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rangements in molecular dynamics data

Fabrice Roncoroni,∗a Ana Sanz-Matias,a Siddharth Sundararaman,a and David Prendergasta

Abstract
Molecular dynamics (MD) simulations present a data-mining challenge, given that they can generate
a considerable amount of data but often rely on limited or biased human interpretation to exam-
ine their information content. By not asking the right questions of MD data we may miss critical
information hidden within it. We combine dimensionality reduction (UMAP) and unsupervised hier-
archical clustering (HDBSCAN) to quantitatively characterize prevalent coordination environments
of chemical species within MD data. By focusing on local coordination, we significantly reduce the
amount of data to be analyzed by extracting all distinct molecular formulas within a given coordina-
tion sphere. We then efficiently combine UMAP and HDBSCAN with alignment or shape-matching
algorithms to partition these formulas into structural isomer families indicating their relative popu-
lations. The method was employed to reveal details of cation coordination in electrolytes based on
molecular liquids.

Introduction
Molecular dynamics (MD) is a vital tool in gaining molecular-
scale insight on the properties and functional behavior of complex
systems and interfaces. There is immense value and inspiration in
providing the community with visualizations of molecular config-
urations and their dynamics, particularly with respect to the iden-
tification of molecular-scale bottlenecks in functional processes
and the rational design of new chemistries to avoid them1–6.

Analysis of MD data sets is frequently driven by simplistic met-
rics (e.g., density profiles, pair distribution functions) and human
intuition on what questions to ask of the data. Insight can be lim-
ited significantly by human imagination or past experience when
it comes to designing bespoke analysis of such data sets. The un-
derlying assumption, which we presume here also, is that the rel-
evant information content in large data sets has a much smaller
dimension than the entire data set, or that there is a relatively
simple, low-dimensional underlying probability density that can
describe behavior in the system. In an ideal scenario, automated
data analysis should provide us with an unbiased path to dimen-
sionality reduction with full disclosure of embedded details of the
distribution/density in terms of distinct classification or grouping
of data, while the task of labeling these groups (via interpreta-

a Joint Center for Energy Storage Research, the Molecular Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
∗ E-mail: roncoroni@lbl.gov

tion or contextualization) is more suited to human intuition and
experience.

To this end, we have developed an unsupervised data-mining
approach to extract details of distinct motifs of local coordina-
tion from MD simulations. We divide the problem of assessing
prevalent local coordination environments into three main steps.
First, we identify the species of interest and the expected size
of their local coordination environment. Then, we extract local
atomic clusters from the MD data set and group them by chem-
ical formula or composition. Finally for each chemical formula,
we perform dimensionality reduction, hierarchical clustering and
alignment procedures to determine the structural distribution of
coordination isomers. We focus on defining a computationally ef-
ficient approach, which can quickly analyze large MD data sets
to provide details of conformations within minutes or less to fa-
cilitate on-the-fly analysis. To this end, the combination of effi-
cient dimensionality reduction (UMAP7) with hierarchical clus-
tering (HDBSCAN8) is aided significantly by our use of fast align-
ment algorithms (FASTOVERLAP9) that focus on relative align-
ment with respect to automatically identified exemplars of iso-
lated data clusters. Furthermore, we demonstrate that this ap-
proach can be used to "learn" how to classify previously unseen
data and perform "on-the-fly" unsupervised analysis of MD data
as it is generated. The outcome of this approach is a detailed
molecular-scale understanding of the local coordination environ-
ment of particular species, with a significant reduction in data
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dimensionality, that is informed more by the data itself than by
human expectation (i.e., minimizing external bias).

In what follows, we provide a case study for mining the coor-
dination environments of ions in liquid electrolytes as provided
by extensive molecular dynamics sampling using empirical force
fields, computed using LAMMPS10. The sampling may result
from simple trajectories for well-defined thermodynamic ensem-
bles, or it may be biased with respect to certain collective vari-
ables, as in umbrella sampling11 or metadynamics12–14, to ex-
plore the free energy landscape within a defined low-dimensional
collective variable space.

Our chosen example focuses on multivalent ions in nonaque-
ous electrolytes as a particularly challenging case. In our experi-
ence, the distribution of coordination environments about multi-
valent ions is definitively multimodal – one should not speak of
the solvation environment, but rather admit that there may be
multiple solvation environments15. This presents several chal-
lenges to theoretical modeling, especially when particular ion
coordinations may persist in deep local minima of free energy,
hindering a full sampling of the available configuration space.
Although such challenges have been addressed using collective
variables that span coordination number,16,17 we may lack val-
idation that the sampled behavior is not limited by the choice
of collective variable. In addition, experimental characterization,
such as spectroscopy, requires molecular models for interpreta-
tion, especially if multiple isomers may contribute to the mea-
sured spectra3,18–23. For future work on this complex problem,
we claim that unsupervised classification can ultimately decon-
volute the distribution of coordination environments into well-
separated unimodal, normal distributions, which can be provided
as motifs for defining optimal collective variables to sample the
free energy landscape effectively and to make unambiguous in-
terpretations of experimental measurements.

Methodology
The behavior of electrolyte, in bulk or in the presence of an in-
terface, can be studied with MD simulations24–26. Because of the
high amount of data generated even by a simple MD trajectory,
the task to analyze and identify relevant aspects of the calculation
can become cumbersome. In the field of electrolyte science, often
we are interested in the unique chemical environments that are
present around specific solvated ions. In particular, the first sol-
vation shell is critical in determining important properties, such
as solubility of the salt, transport properties, stability and reactiv-
ity with the electrodes27–34. In the following section we present
a workflow we developed to assist with the analysis of large MD
datasets. Our goal is to understand which solvation environments
are sampled by the MD trajectory. Ideally, we want to minimally
rely on arbitrary inputs provided by a user and instead make use
of a robust, unbiased procedure that can leverage as much data
as is available to us.

Local structure sampling

Since we are interested in the chemical environment around sol-
vated ions in electrolytes, the first step is to define a spherical

region around the ions of interest (e.g. the Ca2+ cation) with
an element-specific cut off radius and remove the atoms outside
it. In this way, we can effectively isolate what we refer in this
paper as the local atomic arrangement around the ion of interest.
An effective choice to define the cut off is to use element-specific
radial distribution functions and estimate the extent of the first
solvation shell. Extracting the local atomic arrangement out of an
entire MD frame dramatically reduces the size of the trajectory to
be analyzed. Instead of frames of thousands of atoms we are left
with a small cluster of atoms around the species of interest. If
there is more than one ion of interest in the simulation box, mul-
tiple local atomic arrangements can exist in each frame. In cases
where their solvation shells may overlap, we can further decide
to merge them into dimers, trimers, etc. and consider them as a
single unit.

Alignment and Permutation

Structure alignment and permutation is a central component of
the procedure we have assembled below. To determine if two
complex atomic arrangements sampled from an MD trajectory
are similar is easily complicated by the strong likelihood that
their centers of mass are displaced or translated from one an-
other and that they may have quite different orientations with
respect to a given set of Cartesian axes. In structural biology,
where large, complex macromolecules may have quite low sym-
metry, determining an optimal translation and rotation to best
overlap two structures can be accomplished by minimizing the
root mean square deviation (RMSD) of the overall atomic struc-
ture - a Euclidean metric in the multi-atomic three-dimensional
coordinates35:

RMSD(X,Y) =

√√√√ 1
N

N

∑
i=1

∑
α=x,y,z

|X (i)
α −Y (i)

α |2 ,

where X and Y are N-dimensional sets of atomic position vec-
tors, assumed to have the same index ordering with respect to
i. Optimal alignment is achieved by finding the parameters that
define a translation vector and rotation matrix that minimize the
RMSD.

Surprisingly, aligning much smaller clusters can be more chal-
lenging due to the strong possibility that they exhibit somewhat
random ordering of the atomic coordinates that define the cluster
due to their assembly being driven by non-bonding interactions
– Coulombic attraction and/or van der Waals forces, most likely.
This possible reordering of the atomic species can discontinuously
alter the RMSD and prevent gradient-based minimization algo-
rithms from optimally aligning pairs of structures. Multiple ap-
proaches have been developed in the literature to overcome this
issue. Reducing atomic structural information into orientation-
independent features (bond lengths, angles, dihedrals, Coulomb
matrices36, bag of bonds37, etc.) can help, but still suffers from
the possible random ordering of individual elements38. Binning
or histogramming the atomic data as a density field39 or within
some other reduced-dimensional feature vector40 can remove
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Fig. 1 Schematic described in the text highlighting the multi-step process by which local atomic arrangements for a given chemical formula are
ultimately grouped into clusters of aligned atomic arrangements through successive application of dimensionality reduction (UMAP), hierarchical
density-based clustering (HDBSCAN) and alignment via minimization of the root mean square deviation d while including translation (t), rotation
(R), permutation (P), and inversion (inv) of the atomic coordinates (FASTOVERLAP), followed by specific distinguishing feature identification that
helps to define interpretable labeling of the final clusters.

this issue but may require large fields to store the information or
may be dependent on the grid-spacing of the density/histogram
representation.

Due to the factorial scaling of permutations with respect to the
number of identical atoms in the local atomic arrangements, a
brute force approach to enumerating and comparing all possibili-
ties may become inefficient or at worst intractable. The so-called
Hungarian method41, and approaches derived from it such as the
shortest augmenting path42,43 provide a solution to this combi-
natorial optimization problem in polynomial time. We make use
of FASTOVERLAP’s branch and bound alignment algorithm9 to
align pairs of atomic arrangements by minimizing their RMSD
with respect to permutation (P) and inversion (inv), in addition
to translation (t) and rotation (R) of the 3D structures:

dmin(X,Y) = min
t,R,P,inv

RMSD(X,Y′) ,

where Y′ is the translated, rotated, permuted, inverted version of
Y.

The final output of optimally aligned structures greatly facili-
tates a fast appreciation of the salient features of a given cluster
of atomic arrangements, so that they might be tagged with phys-
ically interpretable labels.

Computing dmin between every pair of atomic arrangements to

define a huge distance matrix (scaling as the square of the number
of arrangements) would definitely reveal details of distinct groups
within the data set, since this metric defines which arrangements
are “close” to one another. This distance matrix could be consid-
ered as a representation of the underlying distribution or density
of the data set. However, this metric scales with the square of the
number of local atomic arrangements. Which is still an unwieldy
object to compute and to analyze efficiently and automatically for
a large dataset.

Clustering algorithm

In order to classify the local atomic environments into distinct
groups, we decide to rely on a procedure that leverages a combi-
nation of: the dimensionality reduction technique UMAP7, to pro-
vide a low dimensional projection of large data sets while main-
taining their topological structure; and the hierarchical clustering
algorithm HDBSCAN8, to organize the low dimensional data into
similar groups. Pre-processing the data with UMAP greatly facil-
itates the clustering procedure, since HDBSCAN understandably
struggles to effectively identify dense regions in spaces of higher
dimensionality8. Our approach is designed to significantly reduce
the computational overhead for comparisons via structural align-
ment and permutation.

A scheme for the analysis procedure is shown in Figure 1. After
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extracting the local atomic arrangements from the trajectory, we
separate them into groups, each with a distinct chemical formula
(e.g. B2CaO4), which we analyze separately.

(1) The first step is to calculate the flattened upper triangular
atomic distance matrix for every local atomic arrangement in the
trajectory. This results in a row vector containing the pairwise
distance between every pair of atoms in the local atomic arrange-
ment. Relying on the flattened distance matrix instead of the raw
atomic positions is advantageous, since it is invariant to arbitrary
translations or rotations of the local atomic arrangements.

2) Using UMAP, we generate a low-dimensional projection of
the input data – a reduction from n = N(N − 1)/2 to 2, where N
is the total number of atoms in the local arrangement. Points
that are close to each other in the UMAP space have a similar
flattened upper triangular distance matrix. This densification in
the reduced dimensions of the UMAP space facilitates clustering
by HDBSCAN into labelled groups. Arrangements that have been
assigned a different label due to significant differences in their
distance matrix vectors could actually comprise similar struc-
tures that differ only because of an arbitrary permutation of their
atomic indexes.

(3) We extract from each HDBSCAN cluster some exemplar lo-
cal atomic arrangements, viz., particular arrangements that come
from high density regions in each cluster. Then, using FASTOVER-
LAP, we obtain the minimal distance dmin between each pair of
exemplars (including permutations) and build a corresponding
exemplar distance matrix.

(4) We provide UMAP with this exemplar distance matrix as
a feature vector to generate another low-dimensional projection,
which we then organize into clusters with HDBSCAN. Since dmin

obtained with FASTOVERLAP now accounts for permutation of
the atomic indexes, as well as inversion, rotation and translation
of the 3D structure, we would expect the total number of groups
to reduce significantly at this step, as symmetry equivalent exem-
plars should merge.

(5) We extract new exemplars from this second UMAP projec-
tion space to select an even smaller subset that will constitute an
alignment basis set. With the assumption that the sampled tra-
jectory is complete – i.e., it contains all the expected local atomic
arrangements – the alignment basis set should also be complete.

(6) We self-consistently align the elements of this basis to one
another to more easily compare them upon visualization. Obtain-
ing an optimal global alignment between multiple structures can
be challenging. Normally, pairwise alignment algorithms can ef-
ficiently align structures two-by-two by minimizing their RMSD.
However, minimizing the total RMSD of multiple structures at the
same time adds an additional level of complexity. It is important
to ensure that the main features of the coordination environment
are properly aligned in a similar way. As an example, if we were
unfortunate enough to try to align all structures to a single ref-
erence that coincidentally has a well-defined symmetry axis, it is
possible that structures with equivalent structural features end up
aligned differently. The goal of the global optimal alignment is to
reduce a cost function consisting of the average RMSD between
the exemplar arrangements using our chosen structural alignment
procedure. This process is iterative, creating a biased random

linkage between the exemplars and sequentially looping through
the linkage to align each structure pairwise. At each step, the new
alignment is accepted only if the new average RMSD between all
exemplars is lower than the previous one.

(7) We now use the globally aligned exemplar atomic arrange-
ments as reference points: we loop through the entire trajectory
and try to align each local atomic arrangement to the exemplars,
only keeping that alignment with the smallest dmin. This step
ensures that all arrangements have a consistent atomic indexing
with respect to each other. Only the alignment with the smallest
dmin is kept for each local atomic arrangement, but we subse-
quently compute its RMSD (i.e., without alignment or permuta-
tion) with respect to all elements of the alignment basis to define
a new feature vector.

(8) At this point, to perform a final clustering iteration, we are
left with three possibilities. Since now the atomic indexing is
consistent, we can calculate the flattened upper triangular atomic
distance matrix once more and provide it to UMAP. Alternatively,
since the vector of dmin between each local atomic arrangement
and the alignment basis is unique, it can be used as a direct
input for dimensionality reduction. Finally, a combination where
we provide both the flattened upper triangular atomic distance
matrix and the vector of dmin to the alignment basis set can be
used. In all three cases, the low dimensional projection obtained
with UMAP is then given to the HDBSCAN algorithm. The final
product is distinct clusters of structures that have similar local
atomic arrangements and that have been optimally aligned with
each other.

Computational Details
The model system of this study comprises one Ca2+ cation and
two BH –

4 anions dissolved in THF next to a graphite interface.
THF is an organic solvent, a molecular liquid with the formula
C4H8O, with the heavy atoms arranged in a pentagonal ring
and two hydrogen atoms bound to each carbon. There are 336
THF molecules and two layers of 416 carbon atoms defining
the graphite surface. The initial configuration was generated
by building a simulation box of size a = 34.08 Å, b = 31.97 Å,
c = 50.00 Å, where c is perpendicular to the plane of the graphite
surface, with the help of the software PACKMOL44.

All classical molecular dynamics simulations were ran with a
timestep of 1 fs and the OPLSAA force field45. The choice of
BH –

4 charges was based on comparisons with Density Functional
Theory interaction energies between a Ca2+ cation and a BH –

4
anion at face, vertex and edge sites. NBO charges provided the
best agreement. Additionally, charge scaling by a factor of 0.7
was applied in order to correctly reproduce the ab-initio free-
energy profile of Ca2+ in THF as a function of coordination46,47

using the methods described below. The particle-mesh Ewald
(PME) method with a 1.0 nm cut-off distance and 10−5 grid
spacing in k-space were used to treat long-range electrostatic
interactions. The cut-off for the Lennard-Jones interactions was
1.0 nm and the spline ranged from 0.9 nm to 1.0 nm.
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To equilibrate the initial simulation box, we performed multi-
ple steps. First, the structure was relaxed using steepest descent
followed by conjugate gradient minimization with a tolerance of
10−4 kcal mol−1 for the energies and 10−4 kcal mol−1 Å−1 for
the forces. Then the system was heated to 298 K during 10,000
steps (10 ps) of NVT simulation. NPT dynamics with an isotropic
pressure of 1 atm were then run for 1 ns using a Nose/Hoover
thermostat48 and a Nose/Hoover barostat49. The temperature
coupling constant was 0.1 ps and the pressure piston constant
was 2.0 ps. The equilibrated lattice parameters were obtained
by averaging the box size over the last 0.5 ns of NPT trajectory.
Finally, we performed an additional thermalization at 298 K with
the newly calculated lattice parameters under NVT dynamics for
5.6 ns.

The evaluation of the free energy profile as a function of the
two collective variables (CV) – the coordination number (CN)
between calcium and the oxygen of the THF molecules and the
distance from the outermost graphite layer (dZ) – was performed
using the COLVARS module13 as implemented in LAMMPS10.
The initial configuration consisted of equilibrated simulation cells
of solvent molecules with ions as described above, and the same
MD parameters were used as in the final equilibration step. The
cut-off radius for the coordination number was 3.6 Å. To prevent
the calcium ion from moving too far away from the graphite, a
harmonic potential wall was set at dZ = 24 Å. The free energy
surface is stored on a discrete grid with a spacing of 0.05 (unitless
and Å for the two CVs, respectively). Biasing was applied every
200 time steps by adding Gaussian hills of weight 0.02 kcal/mol
and width twice the grid spacing for the two CVs. To accelerate
the sampling we used multiple (14) walker metadynamics50

communicating every 25,000 timesteps. The trajectory of each
replica comprises 300 ns, totalling approximately 4.2 µs.

Umbrella sampling was performed using the same MD parame-
ters as during the equilibration and metadynamics run by adding
a single harmonic umbrella potential at a well defined point on
the CV surface. At each point, a trajectory length of 70 ns was
collected. The trajectory was saved every 5 ps for further analysis.

Dimensionality reduction with UMAP7 was performed first by
removing the mean and scaling to unit variance the data51 and
subsequently embedding the scaled data in a two-dimensional
space. The size of the local neighborhood was constrained to
15 neighbors with a minimum distance between points of 0.0
and the distance was computed with the Euclidean metric. Hi-
erarchical clustering with HDBSCAN8 was performed on the low-
dimensional projection with standard parameters and allowing
for the possibility of there being only a single cluster. In some
cases, parameters were tweaked iteratively depending on visual
feedback to obtain reasonable clustering. Namely, varying the
number of neighbours in the UMAP projection between 10 and
30 and increasing the value of the smallest size grouping for the
HDBSCAN clusters.

Structural alignment was performed with the branch and
bound algorithm implemented in the FASTOVERLAP package9.

Our clustering algorithm was implemented in Python, lever-
ages available open-source data science modules (NumPy52,
sklearn51) and integrates with the Atomic Simulation Environ-
ment (ASE)53. The plots were generated with the help of Mat-
plotlib54 and seaborn55.

Results
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Fig. 2 (a) Two-dimensional free energy surface for the solvation of Ca2+

in THF at a graphite interface as a function of the collective variables:
x) coordination number between the Ca and the O of the THF atoms, y)
distance between the Ca and the outermost graphite layer. The numbers
1-5 correspond to the region sampled with umbrella sampling and used
in the results section. (b) Normalized O and B RDF plots around Ca for
trajectories 1-4 (left) and trajectory 5 (right). The vertical dashed line
corresponds to the cutoff radii for the analysis discussed later.

Molecular Dynamics Sampling

We provide here some representative examples of applying
the clustering procedure to an MD trajectory. Our chosen
application is to a cutting-edge electrolyte: calcium borohydride
[Ca(BH4)2] dissolved in tetrahydrofuran (THF). We first run
a metadynamics simulation to calculate the two-dimensional
free energy landscape as a function of two collective variables:
the Ca-O coordination number and the distance of the calcium
ion from the graphite interface (see Computational Details).
The free energy surface shown in Figure 2a exhibits multiple
distinct minima, with the most prominent for Ca-O coordination
numbers of approximately 3 and 4 that extend as valleys at
higher distances from the graphite. Energy barriers on the order
of 5-10 kBT at 300 K separate the minima in these valleys. The
lowest point on the energy surface is point 2. Points 1, 3, 4 and 5
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have a free energy of 3.1 kBT, 0.7 kBT, 0.9 kBT and 6.9 kBT higher
respectively. We are interested in identifying similarities and
differences in the calcium coordination environment at different
locations across the free energy landscape. With our initial
metadynamics map of the free energy landscape, we next employ
umbrella sampling, a constrained MD protocol biased by an
additional harmonic potential, centered at particular coordinates
on the space spanned by our collective variables. The harmonic
potential ensures a local sampling of the MD trajectory close
to the free energy surface and allows us to extract quantitative
information regarding the relative local ionic populations (see
Computational Details).

We choose five distinct regions where we run umbrella sam-
pling. Locations 1, 2, 3 and 4 are at different distances from the
graphite interface, but all in the free energy valley with Ca-O co-
ordination number of approximately 4. Location 5 is at the transi-
tion point between two minima with coordination numbers 3 and
4, respectively, that are the closest to the graphite. Depending
on the location of the harmonic constraint with respect to these
collective variables, distinct chemical arrangements around Ca2+

can be observed. We are particularly interested in the first coor-
dination shell around the ion. Being positively charged, Ca ions
attract the oxygen atom in THF and the BH –

4 anions. In each
case, the local atomic arrangement can be assigned a chemical
formula that indicates its composition in terms of the number of
each atomic species.
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Fig. 3 (a) UMAP projection colored according to HDBSCAN labelling of
B2CaO4 local atomic arrangements of trajectories 1-4. Points classified
as noise are labelled -1 (black). (b) Top and (c) side view of the averaged
local atomic arrangements for each HDBSCAN group.

Local Atomic Arrangements

First, we analyze minima 1-4 along the valley with a coordina-
tion number of 4. We are interested in knowing the difference in
local atomic arrangement as a function of the distance from the
graphite interface. Initially, we limit our analysis to only three
atomic species (Ca, O, and B), ignoring details of the solvent
molecule or anion orientation. To select an appropriate cutoff
radius and extract the local atomic arrangements from the trajec-
tories, we use the radial distribution functions (left RDF plot in
Figure 2b). The RDFs of O and B with respect to Ca show two
narrow peaks at 2.35 Å and 2.45 Å, respectively, indicating the
extent of the first solvation sphere around the cation. Beyond
these first peaks, the RDF is almost flat until approximately 5 Å,
where the oxygen atoms of the second solvation sphere appear.
By choosing a cutoff radius of 4 Å for both B and O, we can ef-
fectively isolate the local atomic environment around Ca2+ and
ensure we only include the first solvation shell. The predomi-
nant total coordination number (including boron and oxygen) for
calcium in this environment is 6, but other coordination num-
bers could occur. For example, at the neighboring minima with a
coordination number of 3 the maximum total coordination num-
ber allowed is 5 (since there are only two available borohydride
ions in the entire simulation box). In the umbrella sampling, we
constrain 4 oxygen atoms to be coordinated to the calcium and
since the two available borohydride anions are strongly attracted
by the divalent cation, we observe only one chemical formula at
the four sampled points, namely B2CaO4. After extracting the
local atomic arrangements, each sampling point provides 12,000
molecular snapshots, totalling 48,000 atomic arrangements. We
then proceed to employ the clustering algorithm to obtain the
main coordination environments and compare their occurrence
as a function of their distance from the graphite interface without
previous assumptions on their arrangements.
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Clustering Analysis

The clustering algorithm identifies 3 main local atomic arrange-
ments across the four distances sampled. The final projection of
the UMAP space on 2 dimensions with the relative clusters la-
belled with HDBSCAN is shown in Figure 3a.

The projected coordinates are mainly divided into two regions
in the UMAP space. On the right, a big cluster of points is divided
into two groups (1 and 2). On the left, there is the isolated group
0. The black points labeled -1 which HDBSCAN did not classify
as belonging to any group are considered noise, although they
are most likely intermediate arrangements between groups 1 and
2. The most occurring atomic arrangement, group 1, accounts
for roughly 50.7% of the 48,000 arrangements analyzed. The
second most occurring, group 2, accounts for 35.6% of the
arrangements. Group 0 consists of 13.0% of the arrangements.
Only 0.8% of the data was labelled as noise. The reference
atomic structures of each labelled group are shown in Figures 3b
and 3c.

To try to understand why the local atomic arrangements were
divided into different groups, we look at the angles between the
oxygen atoms and the boron around the central calcium atom.
The biggest difference comes from the bent or linear arrangement
of the two B atoms. In group 0, the B atoms are adjacent, as pro-
posed in21, while in groups 1 and 2 they are located axially on
opposite sides of the Ca ion. Further differences of configuration
between groups 1 and 2 arise from differences in the O-Ca-O an-
gles.

Figure 4 shows the four O-Ca-O angles of groups 1 and 2. It be-
comes evident that group 1 consists of local atomic arrangements
where one of the O-Ca-O angles is much larger than the average.
Specifically, the mean angle D is 114.3◦ ± 9.8◦ and 97.5◦ ± 8.3◦,
in groups 1 and 2, respectively. The fact that there seem to be
normal distribution of angles with distinct means for the differ-
ent groups indicates that those features play a role in defining the
final UMAP projection of the local atomic arrangements. Specif-
ically, since we only provide UMAP with the distances between
atoms in a local atomic arrangement, the O-O distances responsi-
ble for the O-Ca-O angle are distinct between different groups.

We can see from Figure 5 that depending on the distance
of the calcium ion from the graphite, the relative population
of the three coordination environments changes. Closest to
the interface, only 4.9% of the coordination structures belong

to group 0 (bent configuration). This number increases to
16.9% in the second layer, reaches the highest value of 18.1%
at 15 Å from the graphite and finally decreases to 11.9% in
the bulk. Interestingly, the ratio between local arrangements
1 and 2 is highest at the interface, where their prevalence
is almost equal. Most likely, local atomic arrangement 2
is favoured by the presence of the graphite. At all distances
sampled, approximately 50% of the structures belongs to group 1.

The clustering procedure involving UMAP and HDBSCAN was
able to separate not only atomic arrangements that are clearly dif-
ferent (adjacent vs opposite boron arrangement), but also atomic
arrangements with finer differences of angles between the coordi-
nating atoms (O-Ca-O angle). However, we noticed by repeating
the analysis that it is not always possible to distinguish the atomic
arrangements with small O-Ca-O angle differences (groups 1 and
2). The main reason behind this is the randomness embedded in
the dimensionality reduction and clustering pipeline. UMAP is a
stochastic algorithm and therefore some variance in the results
is to be expected, although a consistent random seed can be set
to guarantee reproducibility for a given data set. There is also
some stochasticity in our iterative global alignment procedure,
based on its choice of random linkage. In general we observed
the low dimensionality projection to be quite stable. However,
mostly when working with smaller feature vectors (considering
less atoms) and fine structural differences in atomic arrangement,
a different final clustering could be obtained. Despite this, the
differentiation of the main feature – the B-Ca-B angle – is always
retrieved, which is a good indicator that the clustering algorithm
functions when the local atomic arrangements are clearly distinct.

Increasing Complexity

In order to obtain a more detailed picture of the chemistry
around calcium in the MD trajectory, we decided to increase the
size of the local atomic arrangements by including the carbon
atoms of the coordinated THF (while still ignoring the hydrogen
atoms of the borohydride anion and THF). Here we do not
explicitly use a cutoff radius for the carbon atoms, instead we
use the molecular bonding information provided to LAMMPS
to reconstruct the THF molecules with an oxygen atom within
the cut-off radius of 4 Å from the specified calcium ion. After
re-running the clustering procedure, we can observe even richer
information on the local coordination environment (Figure 6a).
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Fig. 6 (a) UMAP projection colored according to HDBSCAN labelling
of B2CaO4 local atomic arrangements that include THF backbones of
trajectories 1-4. Points classified as noise are labelled -1 (black). (b)
Top and (c) side view of the averaged local atomic arrangements for
each HDBSCAN group. The four THF molecules in the configurations
with the boron axially arranged (groups 1-7) are B: back, F: front, L:
left, R: right.

This time we identify 8 main groups using the clustering proce-
dure. One group (group 0) is distant from the other ones on the
UMAP projection space. The local atomic arrangement of group
0 exhibits two adjacent B atoms, while groups 1-7 all have the B
atoms axially arranged on opposite sides of the Ca cation. The
total occurrence of group 0 is 12.9%, while in the previous analy-
sis, where we still were excluding the carbon atoms, it was 13.0%.
This indicates that both with and without the THF carbon atoms
the UMAP projection effectively isolates this structural character-
istic – a bent B-Ca-B configuration. The remaining 87.1% of the
atomic arrangements belong to cases where the boron atoms are
on opposite sides of the calcium ion. In this configuration, the
THF molecules are equatorially arranged on a plane around the
cation. These local atomic arrangements are divided by our al-

Fig. 7 Distribution of the dihedrals between the C atoms of the THF
molecules and the axis spawned by the two B atoms in the case they are
axially arranged (groups 1-7 in Figure 6). F: front, L: left, R: right, B:
back THF molecule.

gorithm into 7 separated groups in the UMAP space. The main
differences between those groups lie in the orientation of the THF
molecules around the calcium.

The mean structure of the local atomic arrangements belong-
ing to each HDBSCAN group is shown in Figures 6b and 6c.
Apart from the clear difference between group 0 and the rest,
we can see how the clustering procedure succeeds in revealing
different arrangements of the THF molecules around the calcium
ion. From the visualization of the mean structures, we learn
how the COCaB dihedral angle formed by one carbon atom
adjacent to an oxygen atom in the same THF molecule and the
the Ca-B axis seems to be a relevant metric. The distribution
of these COCaB dihedral angles is shown in Figure 7. The
presence of approximately normal COCaB dihedral distributions
(in that they are unimodal) indicates that indeed there are well
defined mean COCaB dihedral angles for each group of local
atomic arrangements. Furthermore, this validates the choice of
averaging the atomic positions to obtain a mean structure, given
that the mean structures appear physically reasonable. This is
a strong indication that the clustering process has revealed and
separated normally distributed data with distinct means.

Since groups 1-7 all have B atoms arranged axially on opposite
sides of the calcium ion, then a COCaB dihedral angle of 0◦ or
180◦ corresponds to the THF molecule with its pentagonal plane
aligned with this axis, which we label as vertical. A COCaB di-
hedral angle of 90◦ or 270◦ we will label as a flat alignment of
the THF molecular plane. Angles in between these limiting cases
can be referred to as "tilted". Finally, we notice that in most cases
the THF molecules are arranged radially with respect to the Ca
ion at the center of the atomic arrangement, with the THF dipole
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Fig. 8 (a) UMAP projection of group 1 from Figure 6. The labels 0
and 1 correspond to the peaks in density of the heatmap in (b). (c)
Contribution of the two regions to the first dihedral angle of group 1 (F)
in Figure 7. (d) Dihedral of the F THF molecule with contribution from
the two high density regions.

vector antiparallel to a radial vector. In those rarer cases where
this is not so (dihedral R in 1 and 3), we can label the alignment
as non-radial.

The first thing to be noticed is that no dihedral distribution
is similar for the four THF molecules at the same time, which
indicates that each group found by the clustering procedure is
unique. All configurations with the axial boron have a mix of flat,
tilted and vertical coordinating THF molecules. Since the local
atomic arrangements have been aligned with each other, the key
differences are easily recognizable. Groups 1 and 3, both show
a flat, non-radial right THF molecule and only differ from the
orientation of the left THF which is vertical and flat respectively.
Groups 4 and 5 differ mainly from the orientation of the front and
back THF, which are tilted towards the flat THF on the left in one
case and towards the vertical THF on the right otherwise. Group
2 has alternating flat and vertical THF molecules, while groups
6 and 7 have a mixture of tilted and flat THFs. Interestingly,
we can note how there is no configuration with all four flat THF
molecules (or even two adjacent ones). Indeed, ultimately it is
sterical hindering that dictates which configurations are possible.

In some cases we notice how some of the COCaB dihedral angle
distributions have tails. For example, the dihedral angle of the
front THF molecule (F) of group 1 extends from its peak near the
flat orientation towards the vertical orientation. To investigate
this particular feature, we isolate the local atomic arrangements
of this group to perform a more detailed analysis. In Figure 8, we
can see indeed how there is a finer substructure within the UMAP
projection space that was not previously captured when we ran
HDBSCAN on the entire low-dimensional space. Instead, if we
run HDBSCAN uniquely on a portion of the UMAP projection
– namely only the data belonging to group 1 – we are able to

separate the former group into two subgroups. Indeed, there are
two regions of high data density in the projected space that can
clearly be seen by eye in the associated heatmap (Figure 8b).
By partitioning the original cluster into these two regions, and
plotting the F dihedral again, we can see how this time the
corresponding distribution is separated into two distinct groups
that appear unimodal.

As we have shown for the "coarser" clustering on the B2CaO4,
the relative population of the groups along the low energy val-
ley of coordination number 4 varies depending on the distance
to the graphite. Figure 9b shows the percentage population of
each group at the four umbrella sampled points. Again, we
can see how the electrolyte/graphite interface shows character-
istic atomic arrangements that are more dominant in its imme-
diate vicinity than in regions only 8 Å away or greater. Specifi-
cally, the indicated groups 1 and 3 are almost exclusively found
in the 5 Å data. When comparing this finding with the mean
structures in Figures 6b and 6c, we notice how these two local
atomic arrangements have one THF molecule (R) inclined so that
it is no longer radially oriented with respect to the Ca ion. Fig-
ure 9a shows representative local atomic arrangements for groups
1 (top) and 3 (bottom) and their relative orientation with respect
to the graphite surface. The local atomic arrangement is rotated
such that the non-radial THF molecule lies parallel to the sur-
face plane. The presence of the interface indeed presents a hard
physical barrier to the local atomic arrangements. Clearly, there
is some flexibility of the coordination shell around calcium that
allows the THF molecules and the borohydride to adjust their ar-
rangement to better accommodate the interface. However, the
distortion of the THF coordination sphere costs energy to the sys-
tem. These non-radial arrangements may be the origin of the
overall increase in free energy of 3.1 kT at point 1 (5 Å from the
graphite surface) with respect to the other sampled points (2-4)
within the same valley in Figure 2a.

Nonequilibrium Sampling

In a second example, we analyze the composition of the umbrella
sampled trajectory 5 from Figure 2a. This particular region in
the collective variables space is at a transition point close to the
graphite surface between two local free energy minima with
Ca-O coordination numbers of 3 and 4, respectively. This region
has a free energy only ∼ 5 kT higher than the lowest of the
two minima (at a coordination number of 3). From the radial
distribution function around calcium shown in Figure 2b (right)
we see that similarly to the previous case there are two narrow
peaks at 2.35 Å and 2.45 Å for oxygen and boron respectively.
Additionally, in the Ca-O RDF there is a second peak with lower
intensity centered at 3.75 Å. The second peak comes with no
surprise: by constraining the coordination number to be approxi-
mately 3.5, we effectively apply a bias to the system that forces
one of the THF molecules farther away from the calcium. In this
case, three THF molecules maintain a distance similar to the
configuration with coordination number of 4, while the fourth is
pushed away, giving rise to the peak at 3.75 Å. To include this
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Fig. 9 (a) Orientation of local atomic arrangements of isomers 1 and 3 with respect to the graphite layer. (b) Distribution of species of B2CaO4 with
THF carbons as a function of the distance to the interface (z). Note that isomers 1 and 3 appear almost uniquely closest to the surface.

second peak in our analysis, we decided to set the cutoff radius
of the local atomic arrangement at 4.5 Å. After isolating the
environment around the calcium, we find two distinct chemical
formulas: 70.4% of the structures are C16B2CaO4 and 29.6% are
C12B2CaO3. When multiple chemical compositions are found, a
separate clustering procedure is required for each.

Starting from the local atomic arrangements with 3 coordinat-
ing THF molecules, we identify 7 different HDBSCAN groups (Fig-
ure 10). Only groups 2 and 3, 24.1% of the total population, have
a local atomic arrangement with two axially aligned boron atoms,
while the majority have a bent boron arrangement. This trend is
opposite to what has been observed until now, where the major-
ity of the local atomic arrangements had the two boron atoms
on opposite sides of the calcium ion. Again, we see how UMAP
and HDBSCAN identify structures with different orientations of
the THF molecules.

The structures with 4 coordinating THF molecules were divided
into 10 groups and are shown in Figure 11. Also in this case, there
is a higher percentage of arrangements with adjacent B atoms
with respect to trajectories 1-4, as 40.4 % of the local atomic
arrangements belong to groups 1, 2, 3, 5 and 6 that show the
bent configuration.

Due to the fact that trajectory 5 was sampled with a biasing
potential that forces the calcium-oxygen coordination number
to be 3.5, the four coordinating THF molecules cannot be at the
same distance from the calcium as in trajectories 1-4. Indeed,
from the averaged local atomic arrangements we notice how in
all cases only one THF molecule is farther away than the others.
This is what gives rise to the second peak we observed in the
Ca-O RDF plot in Figure 2b. This also is a strong indication that
for the system it is energetically favourable to have three THF
molecules closer and only one farther away rather than multiple.

In Figure 12a we show the projection of the data from the tran-
sition state on the same UMAP embedding used to cluster the data
from trajectories 1-4 shown in Figure 6a. This was done by align-
ing the local atomic arrangements of trajectory 5 to those con-

stituting the alignment basis set of trajectories 1-4 and then us-
ing the distance/flattened distance matrix as input to the trained
UMAP pipeline. Interestingly, most of the newly projected data
lies at the edges of the existing clusters or in between clusters.
This indicates that the structures found in trajectory 5 are not a
complete departure from points 1-4. On the other hand, the ad-
ditional data could be used to better understand the link between
transition states and stable states found in the MD trajectory. As
an example, we focus on the data that has been projected between
groups 2 and 3 in Figure 6a. Isolating those data and clustering
them with HDBSCAN reveals two separate groups, one closer to
group 3 and one closer to group 2. The overlap of the former pro-
jections (groups 2 and 3 from trajectory 1-4) with the new data
is shown in Figure 12b.

A snapshot of the representative structures of each group is
shown at the right of the UMAP plot. We clearly see from the two
bottom structures that there is one THF molecule farther away
from the calcium, as expected by the umbrella sampling biasing
potential in trajectory 5. Moreover, we notice how structures be-
longing to groups that lie closer on the UMAP space have more
structural similarity. Group 1 indeed looks like group 2 with an
elongated THF and group 0 is closer to group 3. The RMSD value
between the representative structures supports this finding:

Table 1 RMSD values (in Å) between the four structures in Figure 12b

group 0 group 1 group 2 group 3
group 0 0.000 0.530 0.450 0.693
group 1 0.530 0.000 0.581 0.445
group 2 0.450 0.581 0.000 0.440
group 3 0.693 0.445 0.440 0.000

Outlook and Discussion
The main power of this unsupervised classification of local atomic
arrangements is the great help it provides to the researcher to per-
form further analysis. Since each local atomic arrangement has
been aligned to its representative and the representatives to one
another, effective visualization of the atomic structures is easy.
Due to the alignment, we can compute the mean structure of
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Fig. 10 (a) UMAP projection colored according to HDBSCAN labelling of
C12B2CaO3 local atomic arrangements of trajectory 5. Points classified
as noise are labelled -1 (black). (b) Top and (c) side view of the averaged
local atomic arrangements with chemical formula C12B2CaO3 for each
HDBSCAN group.

each group by averaging the atomic positions within each group.
Although the averaged atomic positions may not have physical
meaning (the bond lengths may not be maintained, for example),
it is helpful for visualization purposes. And, as we have seen,
the partition of the sampled data into clusters that exhibit normal
distributions for key structural characteristics indicates that the
mean structure may indeed be physical.

If the isolated clusters do emerge as normal distributions, then
a promising future direction would be to explore the principal
components of the variance in these distributions. Methods such
as principal component analysis (PCA, for example implemented
in the scikit-learn Python package51) can reveal which vibrational
modes are dominant in each group and perhaps serve as input
for a reduced dimensional model of the system free energy with
temperature dependent vibrational entropic components.

The mean or other representatives (such as exemplars) of each
group can be used as inputs for more expensive calculations of ob-
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Fig. 11 (a) UMAP projection colored according to HDBSCAN labelling of
C16B2CaO4 local atomic arrangements of trajectory 5. Points classified
as noise are labelled -1 (black). (b) Top and (c) side view of the averaged
local atomic arrangements with chemical formula C16B2CaO4 for each
HDBSCAN group.

servables that might reference experiment. For example, ab-initio
electronic structure calculations can provide details relevant to
both vibrational, NMR, and X-ray spectroscopy. The additional
ease with which we can understand subtle variations in the dis-
tribution of representative structures as a function of the local
environment (distance from an interface, for example) can also
be used in complex interfacial studies to interpret differences in
measurements that are specifically related to the interfacial envi-
ronment – be they structural, chemical, or merely orientational in
origin.

The choice of alignment algorithm within our method is not
a limitation. For the purposes of this work, we mainly used
FASTOVERLAP with its Branch and Bound method for structural
alignment including permutations and inversion. However, be-
cause of the the modular structure of the code, other alignment
algorithms could easily be included. The shape matching IRA
method was also tested56. In our experience, FASTOVERLAP has
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Fig. 12 (a) Projection of the data from trajectory 5 on the UMAP
pipeline of trajectories 1-4. Most of the newly projected data lies at
the ridges or between previously existing clusters. (b) Overlap of the
UMAP projection of groups 2 and 3 from trajectories 1-4 (Figure 6a)
and UMAP projection of data from trajectory 5 that is close to it and
has been divided by HDBSCAN in two groups (0 and 1).

proven to be more reliable in correctly aligning the structures,
with little to no misalignment. With IRA on the other hand we
observed occasionally a misalignment to the reference structure.
The probability of failure of IRA increases when the structures are
not exactly or nearly congruent. Therefore, having a complete
sample of reference structures that we try to align to is crucial
to ensure that every coordination structure has a near-congruent
representative. The best alignment results and a good trade-off in
computational performance were obtained with the Branch and
Bound alignment algorithm of FASTOVERLAP.

Aligning the structures to a subset of representatives instead of
calculating a full distance-distance matrix has the advantage of
reducing the size of the matrix that needs to be calculated. In-
stead of performing a N×N alignment problem (with N being the
total number of structures in the sample), we do a N×n alignment
(with n being the much smaller number of representatives). With
a good choice of representatives, this reduced dataset is normally
enough to differentiate the main features of the coordination en-
vironment. This leads to the fast and reliable post-processing
capabilities of our algorithm. On easily available computing re-
sources, for example a regular desktop workstation, analyzing
tens of thousands of local atomic arrangements was done within
minutes. The rapidity at which it is possible to obtain insights on

large MD datasets further promotes an iterative approach to the
analysis, where hidden relevant metrics are learned on the fly.

The advantages of this methodology are not limited merely to
unsupervised dimensionality reduction. By providing previously
calculated labels, for example, from the clustering of a training
set, it is possible to perform supervised dimensionality reduction
and metric learning. We can use this approach to train a UMAP
model on a smaller or more diverse data set (maybe the meta-
dynamics trajectory), and use the model to calculate the reduced
coordinates of new structures. Once the learned and supervised
metric reduction is done, the new data is given to HDBSCAN and
labelled according to the previous labels. Ideally, this can be im-
plemented into a pipeline to obtain on-the-fly classification of the
coordinating environment as the simulation goes on. In the worst
case, if new data presents examples that cannot be labeled – the
entirety of the collective variable space may not have been sam-
pled in the training set – then we are alerted to this deficiency
and we can retrain with this new data to augment the number
of distinct classes. We demonstrate the efficacy of the learning
method on the same trajectory of the example with B2CaO4 pre-
sented above. Out of the 48,000 structures of the four umbrella
sampling trajectory, we randomly took 3,000 as a training set.
The clustering procedure recognized the three main coordination
groups observed in Figure 3a. By saving a fitted dimensionality
reduction pipeline, composed by normal scaling of the input co-
ordinates and reduction of the space by UMAP, we can apply it to
the "new" data composed by the 45,000 remaining clusters. The
trained model was able to correctly identify 99.5% of the new
structures provided. The mislabelling only happened between
the two coordination environment where the boron is on oppo-
site sides and only the O-Ca-O angle is different. This example
shows the strength of the analysis method, where less than 10%
of the data can be used to label the remaining 90%.

Conclusions
In this work, we show how novel dimensionality reduction and
hierarchical clustering algorithms can be embedded into a work-
flow to provide an unbiased description of coordination structure
obtained through MD sampling. We isolate, classify and visual-
ize the relevant aspects of the coordination environment of Ca2+

ions solvated in an electrolyte comprising BH –
4 anions and THF

solvent in the vicinity of a graphite interface. We were able to
identify the most prevalent conformational isomers of the first
solvation shell of Ca2+ and quantitatively estimate their popula-
tion as a function of the distance from the graphite interface. The
method is trivially expandable to larger solvation environments,
that can reveal details on electrolyte performance57.

The development of new methods to process increasingly com-
plex data sets with as little human intervention as possible is cru-
cial in the rapidly expanding fields of high-throughput computa-
tional materials science and chemistry. Dimensionality reduction
and hierarchical clustering algorithms proved to be effective tools
to facilitate detailed structural analysis and to partition atomic ar-
rangements into distinct structural distributions, which are more
amenable to standard statistical analyses and comparison with
experiment.
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The efficient extraction of representative structural motifs with
distinct coordination environments and their associated variance
can greatly accelerate the interpretation of various experimental
techniques with particular sensitivity to local structure and chem-
istry. With the approach outlined in this work, measured spectra,
and their simulated analogues, may more easily be deconvoluted
into contributions from specific coordination environments or re-
gional contributions, especially from the vicinity of active inter-
faces. Analysis of existing molecular dynamics sampling data for
the interpretation of NMR chemical shifts58 or X-ray absorption
spectroscopy – either near-edge (NEXAFS/XANES)59,60 or ex-
tended fine structure (EXAFS)61,62 – will surely benefit, especially
with recent access to operando measurements with nanometer
sensitivity to chemistry at the electrode-electrolyte interface1,63.
As a step in this direction, we have just applied this unsuper-
vised learning technique to explore the formation of electroactive
species in Ca(BH4)2|THF near a graphite electrode64.
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