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ABSTRACT 
The global energy optimization problem is an acute and important problem in chemistry. It is crucial to know the 
geometry of the lowest energy isomer (global minimum, GM) of a given compound for the evaluation of its chemical 
and physical properties. This problem is especially relevant for atomic clusters. Due to the exponential growth of the 
number of local minima geometries with the increase of the number of atoms in the cluster, it is important to find a 
computationally efficient and reliable method to navigate the energy landscape and locate a true global minima 
structure. Newly developed neural network (NN) atomistic potentials offer a numerically efficient and relatively 
accurate approach for molecular structure optimization. An important question that needs to be answered is: “Can NN 
potentials, trained on a given set, represent the potential energy surface (PES) of a neighboring domain?”. In this work, 
we tested the applicability of the ANI-1ccx and ANI-nr NN atomistic potentials for the global minima optimization of 
carbon clusters Cn (n = 3-10). We showed that with the introduction of the cluster connectivity restriction and 
consequent DFT or ab initio calculations, the ANI-1ccx and ANI-nr can be considered as a robust PES pre-sampler 
that can capture the GM structure even for large clusters such as C20.

INTRODUCTION

The study of atomic clusters attracts attention of many 
theoreticians and experimentalists. Due to the diversity in 
structure, physical and chemical properties, clusters can be 
used for various applications including chemical reactions 
[1, 2], catalysis [3,4], optical responses [5], energy storage 
[6], magnetic materials [7], to name a few. This diversity 
poses a fundamental problem for chemists: how the 
characteristics of a cluster would evolve into the 
corresponding bulk system as the number of constituent 
atoms increases [8, 9]. Importantly, the prediction of size 
dependent cluster properties involves the non-trivial task 
of global structure optimization. Most atomistic clusters 
are considered to be rigid, which is roughly characterized 
by the few (1–3) isomers in the 3 kcal/mol window with 
respect to the lowest in energy isomer a.k.a. global 
minimum (GM) [10]. In this case, the GM structure can 
properly model the physical properties of the considered 
cluster at ambient conditions with a given number of 
atoms. 

Procedures for finding a GM include sampling of the 
potential energy surface (PES), applying optimization 
methods to initial structures to locate local minima and 

selecting a point with the lowest energy as a presumed GM. 
There are several fundamental problems that come with the 
GM structure search. First, the growth of cluster size leads 
to the exponential growth of the number of local minima 
[11-15], thus decreasing drastically the likelihood of 
finding true GM. An exponential increase of the number of 
samples or the use of heuristic algorithms may alleviate 
this problem. The second problem is related to the energy 
calculation of a given structure on the global PES. 
Accurate techniques, such as state-of-art ab initio 
approaches or hybrid/double-hybrid DFT functionals, 
become intractable for large stoichiometries due to their 
computational cost. In turn, semi-empirical or LDA-DFT 
methods may not accurately evaluate the PES for the given 
stoichiometry, which may result in the wrong GM 
assignment. 

Machine Learning Interatomic Potentials (MLIP), such 
as Neural Network models (NN), are rising as an 
alternative technique providing an attractive compromise 
between computational cost and accuracy in predicting the 
energies of structures within the domain of interest [16-
24]. This is due to the vast number of parameters in NN, 
which enables high flexibility in describing complex PESs 
providing a properly chosen training dataset. In fact, NN 
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models trained on relatively small-sized systems (tens of 
atoms) are extensible and may provide highly accurate 
estimates for large-sized systems not included in the 
training set but within its domain [25–27]. However, NNs 
have their limitations, specifically the preparation of a 
training dataset – a step considered the most important but 
time-consuming. The larger the studied system, the more 
structural configurations it has. Consequently, extended 
dataset is needed to obtain a good statistical sampling of 
molecular conformations and thus the PES. This 
significantly complicates the training of a NN, since each 
datapoint (i.e., structure-energy correspondence) needs to 
be distinct and meaningful, whereas the dataset needs to 
exhaustively span the relevant phase space. However, 
recent work had successfully developed machine learning 
approaches toward “smart” reduction of a training dataset 
for MLIP models and its automated generation [28, 29].

In this work, we explore capabilities of the ANI-1ccx 
NN potential [30] originally trained on organic molecules 
containing H, C, N and O atoms and their various 
configurations by utilizing the correspondent ANI-1ccx 
dataset [31] and ANI-nr potential that employs active 
learning (AL) combined with a nanoreactor (NR) sampler 
for dataset generation [32]. Specifically, ANI-1ccx and 
ANI-nr potentials are applied to predicting potential 
energy of an adjacent domain – carbon clusters – without 
re-training of the NNs. We juxtapose its performance with 
DFT and semi-empirical methods on carbon cluster of size 
from three up to ten atoms. We focus on applicability of 
the NN potentials for tasks related to a GM search in the 
neighboring domain: Can it predict the relative global 
minima structure? How do generated local minima 
structures differ from those obtained with DFT and semi-
empirical methods? And how well is the NN potential 
applicable for PES sampling, particularly larger clusters? 
The findings of this study shed light on the broad 
application of MLIP models trained on compounds 
containing multiple chemical elements beyond the target 
domain.

METHODS

For each carbon cluster of size n (where n is a number 
of carbon atoms in a cluster), random structures (dataset) 
are prepared using the Coalescence Kick (CK) algorithm 
[33-35]. The CK algorithm is a stochastic search procedure 
that is designed to seek most of the minima on the potential 

energy surface. The size of the dataset is set according to 
the formula  to account for an exponential growth of 5 × 2𝑛

the number of local minimum structures with cluster size. 
The initial optimization of structures prepared by the CK 
algorithm is performed by employing four methods: ANI-
1ccx and ANI-nr NN models [30, 32], semi-empirical 
parametric method PM7 [36], and PBE0 hybrid density 
functional theory (DFT) method with well-balanced DZ 
Karlsruhe def2-SVP basis set [37]. The ANI-1ccx network 
featuring ANI-1 architecture [27], was originally trained to 
the ANI-1x DFT dataset (~5M data points) then refined on 
Coupled Cluster data on small organic molecules (~500k 
data points) containing H, C, N and O atoms using transfer 
learning. The ANI-1ccx dataset is a small subset of the 
ANI-1x dataset generated using active learning and 
recomputed with a correlation and basis set extrapolated 
CCSD(T) methodology specifically for building networks 
via transfer learning. The ANI-nr was trained similarly to 
ANI models on a data generated with NR sampler using 
reference DFT (B3LYP) data (~500k data points) [32]. The 
ANI-nr effectively covers all the chemical space covered 
by ANI-1x and ANI-1ccx. We have been using an 
ensemble of eight networks for ANI-1ccx or ANI-nr and 
limit the number of optimization steps to 200. 

To compare performance of four methods on the 
original dataset, we also examine subsets of optimized 
structures: connected structures and connected structures 
with distinct energies. Connectivity of a structure is 
analyzed via Fiedler eigenvalue. Each molecule can be 
represented as a graph, where vertices are atoms and edges 
represent bonds. We assume that two atoms are not bonded 
if the distance between them is more than 2Å (being a 
rough sealing of the largest known carbon-carbon bond 
length [38]). The graph is connected if the second-smallest 
Fiedler eigenvalue of a Laplacian matrix L for the graph is 
greater than zero. Matrix L equals to , where D is the 𝑫 ― 𝑨
degree matrix of the graph, a diagonal matrix with 
elements representing the number of edges attached to 
each vertex, and A is the adjacency matrix, elements of 
which indicates presence of an edge between two vertices. 
Subset of connected structures are thinned out by their 
energy to collect structures with energies differing by more 
than 10–4 Hartree, which we call connected structures with 
distinct energies. Structures with carbon-carbon distances 
closer than 0.8 Å were considered as artifact geometries 
and were not included in the consequent optimization 
described below.
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Figure 1. (a) Average CPU (core) time required to optimize a structure within 200 steps. All calculations are performed 
using one similar computational node. (b) average CPU time required to compute one step of the optimization.

The first ten converged connected structures with 
distinct energy and shape given by ANI-1ccx, ANI-nr, 
PM7, and PBE0/def2-SVP are then reoptimized at 
PBE0/def2-TZVPP level of theory. More accurate single-
point coupled-cluster calculations (CCSD(T)/def2-
TZVPP) are finally performed using the refined geometries 
to reliably establish the relative energy ordering. These 
steps were taken to ensure that we have a reliable 
understanding of the bottom of the potential energy surface 
landscape for these stoichiometries. All DFT, semi-
empirical, and coupled-cluster calculations mentioned 
above are performed via Gaussian 16 (Rev B.01) package 
[39].

In addition, for the cyclic and chain-like structures, the 
domain-based local pair natural orbital coupled-cluster 
theory (DLPNO-CCSD(T)) [40] is employed as 
implemented in ORCA 5.0.3 software [41–43]. The 
DLPNO-CCSD(T) energies are then extrapolated to the 
complete basis set (CBS) limit using the three-point 
extrapolation [44] based on cc-pVDZ, cc-pVTZ, and cc-
pVQZ [45] basis sets and corresponding auxiliary basis 
sets [46,47]. The MP2/def2-TZVPP level of theory is used 
to reoptimize cyclic and chain-like structures obtained 
from PBE0/def2-SVP calculations. No significant changes 
in geometry are observed. Further, the chemical bonding 
analysis is performed via the AdNDP 2.0 program [48,49]. 

RESULTS
Performance of the selected methods.

We have sampled eight datasets for each size n of 
carbon clusters via the CK algorithm. The sizes of the 
clusters are chosen from 3 to 10 carbon atoms. The choice 
of cluster sizes is driven by the idea to balance 
computational time and representativeness of the data 

because, according to the previous studies, the global 
minimum structure for singlet-state carbon clusters 
alternates from a chain shape into ring geometry for odd 
and even number of carbon atoms, respectively [50]. Each 
structure in each dataset is optimized with ANI-1ccx 
model, semi-empirical method PM7, and hybrid density-
functional PBE0. We compare the resulting set of 
structures in terms of the time to obtain them by each 
method, proportion of connected structures within the set, 
diversity of structure shapes and energies.

In Figure 1(a), we depict an average representative time 
each method took to optimize a cluster of size n. As was 
expected, the ANI-1ccx and ANI-1nr neural network 
models show the fastest performance with only 1.6 and 2.1 
seconds of the average run time (CPU-time) for the largest 
stoichiometry, while that of the PM7 and of DFT methods 
are approximately 5 and 60 minutes, respectively. As 
expected, DFT, in contrast to considered NN potentials and 
PM7, demonstrates drastic increase in computational cost 
with the growing cluster size. In that sense, the MLIP and 
semiempirical methods are computationally much more 
affordable. This trend can also be confirmed if we compare 
the average CPU time required for one optimization step 
for the considered methods (Figure 1(b)). Predictably, the 
obtained results illustrate that with the growth of the cluster 
size, the computational cost of ANI-1ccx, ANI-nr and PM7 
calculations do not increase significantly, while 
computational cost of DFT calculations grows 
polynomially (the polynomial scaling of PM simulations is 
expected to be observed for much larger molecular sizes). 
In particular, for 10 carbon atoms, the DFT calculation 
requires about a minute per optimization step, while 
MLIPs and PM7 run time stays at level of 0.01 and 5 
seconds, respectively. We would like to emphasize that the 
computational cost plays an important role in the global 
minima optimization problem. 
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Analysis of optimized structures.

The trend of global minima structures of singlet-state 
carbon clusters has been discussed before [50]. Previous 
studies found an interesting behavior with the increase of 
the number of atoms. Thus, for the even number of carbon 
atoms (4, 6, 8, 10) the global minima structure is cyclic, 
while for the odd number of atoms (3, 5, 7, 9) the GMs are 
chain-like structures. The optimization of the CK-
generated random structures at PBE0/def2-SVP level of 
theory is able to capture this trend, showing the correct GM 
structures (Figure 3). These structures will be used as a 
ground truth for the comparison of the results obtained 
with the ANI-1ccx, ANI-nr, and PM7 methods.

The CK algorithm generates completely random atom 
arrangements, however, ensuring their initial proximity 
facilitating formation of chemical bonds. Thus, the 
considered CK structures are significantly off the training 
domain of both ANI-1ccx and ANI-nr: the method starts 
many of their optimizations in the unexplored and badly 
represented regions of PES.

To estimate how ANI-1ccx and ANI-nr behave at 
various regions of PES, we calculate the potential energy 
curve of the bond dissociation process of carbon dimer and 
compared it with other ab-initio methods (Figure 3). 
Despite the correct representation of the near-equilibrium 
region (1-1.5 Å), two problematic regions appear on that 
graph. When the distance between two carbon atoms is less 
than 0.8 Å, due to lack of training in this region, the MLIP 
models unphysically decrease the system's total energy, 
making it favorable to collapse all nuclei of the cluster in 
one point. Nevertheless, the barrier for that process is 
relatively high, and the structure will be optimized to this 
artifact geometry only if the initial positions of carbon 

atoms are too close to each other. The second and most 
significant problematic region is the dissociation of two 
atoms to infinity. We can observe that ANI-1ccx wrongly 
over-stabilizes the dissociated structure, making it 
energetically more beneficial than the bonded structure. 
Moreover, the energy barrier for that process is rather 
small, so we can expect many disconnected structures to 
appear in the optimized set. This is attributed to training of 
ANI-1ccx near-equilibrium structures of molecular 
systems. Additionally, we would like to emphasize that the 
performance of ANI-1x is very similar to ANI-1ccx as 
illustrated in Figure S1. In turn, ANI-nr, as reactive force 
field by design, correctly represents the energy trend 
toward the dissociation of two carbon atoms, making this 
process energetically unfavorable. We would like to 
emphasize, that issues associated with MLIPs, such as the 
favorability to produce fragmented or collapsed structures, 
are not limited to molecules outside the training set. Even 
for molecules within the training set, ANI-1ccx and ANI-
nr exhibit similar bond-breaking curves as exemplified 
with C-H bond in CH4 molecule [32]. 

As a consequence of this, we find many optimized by 
ANI-1ccx carbon clusters with disconnected geometry. 
Predictably, ANI-1ccx ascribes those structures very low 
energy (lower than the connected ones). As an illustration 
of this phenomenon, we plot the lowest energy geometries 
proposed by ANI-1ccx method in Figure S2. Here the 
global minimum can be described as a small chain of 
carbon atoms surrounded by the isolated atoms. This trend 
of the GM structure is persistent in all Cn (n = 3-10) series. 
We note that such structures are not energetically favorable 

Figure 2. Global minimum structures of Cn (n = 3-10) clusters obtained 
using the PBE0 hybrid DFT functional.

Figure 3. Potential energy surface of carbon dimer calculated at 
various levels of theory. Shaded regions given for MLIPs show the 
ensemble standard deviation.
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Figure 4. (a) Fraction of connected structures in the optimized dataset. (b) Number of connected structures with distinct 
energies for each method. The Y-axis is in log form.

in reality, and isolated atoms tend to lower their energy by 
forming chemical bonds with other atoms and 
agglomerates. In addition, we found several low-lying in 
energy optimized structures with collapsed carbon atoms. 
As discussed above, this behavior is expected as illustrated 
in the Figure 3. Thus, the single MLIP model such as ANI-
1ccx method, cannot be considered as a standalone method 
for global minima optimization of carbon clusters and its 
blindfolded applications are not recommended. 
Subsequently, additional restrictions should be introduced 
to utilize the data obtained by this MLIP model. 

The problematic regions of the PES that are sampled by 
ANI-1ccx and ANI-nr can pose challenges in 
implementing certain global minimum optimization 
techniques like the basin-hopping algorithm. As a result, 
heuristic sampling algorithms will generate fragmented or 
collapsed geometries (which was observed for the basin-
hopping optimization of C10 cluster with ANI-1ccx and 
ANI-nr potentials). In contrast, the CK algorithm, which 
employs random sampling, allows for the imposition of 
additional restrictions (such as proximity or connectivity) 
across the entire PES landscape, enabling the examination 
of chemically meaningful regions. Furthermore, incorrect 
energy ordering provided by MLIPs can lead to erroneous 
GM identification without comprehensive landscape 
sampling. In turn, CK's extensive sampling of a large 
number of structures increases the likelihood of identifying 
the true global minimum geometry, even if the NN 
provides inaccurate energy ordering of the isomers.

Computing a portion of connected structures within the 
original dataset suggests that it declines for ANI-1ccx 

model down to 0.37, whereas the respective DFT and PM7 
values are staying around 1 (Figure 4(a)). As expected, 
ANI-nr produces a greater fraction of connected structures 
than ANI-1ccx declining down to the value of 0.92 for C10 
clusters. The main reason of appearance on the 
disconnected structures during ANI-nr optimization is the 
over-stabilization of collapsed carbon agglomerates. As 
the result, global minima geometries produced by ANI-nr 
also look unphysical (Figure S3). However, it is quite easy 
to reject unphysical structures by introducing restrictions 
on the allowed distance between the nuclei, as well as by 
introducing a check for the structure's connectivity as 
discussed below.

Despite an increasing fraction of disconnected 
structures for ANI-1ccx method, on the exponentially 
increased dataset, all four methods demonstrate an 
exponential growth of the number of connected structures 
with distinct energies ( ): these fit the function 𝑛𝑐𝐸 𝑛𝑐𝐸 = 𝑐 ∙

 (Figure 4(b)). However, on a fixed-size dataset, we see 2𝑛

a plateau at size 7 for the ANI-1ccx model (Figure S4). 
Thus, without the dataset exponential increase, the ANI-
1ccx method eagerly converges structures of carbon 
clusters to the disconnected ones, which affects its .𝑛𝑐𝐸

In spite of inability of ANI-1ccx to describe structure 
related to dissociation limits by construction and inability 
of both ANI-1ccx and ANI-nr describe too close proximity 
of carbon atoms, by screening out the unphysical structures 
with unbound or too close atoms, MLIPs may be useful as 
a pre-optimizers for determining minimum energy 
structures. As described in the Methods section, the graph 
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representation of the carbon cluster and the Fiedler 
eigenvalue were used for that purpose. With this 
constraint, the connected GM structures generated with the 
ANI-1ccx and ANI-nr methods are shown in the Figure 5. 
As we can see, the ANI-1ccx potential is able to capture 
GMs for every odd stoichiometry (Figure 5(a)). However, 
no cyclic structures are found to have the lowest energy 
among the connected structures. Interestingly, the ANI-
1ccx training set being composed of saturated organic 
molecules shows itself in the C4 and C6 predictions, where 
these would be close to correct for fully saturated systems 
but are wildly wrong for pure carbon systems. 
Interestingly, the PM7 method is also unable to capture the 
alternating trend of GM structures for carbon cluster, 
showing the chain-like structures as a GM for all 
stoichiometries except for C10, for which the cyclic 
structure was assigned to be the GM structure (Figure S5). 
Similarly, ANI-nr assigns the lowest energy to linear 
structures for clusters up to 7 atoms. Starting from 8 carbon 
atoms the cyclic structures are more preferable (Figure 
5(b)). Interestingly, ANI-1ccx and ANI-nr optimize C-C 
bond lengths for linear structures to slightly different 
values. Specifically, ANI-1ccx alternates bonds 
significantly varying them from ~1.2 to ~1.4 Å within one 
structure, while ANI-nr bond distances are close to the 
DFT-obtained structures and do not alternate a lot staying 
within ~1.3 Å, which is a consequence of the more 
structurally-rich reactive dataset encompassing out-of-
equilibrium conditions.

The inaccurate assignment of the GM for some of the 
stoichiometries by the ANI-1ccx or ANI-nr does not make 
the methods useless for the GM optimization problem. The 
method itself can be used as an efficient pre-sampler of the 
structures followed by the more accurate DFT and ab initio 
methods that will provide the more accurate energy 
ordering and geometry of the isomers. For this purpose, it 
is important that the structural motif of the global 
minimum be present among the low-energy isomers. Thus, 
we can reduce the expensive DFT and ab initio 
calculations by applying them only to those few low-
energy isomers obtained by fast ANI approach. To this 
end, we check 10 lowest connected isomers for each 
stoichiometry for the presence of the cyclic and linear 
structures. We indeed find them among the 10 lowest 
connected isomers proposed by ANI-1ccx and ANI-nr 
methods (Figure S6, S12-S17). This promising result 
illustrates the usefulness of ANI models as a pre-sampler 
method for a GM optimization problem of carbon clusters. 
We note that 10 lowest connected structures constitute a 
very small percentage of all connected structures obtained 
by ANI models. Thus, for C10 clusters, 10 lowest connected 
isomers correspond only to ~1.5% of all generated distinct 
connected structures. Further reoptimization of the lowest 
10 isomers (at PBE0/def2-TZVPP level of theory) lead to 
the correct assignment of the global minima structures 
showed in Figure 3. The relative energies (at 
CCSD(T)/def2-TZVPP//PBE0/def2-TZVPP level of 
theory) and corresponding geometries of all low-lying 

Figure 5. Global minimum connected structures of Cn (n = 3-10) clusters according to the ANI-1ccx (a) and ANI-nr (b) methods.
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isomers for all four methods are given in the Supporting 
information file (Figure S7-S11). Additionally, single-
point energies for the cyclic and chain-like structures are 
calculated for comparison at the DLPNO-CCSD(T) level 
of theory with the three-point energy extrapolation to the 
CBS (Table S1).

Chemical bonding analysis and discussion on the stability 
of the linear and cyclic isomers.

To understand why the global minimum structure for 
singlet-state carbon clusters alternates from a chain shape 
into ring geometry we next perform a chemical bonding 
analysis using the AdNDP algorithm. The AdNDP is an 
electron-localization technique that partitions the natural 
density of the system and reproduces the most occupied 
spatially localized bonding elements. The approach 
extends ideas of Weinhold's Natural Bond Orbitals (NBO) 
analysis [51]. The crucial advantage of the AdDNP 
approach is that it allows us to represent a chemical 
bonding pattern not only in terms of localized Lewis 
bonding elements (lone-pairs and two-center two-electron 
bonds (2c-2e)) but also in terms of delocalized bonding 
elements over several atoms (nc–2e bonds, where n>2) 
related to aromaticity and antiaromaticity concepts.

Based on the AdDNP results, a similar chemical 
bonding pattern is found for all odd-numbered linear 
isomers (Cn, n = 3, 5, 7, 9). Thus, the two s-type lone-pairs 
could be localized on terminal carbon atoms with 
occupation numbers (ON) 1.97 |e|, indicating that the 
terminal carbon atoms are unsaturated. The carbon-carbon 
interactions can be described with the localized 2c-2e σ-
bonds. Due to the high  symmetry, the 2c-2e π-bonds 𝐷∞ℎ
between carbon atoms could not be localized, and the π-
bonding interactions are manifested via completely 
delocalized nc-2e π-bonds with ON = 2.00 |e|. This 
bonding picture agrees with almost degenerate C-C 
distance in linear isomers. The chemical bonding of the 
linear C3 cluster is shown in Figure 6(a), while the bonding 
for other chain-like isomers could be found in the 
Supporting Information file (Figure S18-S20). The 
question remains: why even-numbered linear isomers (Cn, 
n = 4, 6, 8, 10) are energetically unstable? The reason for 
this instability can be explained by examining the 
molecular orbitals of even-numbered isomers. Unlike the 
odd-numbered linear isomers, where four electrons 
occupied two degenerate  or  HOMO orbitals Π𝑢 Π𝑔

(resulting in electronic state), even-numbered linear 1Σ +
𝑔  

isomers possess only two electrons on doubly degenerate 
 or  orbitals. Thus, according to Hund’s rule, the Π𝑢 Π𝑔

3Σ ―
𝑔  

electronic state will be more energetically preferable for 
even-numbered isomers than a singlet  state, which 1Σ +

𝑔  
can also be observed from the DFT calculations (Table 
S2). 

Electron delocalization also plays a crucial role in the 
cyclic isomers of carbon clusters. Thus, the C6 and C10 
isomers are found to be doubly σ- and π- aromatic 
possessing 4n+2 (n = 1, 2) electrons in the delocalized σ- 
and π- circuits (Figure 6(b) and Figure S23) [52,53]. 
Although the clusters are doubly-aromatic they are not 
fully symmetric and belong to  and  point symmetry 𝐷3ℎ 𝐷5ℎ
groups. The reason of the lower symmetry is the presence 
of second order Jahn-Teller effects in  and  𝐷6ℎ 𝐷10ℎ
structures [54,55]. 

According to the electron-counting rule, we expect that 
C4 and C8 clusters are doubly anti-aromatic with 4n (n = 1, 
2) electrons delocalized in σ- and π- circuits, respectively. 
However, the C4 cluster is found to be doubly aromatic 
instead. Due to the presence of s-type lone-pairs on two 

Figure 6. (a) Chemical bonding pattern of the linear isomer of C3 
cluster obtained from AdNDP analysis; (b) Chemical bonding pattern 
of the linear isomer of C6 cluster obtained from AdNDP analysis.
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carbon atoms and four 2c-2e σ-bonds, the remaining four 
electrons form 4c-2e σ-bond and 4c-2e π-bond responsible 
for doubly-aromatic properties (Figure S21). The C8 
cluster is indeed found to be anti-aromatic (Figure S22), 
which also can be observed from a significant alternation 
of carbon-carbon bond lengths in the structure (the shortest 
bond is 1.25 Å, while the longest bond is 1.38 Å). The 
question of why odd-numbered cyclic isomers are 
energetically less preferable[56] can be answered by 
analyzing the bonding patterns of even-numbered isomers. 
We can observe that the addition of one carbon atom into 
the cycle will add one additional 2c-2e σ-bonds, one 
electron to the sigma-delocalized circuit and one electron 
to the pi-delocalized circuit. Since the odd number of 
electrons on degenerate orbitals created Jahn-Teller 
instabilities, we conclude that planar cyclic odd-numbered 
isomers will be energetically unfavorable.

As a result, we observe that electron delocalization 
plays a crucial role in pure carbon clusters and controls the 
geometry and stability of different isomers.

Structural transition from cycles and chains to fullerenes 
and planes upon the cluster growth.

To further explore applicability of ANI models to large 
cluster stoichiometries, we perform a test calculation of C20 
clusters. The CK generated dataset consists of 10240 
random structures and resulted in ~1100 and ~8800 
connected optimized structures for ANI-1ccx and ANI-nr, 
respectively (thus, a fraction of connected structures for 
ANI-1ccx drops down to ~11%). Interestingly, this number 
of structures were enough for ANI-nr to capture cyclic 
structure (one of the lowest isomers for this stoichiometry). 
However, still this number of random structures is not 
sufficient to capture the cage and bowl-like isomers, which 
considered to be one of the lowest isomers of C20 
stoichiometry [57]. Thus, we further artificially introduce 
them into the dataset, to see if those structures will appear 
in a set of low-lying isomers. We indeed found that the 
artificially introduced structures are among the lowest in 

energy isomers (Figure 7). Though the relative energy and 
the ordering of those isomers by ANI models is not 
accurate compared to the reference [57], the further 
optimization can refine the data obtained by a cheap MLIP 
approach.

CONCLUSIONS

In summary, we evaluate the ANI-1ccx and ANI-nr 
neural network atomistic potentials' suitability for the task 
of the global minima optimization problem of carbon 
clusters. While ANI-1ccx, trained only on molecular 
systems, poorly describes systems in the dissociation limit, 
and both ANI-nr and ANI-1ccx improperly model the 
structures with short carbon-carbon distance, those MLIPs 
still can be used to significantly reduce the computational 
cost via combinations of several approaches. Specifically, 
by culling down stoichiometries of a series of carbon 
clusters Cn (n = 3-10) with the CK algorithm by imposing 
the cluster connectivity and short distance restriction 
criteria, we show that the NN potentials accelerate the low-
energy conformer search and reduce the computational 
cost of the global minima optimization problem. Notably, 
such clusters of pure carbon atoms were not part of the 
training set used to build the ANI-1ccx and ANI-nr 
models. Although the energy ordering of isomers is not 
accurate for some of the stoichiometries, the correct GM 
structural motifs are present within the several lowest in 
energy connected isomers. Using the larger C20 cluster 
stoichiometry, we show, that ANI models capture even 
nontrivial carbon cluster GM transformations such as 
transition from cycles and chains to fullerenes and planes 
upon the cluster growth. We believe that this work 
provides useful insights to the research community and 
facilitates future use of ML interatomic potentials in global 
minima optimization problems. The use of CK to generate 
systems effectively representing extremely unphysical 
atomic geometries, may be treated as an adversarial attack 
on MLIPs [58-61]. 

Finally, the ability for NN potentials to identify 
minimum energy carbon structures is of critical importance 
for a variety of chemical and materials applications. Recent 
work on large scale MD simulations of carbon systems [62, 
63] is largely driven by the interest in understanding 
carbon cluster formation post combustion. Yet, despite 
these potentials having passed many large-scale tests, such 
as the prediction of the carbon phase diagram, perhaps the 

Figure 7. Low energy structures of C20 cluster according to the ANI-
1ccx and ANI-nr methods with the relative energies in eV. Energies for 
ANI-nr are given in square brackets.

0.0eV
[13.8 eV]

4.6eV
[4.8 eV]

7.8eV
[0.0 eV]
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addition of low energy carbon clusters would provide an 
even more stringent test for such potentials. 
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