𝑡
|2 = 𝑘2|𝑓𝑙𝑖𝑛,𝑙𝑜𝑢𝑡

|2

 (5)|𝑇𝑙𝑖𝑛,𝑙𝑜𝑢𝑡
|2 =

(𝛤𝑙𝑖𝑛
2 )(𝛤𝑙𝑜𝑢𝑡

2 )
((𝐸 ― 𝐸𝑟)2 + 𝛤2 4)

Thus, at each energy |T11|2, |T12|2, and |T22|2
 can be expressed as a function of the resonance energy 

and partial widths, assuming validity of the Breit-Wigner expression.  

As demonstrated by Fano46 as well as Blatt and Weisskopf47, the interaction of a discrete state with two 
autoionization continua can alter the shape of peaks arising from such states in spectra and scattering 
cross sections when the entrance and exit channels are identical.  We find that the application of this 
approach adequately accounts for the pronounced asymmetry in the peak shape of the |T11|2 vs E curve 
shown in Fig. 1, as well as the lesser asymmetry in the shape of the |T22|2 vs E curve.  Following equation 
VIII.7.20 of Ref. 47 an Ɩ-dependent parameter, δbg,Ɩ, is added for the case of  which controls the 𝑙𝑖𝑛 = 𝑙𝑜𝑢𝑡

asymmetry. Noting that  , eqn (5) can be modified for |T11|2 and |T22| as follows:𝛤𝑙𝑖𝑛 = 𝛤𝑙𝑜𝑢𝑡 = Γ𝑙

(6)|𝑇𝑙,𝑙|2 = | 𝑖
𝛤𝑙
2

𝐸 ― 𝐸𝑟 + 𝑖𝛤 2
+

𝑒
―2𝑖𝛿𝑏𝑔,𝑙 ― 1

2 |
2

For each set of potential parameters, the CKV data for the absolute squares of all three energy-
dependent T-matrix elements are simultaneously least squares fit (|T12|2 to the functional form given by 
eqn (5) and |T11|2 and |T22|2 to that of eqn (6)) and values for Er, , , δbg,1, δ bg,2 are obtained, allowing Γ1 Γ2

direct comparison with the complex resonance energies obtained from the bound state methods.  The 
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range of energy values considered in the fit are limited to  to . Using an expanded range 𝐸𝑟 ―4Γ 𝐸𝑟 +4Γ
from  to  has negligible impact on the resonance parameters.  For set A, which has no p-𝐸𝑟 ―6Γ 𝐸𝑟 +6Γ
wave contribution, only the |T22|2 vs E curve was fit, with the assumption that .  Γ1 = 0

Fig. 1 shows |Tpp|2, |Tdd|2, and |Tpd|2 as a function of energy for potential parameter set C, where Ɩ = 1 
and 2 have been replaced by p and by d, respectively. All three quantities display a pronounced peak 
near Er = 2.50 eV, due to the resonance. The fits, shown as solid lines, are in excellent agreement with 
the CKV results.  The asymmetry in the |Tpp|2 and   |Tdd|2 curves is accounted for by the background 
term in eqn (6), as are the small difference in the peak positions in each of the curves.

Fig. 1 |Tpp|2 (blue dots), |Tpd|2 (orange squares), and |Tdd|2 (green triangles) obtained from CKV 
calculations for potential set C as a function of energy (eV).  Also shown are the fits obtained with 
equations (5) and (6) for |Tpp|2 (blue line), |Tpd|2 (orange line), and |Tdd|2 (green line).

2.2 Bound state methods

Straightforward application of standard quantum chemistry methods to TAs is not possible when using 
flexible basis sets due to the presence of discretized continuum (DC) solutions that fall energetically 
below and in the same energy range as the temporary anion of interest. The DC solutions correspond to 
a free electron as described by the finite basis set. Thus, with flexible basis sets, standard bound state 
methods will collapse onto a DC level. The stabilization, CAP, and RAC methods are all designed to avoid 
this problem. 

The variant of the stabilization method employed here has been described in detail previously and 
involves the calculation of the energies of multiple eigenvalues of the appropriate symmetry of the 
excess electron system as a function of a scale parameter, z, that controls the spatial extent of the basis 
set.17,18,21 Typically, the scale factor is only applied to the most diffuse basis functions of the appropriate 
symmetry.  A plot of the eigenvalues vs z displays avoided crossings that can be interpreted as resulting 
from the mixing of a relatively compact diabatic discrete state, the energy of which is only weakly 
dependent on the scale parameter, and DC solutions whose energies depend strongly on the scale 
parameter.  A variety of methods have been introduced to extract resonance parameters from 
stabilization graphs. 16,48-51 Determination of the complex resonance energy can be accomplished by 
analytically continuing the energies as a function of z into the complex plane and locating complex 
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stationary points at which . This involves assuming a functional form for E in terms of z and fitting 
𝑑𝐸
𝑑𝑧 = 0

the data points on the stabilization graph to determine the parameters in this function. 16,49-51 
Substitution of the appropriate stationary point into the expression for E gives the complex resonance 
energy.  While one can employ data remote from the avoided crossing using Padé approximants for the 
analytic continuation,52,53 in our applications we have focused on data points near an avoided crossing 
and have used generalized Padé approximants (GPAs),16,54 which build in the branch point structure.

For isolated avoided crossings, involving two eigenvalues, the GPAs used in this work are of the form:

(7)𝑃(𝑧)𝐸2 +𝑄(𝑧)𝐸 + 𝑅(𝑧) = 0

where P, Q, and R are polynomials in z with the coefficients being determined by fitting two roots of a 
stabilization graph in the vicinity of an avoided crossing.  The order of the GPA is specified by the order 
of the three polynomials, i.e., by (np, nq, nr).  Based on prior studies,55,56 we use nq = np + 1 and nr = nq +2, 
in which case the simplest GPA would be designated (0,1,2).  In this work we used GPAs up to (4,5,6), 
using different sets of data points on two curves involved in an avoided crossing in least squares fitting 
of the coefficients in the three polynomials and averaging the results. When using high order GPAs, the 
AC procedure can lead to spurious stationary points.  These are identified by their sensitivity to the 
choice of input points and are excluded from the averaging.  For crossings involving three roots eqn (7) 
was extended to include terms that are cubic in E. In such cases the complex stationary energy 
converges with respect to the order of polynomial by the (5,6,7,8) GPA.

In the RAC procedure22-24 an attractive term multiplied by a positive coupling constant λ is added to the 
potential.  For sufficiently large values of λ the addition of this term converts the resonance into a 
bound state. To determine the resonance parameters, one expresses λ as a rational fraction fitting the 
coefficients in this expression to values of the momentum k for which the anion is bound. One then 
determines the k value at which λ = 0 to determine the complex resonance energy.  we use the 
following equation from Barta and Horacek.23 

(8)𝜆(𝜅) = 𝜆0
(𝜅2 + 2𝛼2𝜅 + 𝛼4 + 𝛽2)(1 + 𝛿2𝜅)
𝛼4 + 𝛽2 + 𝜅[2𝛼2 + 𝛿2(𝛼4 + 𝛽2)]

where κ = ik, and α, β, and δ are parameters determined in the fitting procedure, and λ0 is the value of 
λ for which the eigenvalue of interests changes from bound to unbound in the fit.

In the present application of the RAC method to the double well potentials considered here we add an 
attractive Gaussian of the form  at the origin. Calculations are carried out for λ values ranging ―𝜆𝑒 ―0.06𝑟2

from λ0 to 3 with a step of 0.01. These results were used to determine optimal ranges of data points for 
the various RAC calculations which will be described below after the various basis sets used for the 
calculations are presented.

In the CAP method, an absorbing or negative imaginary potential –iηW is added to the Hamiltonian: 

(9)𝐻𝐶𝐴𝑃 = 𝐻 ― 𝑖𝜂𝑊

Here,  is a strength parameter, and W is normally a real potential that vanishes in the inner region, 𝜂
starts to grow at a cutoff radius r0, and continues to grow with increasing distance from the system.25,27 
However, CAPs with complex W have been used.57,58 Here we use a Voronoi CAP59 with real W:
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W = (10){ 0, 𝑟𝑁 ≤ 𝑟0
(𝑟𝑁 ― 𝑟0)2, 𝑟𝑁 > 𝑟0 }

where rN is the distance from the nearest site (1 or 2) and r0 = 3 bohr (see eqn (4) in Ref. 58). Integrals of 
Voronoi CAPs must be evaluated numerically, and at every basis set site, a Lebedev-Teutler grid60 with 
770 angular and 199 radial points is used.

We note that in our CAP calculations the basis set is explicitly split into a core set and a DC-like set 
(details are provided below). CAP matrix elements involving core functions are set to zero; the CAP acts 
only on the DC-like basis functions of the respective basis sets. While the matrix elements affected by 
this procedure are very small, it helps to reinforce the idea that the CAP should only act in the 
asymptotic region so that the method is less dependent on the particular value of r0.

In CAP calculations with complete basis sets, DC states appear as a discrete string that has been rotated 
into the fourth quadrant of the complex energy plane, and provided the Siegert energy has been 
uncovered by this rotation, it appears as an isolated eigenvalue. However, with finite basis sets, the 
picture is less tidy: For η = 0 all eigenvalues start on the real axis, and as η is increased all continuum 
eigenvalues migrate into the fourth quadrant. Resonances can be identified by the relatively small rate 
of change,  |dE(η)/d ln η|, of their complex trajectories, and the best representation of the resonance 
eigenvalue is found where this derivative of the resonance trajectory shows a minimum.25,27,28 
Resonance energies can be corrected for artificial reflections of the outgoing wave by the CAP25, but 
unfortunately these corrections tend to enhance basis set errors, and here no correction was applied.

For the CAP calculations, the overlap matrix, the kinetic energy matrix, the integration grid, and the 
atomic-orbital to symmetry-orbital transformation matrices are supplied by the Python interface of Psi4 
library functions, version 1.7.61 The complex symmetric matrix representing the CAP Hamiltonian is then 
diagonalized using scientific Python (scipy).62 

In the present study the bound state calculations are carried out with four different basis sets classes 
that differ slightly for the different bound state methods.  All of the basis sets have, as a description of 
the molecular region, the first 10 even-tempered Gaussian functions used in the CKV calculations, with 
exponents ranging from 700 to 0.1835008 with successive exponents decreasing by a factor of 2.5. I.e., 
the exponents are given by 700/(2.5)n, where n = 1 – 10. This set of basis functions is suitable for 
describing the bound  state as well as the compact part of the resonance wavefunction. We thus refer 
to this set as core functions. As the core functions are the same for all basis sets, they will not be used as 
part of the basis set designations. The core basis is augmented either with diffuse p functions at each 
site, designated as (p + p), diffuse p functions located at the origin, designated as (P) or diffuse d 
functions located at the origin, designated as (D).  The fourth basis set, designated as (p + p’), includes 
the same core functions at each site and the same diffuse p functions at the 1 site as the (p + p) basis 
set.  However, in the (p + p’) basis set the exponents of the diffuse functions at site 2 are obtained by 
multiplying each of the diffuse exponents at site 1 by 1.25.  This basis set introduces asymmetry in the 
diffuse basis functions, more realistically representing the situation in a heteronuclear diatomic in which 
the basis sets on the atoms would differ.  While in the application of the stabilization method to a 
heteronuclear diatomic molecule the core basis functions associated with the two atoms would also 
differ, these were kept identical on the two sites to focus attention on the effect of asymmetry in the DC 
states due to the diffuse functions.
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Table 2 summarizes the details of the construction of each basis set.  The stabilization and RAC methods 
use the same basis sets. The (p + p) basis set for these methods is identical to the CKV basis set with five 
diffuse p on each site, continuing the progression in the set of core functions. The (p + p) basis set also 
adds five diffuse p functions at each site with the asymmetry mentioned above. Ideally, only the 
additional diffuse functions in the (p + p) and (p + p’) basis sets would be scaled in the stabilization 
method.  However, we have found it necessary to also scale the outermost most diffuse core function 
on each site in the stabilization calculations with these two basis sets.  The need for this can be seen 
from consideration of potential set B for which the resonance interacts with the 7th – 11th DC states. 
Since only ten DC solutions are derived from the five diffuse functions on each site, in the stabilization 
calculations with the (p + p) and (p + p’) basis sets we also scale the most diffuse core function on each 
site. The (P) basis set has an even-tempered set of six p functions at the origin starting with an exponent 
of 0.5 and with consecutive exponents decreasing by a factor of 2.5.  The (D) basis set is analogous to 
the (P) basis set except that the basis functions at the origin are d functions.  We note that in the 
stabilization calculations with the (P) and (D) basis sets the exponents of the most diffuse core basis 
functions are not scaled.

Table 2. Basis set designations. a,b  

         (p + p)          (p + p)        (P)        (D)

   5p(1) + 5p(2)      5p(1) + 5p(2)        6pc        6dc

a All basis sets include 10 core functions on each site as described in the text.  Only the number and type 
of the supplemental diffuse functions are indicated.
b Listings reflect basis sets used in stabilization and RAC calculations while the number of functions are 
doubled for CAP calculations.
c Functions located at the origin.

For potentials B-F the RAC calculations with the (P), (p + p) (p + p’) basis sets used data points in the 
range of λ0 to λ0 + 0.35 in fitting eqn (8), while the calculations with the (D) basis set used data points in 
the range of λ0 + 0.08 to λ0 + 0.43 in fitting eqn (8).  The latter choice of data points was also used for the 
symmetric potential A, for both the (D) and (p + p) basis sets.  The choices of data points were 
established from a series of calculations using different starting points.

CAP calculations typically use smaller even-scaling factors in generating the diffuse basis set than 
stabilization calculations: Instead of exponent ratios of 2.5, ratios close to 1.5 are commonly used. Basis 
sets with more densely spaced diffuse functions are needed in CAP calculations because the basis must 
represent the oscillating wavefunction of the outgoing electron to the CAP cutoff r0 and then for a 
certain distance in the CAP region until it has been absorbed.63,64 Here, we use diffuse sets that match 
the diffuse exponent range of the stabilization basis sets, in other words, the first and last diffuse 
exponents are identical to those in the stabilization and RAC calculations. However, the number of even-
tempered exponents in this range is increased until the exponent ratio is close to 1.5. Following this 
strategy, the (p + p) and (p + p’) basis sets consist of the core set augmented with 10 diffuse p functions 
at each site, while the (P) and (D) sets consist of the core set augmented with 12 exponents ranging 
from 0.5 to 0.005. All diffuse sets have exponent ratios of about 1.52.    
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To demonstrate the need for smaller even-scaling factors in CAP calculations, the convergence of the 
resonance energy is studied for the non-symmetric potential F and the (P) basis. Seven different (P) sets 
are constructed where the range of the exponents of the supplemental diffuse functions is unchanged 
(0.5 to 0.005), but the number of p-functions increases from six to 12 corresponding to an exponent 
ratio decrease from 2.5 to 1.52. The obtained resonance energies (Fig. 2) show a pattern of “spiraling” 
convergence in the complex plane in that the length of the complex step between subsequent 
resonance energies continuously decreases from 28meV (six to seven p functions) to finally 3meV (11 to 
12 p functions) while at the same time the converged resonance energy is approached on a strongly 
curved complex trajectory. Based on this study, we expect the CAP basis set convergence to be 
significantly better than 10 meV.  

Fig. 2 Resonance energies of the potential defined by parameter set F computed with the CAP method 
and different (P) basis sets with six to 12 p-functions. With increasing number of basis functions, the 
exponent ratio drops from 2.5 (six functions) to about 1.8 (nine functions) and 1.52 (12 functions).   

3 RESULTS AND DISCUSSION

In this section, we first discuss the change of the resonance parameters determined from the CKV 
calculations in going from the symmetric parameter set A to the most asymmetric set F. Then, we 
compare the CKV results with those obtained using bound state methods, investigate how the 
stabilization graphs depend on choice of basis set, and briefly consider the effect of asymmetric basis 
sets on the prediction of total widths.

3.1 Trends in Resonance Parameters with Change in Potential Parameters 

Fig. 3 displays the total and partial widths obtained from CKV calculations as a function of Er for each 
model potential considered.  (The fitted parameters for each potential are reported in the ESI.) The 
resonance energy, Er, decreases monotonically as the potential moves from symmetric (Set A, far right in 
the figure) to increasingly asymmetric, as expected since the asymmetry is produced in this model by 
deepening one of the wells.  Additionally, the p-wave partial width monotonically increases from zero 
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for the symmetric potential while the d-wave partial width monotonically decreases with growing 
asymmetry in the potential.  Interestingly, for asymmetric potentials sets B and C which have both p- 
and d-wave contributions, the leading partial wave does not have the larger partial width.  Even for the 
most asymmetric potential considered (Set F), the d-wave partial width cannot be considered 
insignificant. 

Fig. 3 Partial and total widths vs resonance position from the CKV method for all parameter sets A 
through F. The figure shows total (purple circles), p (blue circles), and d (orange circles) widths, with 
accompanying curves representing cubic fits to the respective data. The parameter set is indicated along 
the horizontal axis.  

The trends in the partial widths track well with changes in shape of the orbital involved in electron 
capture as the potential becomes less symmetric.  Fig. 4 shows the contour plots of orbitals obtained in 
the plateau or stabilized region of the stabilization graphs obtained with the (p + p) basis set for 
potential sets A, C, and F.  The diminution of the orbital at the lower site in each figure, with 
accompanying augmentation at the other, in moving from set A to F corresponds with the change from a 
pure d-wave resonance for set A to a resonance dominated by p-wave scattering for set F.  These trends 
are in line with intuitive expectations and show the sensitivity of the partial widths to the changes in the 
shape of the orbital involved in electron capture.  Similar trends are observed in the stabilized CAP 
orbitals which are reported in the ESI.
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Fig. 4 Contour plot of the stabilized orbital obtained with the (p + p) basis set for potential sets A (left), C 
(middle) and F (right). A cut through the yz axis is shown.  (As the resonance is a degenerate π orbital, 
the xz and yz cuts of respective π components are identical.) All panels show the same range. The units 
on the horizontal (z) and vertical (y) axes are bohr. The value of the orbital is indicated by the color scale 
on the right, which has units of (bohr)-3/2.

3.2 Resonance Positions, Partial and Total Widths from the Various Methods 

Fig. 5 highlights the deviations of the partial widths predicted by each bound state method from the 
corresponding value obtained from the CKV calculations. (The complete set of resonance parameters 
obtained from each method is contained in the ESI.)  The partial widths from the stabilization and CAP 
methods are in good agreement with the CKV results (with the deviations being 10% or less, and 
typically less than 5%) while those for the RAC method can be significantly greater (typically less than 
20%).  Most importantly, all three bound state methods capture the essential trends in the absolute as 
well as relative magnitudes of the partial widths. 

Fig. 5 Deviation (in eV) of the partial widths from the bound state calculations from the CKV results. p 
(top) and d (bottom) partial widths. CAP (purple circles). stabilization (orange circles) and RAC (green 
circles) methods, with the accompanying lines simply connecting the dots to aid the eye. The parameter 
set is indicated along the horizontal axis.
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Fig. 6 Comparison of total widths as function of resonance positions from the bound state methods to 
the CKV results. The three panels show resonance width vs position for the six parameter sets A to F. 
From the top, the panels compare stabilization (orange), CAP (purple), and RAC (green) results with the 
CKV (blue) method. For the bound state methods both the total width obtained with the (p + p) basis 
(circles connected with solid line) and the total width obtained as sum of the p and d partial widths 
(squares connected with dotted line) are shown. The parameter set is indicated along the horizontal 
axis.   

Two approaches to obtaining the total resonance width for each bound state method were considered.  
The first approach was to take the total width to be the sum of the partial widths, which is expected to 
be a good approximation for the relatively narrow resonances considered here.  This was also the 
approach used to obtain the total width for the CKV calculations.  In addition, the bound state 
calculations using the (p + p) basis set provide a direct estimate of the total width.  The E set of results is 
contained in the ESI.  Fig. 6 summarizes the results by displaying in each panel the CKV total width (from 
the sum of the partial widths), the sum of the partial widths for the given bound state method, and the 
bound state results obtained using the (p + p) basis set. 

There is semi-quantitative agreement between the total widths from the various bound state methods 
and the CKV results.  For the stabilization calculations the total widths from the sum of the partial widths 
agrees better with the CKV results than the total widths obtained using the (p + p) basis set.  The 
difference between the sum and the (p + p) basis set results is not as pronounced for the CAP results.  
For the RAC calculations the agreement is markedly worse for sets A and B.

3.3 Qualitative analysis of stabilization graphs obtained with different basis sets 

Page 13 of 22 Physical Chemistry Chemical Physics



Fig. 7, presents stabilization graphs obtained using the (P), (D), (p + p) and (p + p) basis sets for potential 
set C.  Except for set A, for which the (P) basis set gives a zero partial width, these stabilization graphs 
are representative of those found for all potentials considered in this study. For both the (P) and (D) 
basis sets, examination of the DC orbitals indicate that they can be approximated as possessing well 
defined angular momentum. In each case, the stabilization graphs for the (P) and (D) basis sets therefore 
show simple two-state avoided crossings that describe the coupling of the resonance to the respective 
continuum, and analytic continuation provides the partial width for the appropriate partial wave. 

In contrast, for the (p + p) basis set, three states are involved in the avoided crossing in the case of the 
asymmetric potentials. Examination of the wavefunctions of the DC solutions that interact with the 
discrete state confirm that one is dominantly p-wave while the other is predominantly d-wave.   A cubic 
GPA is used to fit the energies of the three interacting levels (i.e., the discrete state and the p and d 
partial wave DC solutions).  Analytic continuation provides an approximation to the total width as seen 
from Fig. 6. 

The stabilization graph for the (p + p) basis set differs appreciably from that obtained with the (p + p) 
basis set.  Rather than having three strongly interacting roots over a small range of scale parameters, the 
latter stabilization graph has a series of well isolated two root avoided crossings which alternate 
between narrow and broad.  Examination of the DC orbitals shows that for this basis set each DC level is 
a strong admixture of p and d waves.  As expected from the different shapes of the avoided crossings, a 
range of widths is obtained from analytic continuation using different ranges of input data, as discussed 
in the next section.
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Fig. 7 Stabilization graph for parameter set C showing the eigenvalues (in eV), as a function of the scale 
parameter (z), of the two-site model (blue) and the DC energies (orange), both in eV, obtained with: (P), 
(D), (p + p) and (p + p) basis sets in panels a, b, c, and d, respectively.

3.4 Effect of Asymmetric Basis Sets on the Prediction of Total Widths 

The (p + p) basis set was designed to incorporate the asymmetry typically found in basis sets used in 
heteronuclear diatomic molecules. For the CAP and RAC methods there is little difference between the 
total widths predicted with the (p + p) and (p + p) basis sets. However, analytic continuation applied to 
the isolated crossings in stabilization graph using the (p + p) basis set depicted in Fig. 7d provides widths 
that are neither total nor partial widths.  For the data presented in Fig. 7d the following widths are 
found for the five crossings from left to right in the figure: 0.016, 0.129, 0.020, 0.135 and 0.022 eV.  
Recall that widths obtained from stabilization calculations using the (P), (D), and (p + p) basis sets were 
0.064 eV, 0.074 eV, 0.149 eV, respectively. With the (p + p’) basis set the DC levels and the 
orthogonalized DC (ODC) levels, the latter of which includes orthogonalization to the discrete state (and 
to the bound state), alternate between being localized around one potential well or the other.    Since 
the discrete state is localized in the vicinity of the potential well at r1, this results in alternating narrow 
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and broad avoided crossings in the stabilization graph.  The coupling between the wavefunction of the 
discrete state and that of the ODC level is small when the latter is localized in the well centered at r1 and 
larger when it is localized around the well centered at r2 due to the extra lobes in the wave functions of 
the ODC levels. These results indicate that widths derived from stabilization calculations using 
traditional basis sets for molecular calculations need to be carefully checked to determine whether they 
correspond to partial or total widths, or to neither (i.e., to some ill-defined combination of the partial 
widths). 

4 Conclusions

In this work we consider a series of double-well potentials that support a low-lying shape resonance 
analogous to the * temporary anions of N2 and CO.  For the symmetric potential the resonance is of g 
symmetry, and is d-wave in character, while for the asymmetric potentials the resonance has both p-
wave and d-wave contributions, with the relative weights of these components depending on the 
degree of asymmetry in the potential.  The complex Kohn variational method is used to determine the 
positions and partial widths of the resonance, via fitting the T-matrix elements as a function of energy to 
functional forms based on the work of Blatt and Weisskopf.47 These serve as a basis for assessing the 
performance of the stabilization, regularized analytic continuation, and the complex absorbing potential 
methods for obtaining the partial and total widths. It is found that all three bound state methods, when 
employed with appropriate basis sets, give partial widths in good agreement with the CKV results, with 
the agreement being better for the stabilization and CAP methods than for the RAC method.  Each 
method also provides good estimates of the total widths either by summing the partial widths or by 
extracting the total width directly from calculations using a basis set containing diffuse basis functions 
on each site.  We also demonstrate that with certain basis sets, the stabilization method can give widths 
that do not correspond closely to either a partial width or a total width.  However, the use of single 
center expansion for the diffuse functions not only allows the determination of partial widths but also 
simplifies the analysis of the stabilization graphs.  The ability of all three bound state methods to predict 
partial widths confirms the approach used in Ref. 18 to calculate complex potential energy surfaces that 
include partial widths over a range of geometries, allowing calculations of differential cross sections for 
elastic and inelastic scattering.  While the partial widths rigorously sum to the total width only in the 
limit of narrow resonances, the success of this approach in predicting the absolute magnitude, energy 
dependence and angular dependence of the vibrational excitation of CO via the 2 resonance in Ref. 18, 
suggests that this approximation serves well enough for at least moderately broad resonances within 
experimental resolution.

We note also that the approach presented here provides a solution to a major problem in applying the 
stabilization method to polyatomic molecules such as butadiene and anthracene for which different 
avoided crossings can give very different widths.  This problem is caused by the fact that the DC levels 
involved in the various avoided crossings have different weights on the relevant partial waves.  By using 
single center expansions of diffuse functions in specific angular momenta one can obtain well defined 
partial widths that can be summed to give the total widths.
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