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Abstract

Presented here is the first demonstration of supervised discretization to ‘declutter’ multivariate 
classification data in chemical sensor applications. The performance of multivariate classification models 
is often limited by the non-informative chemical variance within each target class; decluttering methods 
seek to reduce within-class variance while retaining between-class variance.  Supervised discretization is 
shown to declutter classes in a manner that is superior to the state-of-the-art External Parameter 
Orthogonalization (EPO) by constructing a more parsimonious model with fewer parameters to optimize 
and is, consequently, less susceptible to overfitting and information loss. The comparison of supervised 
discretization and EPO is performed on three classification applications: X-ray fluorescence spectra of 
pine ash where the pine was grown in three distinct soil types, laser induced breakdown spectroscopy of 
colored artisanal glasses, and laser induced breakdown spectroscopy of exotic hardwood species. 

1. Introduction

Discretization is a set of techniques for conversion of continuous (or near continuous) variables into 
discrete variables while minimizing information loss.1, 2  In machine learning, discretization offers several 
advantages. Methods such as Classification and Regression Trees (CART) and Naïve Bayes (NB) classifiers 
only work with discrete value data.2, 3, 4 Discretization reduces the dimensionality of data and increases 
the speed of learning.5  Additionally, decision trees constructed from discretized data tend to be more 
compact and accurate than rule structures developed from continuous data.2, 5, 6  

Discretization methods can be characterized based on their algorithmic implementation; discretization 
methods are either supervised or unsupervised and are either univariate or multivariate. An 
unsupervised discretization method may set all observations within a fixed range to have a single 
nominal value whereas a supervised discretization would use class information to more optimally adjust 
the ranges prior to setting all observations within each range to a single nominal value. Univariate 
discretization methods operate on one variable at a time and do not consider information content from 
the other variables, whereas multivariate discretization methods consider relations among multiple 
variables during discretization. Additionally, parametric discretization methods require input from the 
user such as setting the number or frequency of bins, whereas nonparametric methods only use 
information from the data. A more complete taxonomy further contrasts discretization algorithms based 
on the relationships among the observed variables or between the variables and the classification model 
during the discretization process.1
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The goal of a discretization algorithm is to optimize the number of discrete intervals, defined by their 
boundaries, across the range of each continuous variable.  Many supervised discretization algorithms 
exist that take into account the relationship between class identity and the measurement variables, the 
so-called class-attribute interdependence. These algorithms optimize the discretization intervals based 
on information theory5, 7, 8, statistics9, 10, or empirical heuristics about the class attribute-
interdependence.11, 12 Class-attribute interdependence maximization (CAIM) is a supervised, univariate, 
nonparametric discretization algorithm.13, 14  CAIM is heuristic-based and strives to simultaneously 
maximize the interdependency between the class labels and the continuous value attribute (variable) 
while minimizing the number of discrete intervals.

A powerful strategy that improves classification models is using multivariate filtering methods to 
identify and remove unwanted covariance structures that limit model performance. Popular strategies 
for multivariate filtering include various algorithms for Orthogonal Signal Correction (OSC),15, 16, 17 
Tikhonov regularization18, and External Parameter Orthogonalization (EPO)19, 20.  OSC seeks to 
successively identify and remove the largest direction of variance in the variable space that is orthogonal 
to the property of interest in the sample space. OSC was designed for calibration applications but can be 
appropriated for classification models. By contrast, EPO was designed for classification applications. EPO 
envisions the ideal class to be a collection of identical points in the variable space; any deviation from 
the class mean is viewed as ‘clutter’ to be removed. Consequently, EPO performs Principal Component 
Analyses (PCA) on the within class variance to determine which variance to remove from the variable 
space. For both EPO and OSC, the number of components removed is determined by the analyst. If all 
possible components worth of variance are removed to declutter the classes, EPO reduces to an 
Extended Mixture Model filter.21  Tikhonov regularization augments the data collection with a small 
number of ‘clutter’ spectra that span the interferent space to create a model that is desensitized to 
those sources of variance.              

This work presents the first demonstration of supervised discretization to ‘declutter’ multivariate 
classification data in chemical sensor applications. Although supervised discretization has been 
successfully used to denoise data prior to analyses, the ability of discretization to mitigate the 
deleterious effects of uncontrolled chemical and instrumental effects (e.g., moisture, temperature, or 
sample matrix composition) has not been explored to date. Through three examples of classification by 
spectra collected on real-world samples with field portable instrumentation, supervised discretization 
‘declutters’ classes are shown to be superior to the state-of-the-art EPO.  Supervised discretization 
presents a more parsimonious model with fewer parameters to optimize and is, consequently, less 
susceptible to overfitting and information loss. The comparison of supervised discretization and EPO is 
performed of three classification applications: X-ray fluorescence spectra of pine ash where the pine 
was grown in three distinct soil types, laser induced breakdown spectroscopy of colored artisanal 
glasses, and laser induced breakdown spectroscopy of exotic hardwood species. 

2. Class attribute interdependence maximization (CAIM)

Input data for the CAIM algorithm takes the form of a data matrix and the class vector. When 
discretization is initiated, the algorithm iteratively cycles through each variable, , of the data matrix, Fi

sorting it in descending order, then calculates the minimum value ( ), the maximum value ( ), and 𝑑0 𝑑𝑛
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midpoints (B) between each pair of successive observed values. This parsing provides the data needed 
to establish a single interval discretization scheme (D) for the variable that covers the full range of the 
data (i.e., , which is the mathematical set spanned by ). Successive iterations of D will Dinitial {[𝑑0,𝑑𝑛]}
parse the span of the variable into contiguous segments (e.g., D3 refers to the set of intervals 

 ). After these parameters are established, the continuous variable  is {[𝑑0, 𝑑1],  (𝑑1,  𝑑2],  (𝑑2,  𝑑3]} Fi

transformed into a quanta matrix (Table 1). Features of a quanta matrix include rows that correspond to 
the S unique classes in the input dataset (C), columns that correspond to the n intervals in the 
discretization scheme, the final row that is the sum of each column or the number of objects that belong 
to each discretized interval, the final column that is the sum of each row or the number of objects that 
belong to each class, and the bottom right corner of the quanta matrix that is the total number of 
objects or samples in the original dataset.

Table 1: The quanta matrix is the basis for visualizing multiple different supervised discretization 
schemes including CAIM.  

IntervalClass
[d0, d1] … (dr-1, dr] … (dn-1, dn]

Class Total

C1 q11 … q1r q1n M1+

… … … … … … …
Ci qi1 … qir qin Mi+

… … … … … … …
Cs qs1 … qsr qSn MS+

Interval
Total

M+1 … M+r … M+n M

A score is calculated from the quanta matrix to assess the value of the discretization. The quanta matrix 
can be used to determine many different scoring metrics: Shannon’s entropy, Class-Attribute 
Information (INFO)22, Class-Attribute Mutual Information14, Class-Attribute Interdependence 
Redundancy (CAIR)23, 24, and Class-Attribute Interdependence Uncertainty (CAIU)14. Many of these 
metrics are related; for example, CAIR is the ratio of Class-Attribute Mutual Information and Shannon’s 
entropy whereas CAIU is the ratio of INFO and Shannon’s entropy.   

In this study, the CAIM heuristic13, 14,

(Eq. 1)𝐶𝐴𝐼𝑀(𝐶,𝐷│𝐹) =
∑𝑛

𝑟 = 1

(𝑞𝑖𝑟)
𝑚𝑎𝑥

2
   

𝑀 +𝑟

𝑛

is used.  In Eq. 1, the algorithm iterates through all n intervals in the quantum matrix where r = 1, 2, … n. 
The term  is the square of the maximum qir value in the rth interval. The term M+r is the total (𝑞𝑖𝑟)𝑚𝑎𝑥

2

number of samples that fall within the interval r for a particular variable. In this manner, CAIM seeks to 
make each interval as pure as possible with respect to the assigned classes. The squaring of  (𝑞𝑖𝑟)𝑚𝑎𝑥

serves to reward the algorithm for having fewer well-populated intervals over smaller sparsely 
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populated intervals. The CAIM score is initially determined for Dinitial. For each successive iteration, 
provisional CAIM scores are determined from iteratively creating provisional boundaries between 
sequential continuous observations for a particular variable. The largest CAIM score from all the tested 
provisional boundaries is compared to the CAIM score from the previous iteration. If the new CAIM 
score is greater than the old CAIM score, the iterative process continues with D updated, unless the set 
maximum number of boundaries has been reached. Generally, the maximum number of inner 
boundaries is set to be the number of classes. If the new CAIM score is not greater than the old CAIM 
score, the algorithm terminates for this variable and the previous D is retained. This process is then 
repeated for each variable of the original dataset until all variables are discretized with their respective 
discretization schemes. 

The CAIM heuristic (Equation 1) normalizes the maximum value in a given interval (column) relative to 
the total instances that occur in that interval, then sums this metric across all intervals of a given quanta 
matrix before normalizing by the number of intervals in the given discretization scheme. In this way, the 
CAIM heuristic prioritizes information that distinguishes classes across intervals, or in other words, the 
CAIM heuristic is increased when one interval, or a subset of the intervals, exclusively describe 
information from a single class. Furthermore, the CAIM heuristic then prioritizes discretization schemes 
with fewer intervals by penalizing the CAIM heuristic through normalization of the class attribute 
interdependency metric (numerator) by the total number of intervals in a given scheme, that is, as the 
number of intervals increases, the CAIM heuristic decreases.

CAIM discretization, as opposed to other supervised discretization strategies, was chosen because CAIM 
tended to provide better performance metrics (e.g., accuracy with minimum number of rules) than 
other methods for parsing individual variables based on provided classes. Of note, the intended use of 
discretization here is conceptually different than previously published applications where CAIM was 
compared to other methods. First, here discretization is used as a preprocessing step for a partial least 
squares – discriminant analyses (PLS-DA) model, not as the final step in analyses. Second, discretization 
in this application is generally limited to two-way classifications in service to a PLS-DA decision tree or 
binary classification models. In traditional discretization literature, test applications would have three or 
more target classes. Consequently, the open question of which discretization criteria performs best with 
PLS-DA, support vector machine – discriminant analyses (SVM-DA), or other algorithms is not addressed 
in this study.

3. Experimental
3.1.  Data analyses

All data were imported and analyzed in the Matlab (Matlab, Natick, Massachussetts, USA) operating 
environment. The CAIM discretization algorithm was written by Booksh at the University of Delaware 
based on the papers by Kurgan and Cios.13, 14 Classification by PLS-DA and SVM-DA were performed in 
the PLS Toolbox (Eigenvector Inc., Chelan, Washington, USA).  Additionally, the automatic asymmetric 
least-squares (Whittaker) filter25, Savitzky-Golay26, and external parameter orthogonalization (EPO)19,20 
methods were all used within the PLS toolbox.

3.2. X-Ray Fluorescence (XRF) spectra of pine ash
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Live pine needles were collected from Pinus ponderosa in public open spaces across a narrow 
geographic region of the Colorado Plateau near Flagstaff, Arizona, USA. Trees were identified as growing 
in soil atop one of three well-defined parent rock archetypes: recent basalt/andesite volcanic rock, 
Kaibab Limestone, and Moenkopi Formation.  The needles were cut into ~1 cm lengths and dry ashed 
over a hydrogen flame at 600 °C. 

The pine needle ash was consequently pressed into a pellet for better handling while collecting XRF 
spectra. A base layer of 2.6 grams of confectioners’ sugar was added to the cavity of a 13-mm stainless 
steel die press assembly on top of the polished face of a pressing disc and compacted. Approximately 
0.5 g of ash was placed on top of the binder followed by the second pressing disc. The die assembly was 
placed into the VivTEK® (COL-INT TECH, USA) 12-ton, 2-pole hydraulic press and subjected to 10 tons of 
force for 30 sec. Additionally, sucrose blanks were also prepared to account for any potential 
background caused by the inclusion of trace contamination. However, analysis of the blanks indicated 
that sucrose binding does not impart any additive noise to the background and thus it was deemed 
unnecessary to continue accumulating data to provide for the subtraction of the backing matrix. XRF 
measurements were performed using an Olympus X-ray fluorescence analyzer Vanta C series running in 
the three beam GeoChem mode (50 kV). Acquisition method timings were adjusted to perform 
measurements using each of the 10-kV, 40-kV, and 50-kV beams for 60 sec each and processing by 
fundamental parameters. The instrument’s calibration was routinely checked using manufacturer 
supplied calibration materials to ensure that the instrument’s calibration was within the stated values 
included with the NIST certificate of calibration. Example raw spectra are presented in Supplemental 
Information SI1.

Data were pretreated by application of a Savitzky-Golay algorithm (7 point smooth, quadratic, first 
derivative) to minimize the effect of the XRF baseline on the subsequent analyses. A rough variable 
selection was performed by visually selecting ranges of energies spanning each of the 17 XRF peaks from 
the ensemble spectra; only the regions with an XRF signal were used. This reduced the length of each 
XRF spectrum from 2049 unique channels to 441 channels. Each reduced spectrum was normalized to 
unit area to account for variability in ash loading and sample placement across all collected spectra. 

All replicate spectra from approximately 1/4th of the samples from each class were randomly selected 
and removed to form a validation set. The 129 spectra in the training set were composed of triplicate 
XRF spectra from ashes of 8 trees grown in soil derived from the Kaibab Limestone (hereafter Kaibab 
samples), 16 trees grown in soil derived from the Moenkopi Formation (hereafter Moenkopi samples), 
and 19 trees grown in basalt/andesite soil. The 39 validation set spectra were collected in triplicate from 
ashes of 2 trees grown in Kaibab soil, 5 trees grown in Moenkopi soils, and 6 trees grown in 
basalt/andesite soil.

3.3. Laser Induced Breakdown Spectroscopy (LIBS) Spectra of colored glasses

Soft glass (coefficient of expansion 104) samples were purchased from Devardi Glass (Sheridan, Oregon, 
USA) of the type appropriate for lampworking projects. The glasses were a “set of mixed reds” of various 
hues, both opaque and transparent, each approximately 25 cm long and 6 – 10 mm in diameter. 
Inspection of the 21 rods received and comparison to the Devardi catalog color chart indicates that the 
set contains 2 duplicate- and 1 triplicate-colored rods. Although other rods might be duplicate colors, 
they were not readily identified by visual inspection. Prior to analyses, the rods were designated ‘A’ 
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through ‘U.’  It was determined by visual inspection and knowledge of sample provenance prior to 
analyses that ‘I’/’G’ and ‘K’/’S’ were duplicate pairs and ‘E’/’J’/’R’ was a triplicate pair. Consequently, the 
set of 21 rods spans as many as 17 unique colors.

LIBS spectra were collected with a SciAps Z300 hand-held LIBS analyzer. Samples were aligned by 
manually holding each glass rod in the v-shaped alignment groove on the Z300 faceplate. Twelve spectra 
were collected from random locations on each glass rod. Three spectra of each rod were collected in 
one sitting. Nine spectra on rods ‘A’ through ‘R’ were subsequently collected at a later date. The 
remaining 9 spectra of rods ‘S’ through ‘U’ were collected in a single sitting at a different date. 
Consequently, each set of 12 spectra spans at least 2 collection periods. In total, 252 spectra were 
obtained for this data set. Example raw spectra are presented in Supplemental Information SI2.

The LIBS baseline contribution was minimized by a Savitzky-Golay algorithm (7-point window, quadratic 
fit, and first derivative).  The derivatized signal at every wavelength was transformed by applying the 
square root of its absolute value; this normalized the error distribution across peaks of vastly different 
scale. Each spectrum was then normalized to unit area to account for efficiencies in placing the sample 
on the LIBS analyzer. Based on the mean spectra of the entire data collection, a threshold value of 0.004 
units was determined to separate ‘baseline’ from ‘LIBS’ channels. In this manner the number of channels 
employed in each spectrum was reduced from 23,431 to 8,169.  

3.4. LIBS spectra of Dalbergia

Collection and preprocessing of the Dalbergia spectra have been previously discussed.27LIBS spectra 
from 90 Dalbergia samples were collected and provided by the U.S. Forest Service. Samples consisted of 
seven classes of Dalbergia hardwoods and two classes of non-Dalbergia hardwoods. For each of the nine 
classes, one LIBS spectrum from approximately 10 distinct exemplars were recorded with a SciAps Z-
200C LIBS analyzer. 

The spectral baseline was removed by an asymmetric least squares (Whitaker) filter ( = 100; P = 0.001) 
followed by a first derivative Savitzky-Golay (2nd order, 15 points) smoothing to help remove any residual 
baseline and better eliminate high-frequency noise. Each variable was normalized by taking the square 
root of the absolute signal intensity following baseline removal. Variables were down selected from 
17,431 to 489 by removing all variables with an average intensity less than 0.5 units. All remaining 
variables were then autoscaled ( = 0,  = 1) prior to analyses.   The 90 spectra were organized into 
three different training and validation set combinations of 72 training samples and 18 validation samples 
by bootstrapped Latin partitions.28 Each combination consisted of two samples from each class in the 
validation set.  

4. Results and Discussion
4.1. Classification of pine ash

The challenge for determining original soil type from tree ash lies in the large variability of the XRF signal 
within each soil class. Comparing the mean ash spectrum from the 30 ‘Kaibab’, 63 ‘Moenkopi 
Formation’, and 75 ‘basalt/andesite’ samples indicates a unique XRF signature from each soil of origin 
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(Figure 1a). Overlaying the 95% confidence interval for a sample from each class as determined by the 
standard deviation of all spectra in a class demonstrates how the natural spread of the data within a 
class overlaps the mean spectra of other classes (Figure 1b-d). Concurrently, calculation of variance 
between the means of the three classes, the mean variance within each of the three classes, and the 
mean variance of the triplicate spectra from each ash pellet shows that the largest source of variance is 
attributed to the natural spread of the spectra within a class (Table 2, column 2). 

Figure 1. Comparison of the average mean-centered XRF spectra for ash from pine trees grown in soil derived from 
Kaibab Limestone (green), Moenkopi Formation (red), and basalt/andesite (blue) shows that the spectral profiles 
for these three classes are highly overlapped, yet each class has a distinct spectral signature (A). Including the +/- 2 
standard deviation (sd) error bars at each kEV demonstrated that the within class variability is greater than the 
between class variability; in each case the confidence limits extend beyond the average spectrum for the other 
classes (B – D).   
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Table 2: Effect of External Parameter Orthogonalization (EPO) decluttering on distribution of variance 
across the pine ash data set and performance of Principal Component Analyses (PCA) and K-Nearest 
Neighbors (K-NN) modeling.

Treatment Un-decluttered EPO (1 Factor) EPO (6 Factors) EPO (Full Rank)
Variance of class 
means

2.48x10-4 (32.7%) 2.11x10-4 (48.8%) 9.66x10-6 (35.0%) 1.33x10-6 (58.4%)

Mean variance within 
a class

5.08x10-4 (67.3%) 2.21x10-4 (51.1%) 1.78x10-5 (64.5%) 4.33x10-7 (19.0%)

Mean variance of 
replicates

1.02x10-6  (0.013%) 6.56x10-7 (0.15%) 1.37x10-7 (0.50%) 5.15x10-7 (22.6%)

PCA # PC: 8
Cum Var: 95.2%

# PC: 7
Cum Var: 90.9%

# PC: 3
Cum Var: 44.4%

# PC: 3
Cum Var: 15.0%

K-NN(1) Misclassified 
(129:39 split)

0 Cal; 11 Pred 0 Cal; 13 Pred 13 Cal; 10 Pred 62 Cal; 12 Pred

EPO was conceived to reduce the ‘clutter’ within each class, shifting the distribution of variance from 
‘within classes’ to ‘between classes’ and hence improving both the precision and accuracy of 
classification models. For the XRF ash data, EPO generally accomplishes the desired effect of minimizing 
the ‘within classes’ variance relative to the ‘between classes’ variance. Increasing the number of factors 
in EPO pretreatment increases the percent of variance ‘between classes’ from 32.7% with no EPO, to 
48.8% with a 1-factor EPO decluttering, to 58.4% with a full EPO decluttering (Table 2, row 1). However, 
the decrease to 35.0% when using a 6-factor EPO treatment presages a limitation of EPO-based 
decluttering. EPO removes all variance that is colinear with the data clouds of each class. The removal of 
variance is apparent in the decrease of variance in all three categories (Table 2, rows 1 – 3). However, a 
successful EPO application assumes that the sub-space of ‘between class’ variance is largely orthogonal 
to the sub-space of the removed ‘within classes’ variance.  When this assumption fails to hold, a 
significant portion of the discrimination ‘between class’ variance is removed and the proportion of 
‘between class’ variance may decrease. Note in this example, after a large portion of the ‘between class’ 
variance is removed, the principal component (PC) space of the data decreases from 7 or 8 PCs to only 3 
PCs (Table 2, row 4) and K-Nearest Neighbors (k-NN) can no longer reliably classify samples in the 
training set. The number of training set misclassifications increases from 0, to 13 with a 6-factor EPO, to 
62 with a full-factor EPO decluttering (Table 2, row 5).   

Using PLS-DA for classification of pine ash by original soil type highlights the potential benefit of 
decluttering with EPO and the concern for overfitting when decluttering with EPO. In this application, 
PLS-DA models for three one class versus all other classes were observed to perform better than a single 
flat PLS2-DA classifier with either no decluttering or with EPO decluttering. The number of factors in 
each model was based on the cross-validated class error for the training set by removing 10% of the 
spectra at each split.  Comparing the validation set predictions across multiple levels of decluttering 
(Table 3) shows that either no decluttering by EPO or decluttering by a 1-factor EPO model yields the 
best results. No decluttering was needed to correctly classify all 6 Kaibab samples, each with greater 
than 90% probability. However, when a 1-factor EPO treatment was applied, 3 Moenkopi samples were 
incorrectly identified as Kaibab with 80% to 90% probability.  Further increasing the number of EPO 
factors results in 3 Kaibab samples not identified as being classified in the Kaibab set. No decluttering 
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and 1-factor EPO models perform comparably for the Moenkopi samples; the models only slightly differ 
in their probabilities of classification. Similarly, the un-decluttered, 1-factor EPO and 6-factor EPO all 
correctly classify the basalt/andesite samples with EPO yielding classification results at higher 
probabilities. 

Table 3: PLS-DA Classification of XRF ash data with no decluttering (Base), External Parameter 
Orthogonalization (EPO) decluttering, and CAIM discretization decluttering for 6 validation samples 
derived from the Kaibab Limestone, 15 validation samples derived from the Moenkopi Formation, and 
18 basalt/andesite validation samples. Every model was constructed as a target class versus all other 
classes as a single group except for the final column which is a flat CAIM discretization decluttered 
classifier.

Sample Model Confidence Base EPO(1) EPO(6) EPO
(All)

CAIM
(1 group versus 
2 groups)

CAIM
(3 Groups)

‘Kaibab’ K vs. 
(M-K & B/A)

Correct
Incorrect
False Positive
Not Classified

6
0
0
0

6
0
3
0

3
3 
3
0

2
4
0
0

6 
0 
0
0

6 
0
1
0

‘Moen-Kopi’ M-K vs.
(K & B/A)

Correct
Incorrect
False Positive
Not Classified

12
3
6
0

12
3
6 
0

9
6
6
0

7
8
3
0

12
3  
3
0

9 
6 
3
0

‘Basalt / 
Andesite’

B/A vs.
(K & M-K)

Correct
Incorrect
False Positive
Not Classified

18
0
0
0

18
0
0
0

18
0
0
0

16 
2
1
5

18
0
0
0

18
0
0
0

‘Kaibab’ and
‘Moen-Kopi’

Hierarchical.
Remove B/A
Classify K vs. M

Correct
Incorrect
False Positive
Not Classified

15
6
0
0

15
6
0
0

16
5
0
0

13
2
0
6

19
2
0
0

Principal Component Analyses (PCA) plots illuminate how the application of EPO for decluttering can 
succeed or fail, dependent on the degree of decluttering. From the perspective of fit to the training set, 
increasing the degree of EPO decluttering condenses samples from each of the classes nearer to the 
class mean (Figure 2 At, Bt, and Ct). However, EPO can eliminate systematic variance that is useful for 
differentiating between classes, leaving only spurious correlations to define the classes. This process can 
be seen in the class locations of the validation sets (Figure 2 Av, Bv, and Cv) relative to the classes in the 
training sets.  A 1-factor EPO sharpens the classes relative to the not decluttered data while maintaining 
colocalization of the validation set. However, the full-rank EPO largely leaves random correlations to 
define classes; consequently, the validation set exhibits greater spread across the PC space. As expected, 
the 6-factor EPO and full-rank EPO models perform much worse than the models with weaker 
decluttering.
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Figure 2. PCA scores plots of four XRF ash training sets (_t) and validation sets projected into the training 
set space (_v) for the untreated data (A_), data following 1-factor EPO (B_), data following full-factor 
EPO (C_), and data following CAIM discretization (D_). Samples were from three classes: soil derived 
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from Kaibab Limestone (red diamonds), soil derived from Moenkopi Formation (green squares), and 
basalt/andesite soil (blue triangles).

CAIM discretization of the pine ash XRF data results in better model performance than EPO decluttering 
(Table 3, column 8 v. Table 3, columns 4-7). By design, the CAIM algorithm strives to discretize each 
variable to be aligned with the known training set classification. Although CAIM was conceived to help 
normalize the variance within each class, the method has the added benefit of simultaneously reducing 
clutter within each of the classes. Three modeling strategies were investigated with CAIM discretization. 
It is observed that CAIM works best when discretizing for a binary classifier; in this case, the model seeks 
to distinguish one target class from all other classes combined as a group. As set of binary classifiers, 
CAIM outperforms both undecluttered PLS-DA and EPO(1) filtered PLS-DA, returning half the number of 
false positives and more samples classified with greater than 90% probability (Table 3, column 8 versus 
Table 3, columns 4-5).

CAIM filtering also performs better than no decluttering and EPO(1) filtering when the data are modeled 
as a hierarchical tree of binary classifiers (Table 3, last row). All methods can distinguish basalt/andesite 
from the other soils with 100% selectivity and sensitivity. However, when distinguishing between Kaibab 
and Moenkopi, CAIM had only 2 misclassifications out of 24 samples while the other two methods each 
had 6 misclassifications. 

CAIM discretization avoids the issue of losing systematic variance needed for classification, unlike EPO 
decluttering (Figure 2 Dt and Dv). With CAIM discretization the distributions of the classes, in both the 
training and validation sets, are sharper and better resolved than no decluttering or EPO filtered classes. 
Comparing the EPO results (Figure 2C) to CAIM results (Figure 2D), it is clear that samples in the 
validation set lie outside of the boundaries of the training set in the PC space for EPO, but not for CAIM. 
This is especially evident in the training and validation set locations for the Kaibab Limestone (red) 
samples and basalt/andesite (blue) samples. The disparity in training vs validation set locations in the PC 
space is evidence of overfitting during EPO decluttering. 

One caveat to the use of CAIM is that CAIM often performs worse when more than two functional 
classes are in the model. Applying CAIM here to resolve all three classes in a single flat model resulted in 
twice the number of misclassified samples than with a set of binary classifiers (Table 3, column 9).  With 
binary classifier models, a unique set of discretization intervals is found to maximize Equation 1 for each 
model. With three or more classes, CAIM is less likely to derive a discretization scheme that is optimal 
for every class.   

4.2. Classification of colored glasses

Preliminary analysis of the variance sources within this data set indicates a high probability for 
successful classification. Treating each rod as a unique class prior to elimination of uninformative 
variables, the average variance within the 12 replicates from each glass rod is only 22.1% of the variance 
among the observed class means. Eliminating the 15,262 uninformative variables eliminates only 0.0012 
units of variance observed both from within and between classes. This reduces the mean interclass 
variance to 20.7% of the total variance with 79.3% of the total variance being between the classes 
(Table 4, column 2). Use of Principal Components Analyses (PCA) and Hierarchical Cluster Analyses 
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(HCA) presents a visual snapshot of the observed class overlap for the 21 glass rods (Figure 3a and 3b). 
Despite of this overlap, a 2 PC model describes ~80% of the total variance and a K-Nearest Neighbors 
with K = 1 (K-NN-1) model (removing 1/4th of each class to form a test set) accurately classifies all but 1 
sample in each of the training and test sets (Table 4, rows 3 and 4). 

Table 4: Effect of External Parameter Orthogonalization (EPO) decluttering on distribution of variance 
across the red glass data set and performance of PCA and K-NN modeling.

Treatment Undecluttered EPO(1) EPO(6) EPO(Full Rank)
Variance of class 
means

0.0775 (79.3%) 0.0670 (95.7%) 0.0544 (98.7%) 0.0127 (99.9%)

Mean variance of 
replicates

0.0161 (20.7%) 0.00285 (4.3%) 0.000724 (1.3%) 0.0000229 (0.2%)

PCA # PC: 7
Cum Var: 82.2%

# PC: 6
Cum Var: 80.6%

# PC: 5
Cum Var: 81.6%

# PC: 5
Cum Var: 79.8%

KNN Misclassified 
(9:3 split)

1NN: 1 Cal; 1 Pred
3NN: 5 Cal; 1 Pred

1NN: 2 Cal; 1 Pred
3NN: 7 Cal; 1 Pred

1NN: 1 Cal; 1 Pred
3NN: 5 Cal; 1 Pred

1NN: 0 Cal; 0 Pred
3NN: 0 Cal; 0 Pred

Construction and application of one class versus all other classes models for each of the three classes 
with test-set samples shows that this is, in truth, an easy classification problem for PLS-DA (Table 6). The 
models perform with 100% success using four factors without the need for EPO. Similarly, the models 
perform well after application of EPO with a small basis set of principal components (<6 PC) to declutter 
the data. However, when full-rank EPO is applied to declutter, most of the test-set samples are far 
enough from the mean of the training set samples that validation-set samples are deemed 
‘indeterminate’ in assignment. By comparison, discretization of the data leads to a more parsimonious 
PLS-DA model with 100% accuracy.  PLS-DA with discretization reduces the required complexity of the 
model from four factors to only one factor.  

Table 5:  PLS-DA results for classification of four red glass samples with different External Parameter 
Orthogonalization (EPO) and CAIM discretization strategies for spectral pretreatment. 

Sample Undecluttered EPO (1PC) EPO 
(6PC)

EPO
(Full 

Rank)

CAIM

Factors: 4 4 4 4 1
Correct 12 12 12 0 12
Incorrect 0 0 0 0 0
Not Classified 0 0 0 12 0

‘G’

False Positives 0 0 0 0 0
Factors: 5 4 4 3 1
Correct 24 24 24 1 24
Incorrect 0 0 0 0 0
Not Classified 0 0 0 23 0

‘J’ and 
‘R’

False Positives 1 1 0 0 0
Factors: 4 4 4 4 1‘S’
Correct 12 12 11 2 12
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Incorrect 0 0 1 0 0
Not Classified 0 0 0 10 0
False Positives 0 0 0 0 0

The failure of PLS-DA to successfully classify the training set glasses with full-rank EPO highlights the 
problems associated with EPO. EPO is designed to reduce the intra-class variance, and Tables 2 and 5 
show EPO performs well at this task. However, a reduction in inter-class variance may be an unintended 
consequence. In the ash data, the intra-class variance is reduced by three orders of magnitude while the 
inter-class variance is reduced by two orders of magnitude when progressing from un-decluttered data 
to full-rank EPO. By way of comparison, applying full-rank EPO to the glass data also reduces the intra-
class variance by three orders of magnitude, but the inter-class variance is only reduced by a factor of 5. 
Much less inter-class variance is lost with EPO on the glass data than with EPO applied to the ash data.  
This would explain why EPO on the ash failed with fewer EPO factors than when EPO eventually fails on 
the glass. Given that full-rank EPO does fail when decluttering the glass data, a migration of the test set 
within the PC space of the decluttered training set space is evident in the glass data (Figure 3) as it is in 
the ash data (Figure 2C)

Figure 3: Score plot of the red glass training set (A) and test set (B) set in the two principal component 
(PC) space defined by the training set.  The test set is comprised of 4 glass rods that are duplicated 
colors to glass rods in the training set (e.g., rods ‘I’ and ‘G’ are purported to be the same color by the 
manufacturer). Arrows are set to the exact same location in each plot and serve as a reference to 
visualize the slightly different locations of the training and test classes following application of full-rank 
External Parameter Orthogonalization (EPO). 

Discretization both avoids the concern of optimizing the number of EPO factors and potentially offers a 
more parsimonious PLS-DA model. Parsimonious models generally perform better than more 
complicated models because the higher factors generally have a worse signal-to-noise ratio than the 
initial factors. PLS-DA, with or without EPO, required four factors to successfully classify any one of the 
glass colors. However, with discretization, only a 1-factor PLS-DA model is required (Table 6). Score plots 
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of the discretized data illuminate how discretization enhances the ability of PLS-DA to differentiate 
among classes (Figure 4). For each model, a set of discretization rules, D, is adopted to more optimally 
distinguish between the target class and all other classes for every variable. Discretization inherently 
declutters the data while separating the target class from most of the other observations. In the case for 
the glasses, a 7-PC model is still needed to describe all the variance within the training set following 
discretization, regardless of the target class. However, within the 7-PC space are clear planes of 
demarcation between the target class and other aggregated classes.  For example, for the determination 
of class ‘K’/’S’, the one-dimensional demarking is best seen in a score plot of PC 5 versus PC 6 (Figure 
4A). However, the separation is evident in other PCs also. Similar plots show the same effect for the 
other target classes. Recall that a unique set of discretization rules is determined for each target class 
based on the training set and then apply these same rules to future samples; hence, the discretization 
scheme inherently enhances the development of classification models. PLS-DA can exploit these 
differences with a simple 1-factor model.

Figure 4:  Score plots for the red glass training set following discretization in preparation for one class 
versus all other classes  PLS-DA model for training set glasses ‘K’ (A), ‘E’ (B), and ‘I’ (C). These models 
correspond to test glasses ‘S’, ‘J’ and ‘R’, and ‘G’, respectively. The target training glass is green while the 
other aggregated classes are red.  While a 7 PC model is needed two describe all the systematic variance 
in the discretized, the 2-PC score plot that best shows separation is presented here.  

Discretization can also be applied to enhance PLS-DA models in decision trees. For example, a 
classification problem may be better approached by a series of two-way classifications in a hierarchical 
decision tree as opposed to a set of one class versus all other classes models.  In these situations, each 
nominal class would be assigned to one of two separate super groups based on their proximities in a 
higher dimension space. Discretization rules would be optimized to differentiate among the super 
groups for each variable. In the case of the glass data, there is a natural break splitting the 17 classes 
into a 7-class super group and a 10-class super group. These two groups of classes are significantly 
better resolved following discretization (Figure 5). In fact, the potential for a second binary split, 
differentiating among each group in the upper and lower halves of the plot, is evident. This would 
further divide the 10-class super group (red) into a 6-class and a 4-class super group, respectively. 
Similarly, the 7-class super group could be further split into a 4-class and 3-class group.  
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Figure 5:  Score plot following discretization to split the 17-class problem into a 7-class group (green) 
and a 10-class group (red) as the first step of a potential hierarchical decision tree approach. 

4.3.  Classification of Dalbergia

Analysis of the Dalbergia data set by PLS DA following supervised discretization yielded a sensitivity of 
0.98 and a selectivity of 0.98 (Table 6). This performance is comparable to that observed from PLS-DA 
using external parameter orthogonalization where the sensitivity was also 0.98 but the selectivity was 
0.99. Each of these strategies resulted in one sample from the three prediction sets that was misclassified. 
With discretization, one sample from Class 5 was miss-assigned to Class 3, whereas with EPO one sample 
from Class 3 was assigned to Class 7. However, with discretization, samples were ambiguously assigned in 
six separate incidences. For example, in the validation set, three samples from Class 1 were both 
accurately assigned to Class 1, but also ambiguously identified as members of Class 4, Class 6, and Class 
9.

Table 6: Performance of PLS-DA with CAIM discretization on the classification of Dalbergia samples 
analyzed by LIBS.

Class Model PCs Validation
Set 1

Validation
Set 2

Validation
Set 3

Sensitivity Selectivity

1 1 vs (2 & 4)a 2 1,1 1,1 1,1 1.00 1.00
2 2 vs (1 & 4)a 4 2,2 2,2 2,2,4 1.00 0.98
3 3 vs 5 b 2 3,3 3,3,5 3,3 1.00 0.98
4 4 vs (1 & 2)a 3 1,4,4 4,4 1,4,4 1.00 0.96
5 3 vs 5 b 2 5,5 5 5.5 0.83 1.00
6 6 vs 9 vs 1-5 c 3 6,6 6,6 1,6,6 1.00 0.98
7 7 vs 8 vs all c 3 7,7 7,7 7,7 1.00 1.00
8 7 vs 8 vs all c 3 8,8 8,8 8,8 1.00 1.00
9 6 vs 9 vs 1-5 c 3 9,9 2,9,9 1,9,9 1.00 0.96

TOTAL: 0.98 0.98
a. Flat classification
b. Binary classification
c. One-versus-all others classification
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A four-level hierarchical decision tree was constructed to best classify the nine species of exotic 
hardwoods (Figure 6A). This tree was constructed to perform as many classifications as possible at each 
level. For example, at the first level the decision is made between classifying a sample as belonging to 
Class 7, Class 8, or the set of all other classes. Because overall sensitivity of a particular classification is 
the multiplicative factor of sensitivities at every prior decision node, classification is generally viewed to 
be more reliable at the top of the tree than at the bottom, and that the net sensitivity decreases as the 
decisions move down the tree. Consequently, a flat classifier was used at each node provided that it 
performed as well or better than a series of two-way classifiers. This was the case at first two levels of 
the decision tree. However, at the third level a flat classifier could not distinguish between classes one, 
two, and four or between classes three and five; the best model could only differentiate between these 
two groups of classes. Differentiation among each of these groups was then performed on lowest, final 
level of the decision tree.

Figure 6: Hierarchical decision trees used for speciation of nine Dalbergia classes using PLS-DA with (A) 
discretization to remove the effect of clutter and (B) external parameter orthogonalization (EPO) to 
remove the effects of sample clutter. The numbers inside each circle indicate the number of factors in 
the PLS-DA model at each decision node.
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The analysis of LIBS spectra from wood samples proved to be a particularly challenging application for 
discretization. The LIBS spectra have two sources of variance that together serve to frustrate the 
discretization algorithm. First, the overall efficiency of collecting a LIBS spectrum varies greatly from 
location to location due to differences sample density and moisture content. Thus, the LIBS signal of two 
different classes at a particular wavelength that may be well separated in intensity under ideal 
circumstances, may become confounded as the overall LIBS intensity varies. Such a problem could be 
corrected by normalizing each spectrum to unity. Spectral normalization was attempted and not proven 
beneficial for this application. There appears to be a second source of non-probative variance in the LIBS 
spectra that originates from either surface contamination or the history of the wood samples. This is the 
type of variance that is appropriately removed by external parameter orthogonalization and would justify 
why EPO worked better for this data set, in general, than did discretization.

Comparing the hierarchical decision tree optimized from the discretized data (Figure 6A) to the 
hierarchical decision tree optimized for EPO-based clutter removal in the previous study27 (Figure 6B) 
provides valuable insight into the roles that both discretization and EPO can play in developing the ‘best’ 
hierarchical model for any given application; a truly optimized method would rely on discretization, EPO, 
or other methods as appropriate to construct compact decision tree possible. For example, discretization 
and EPO each worked relatively better than the other for separation of different classes from the bulk of 
the data. Discretization rapidly resolved Class 7 and Class 8 but struggled with resolving Class 3 from Class 
5. On the other hand, EPO was able to resolve Class 3 from Class 5 with better success higher up the 
decision tree than with discretization, whereas Class 7 and Class 8 were better resolved farther down the 
decision tree than with discretization.

The ability to rely on the different strengths of each strategy to reduce clutter and improve classification 
is particularly beneficial to the ultimate goal of the Dalbergia classification project. Dalbergia is an 
endangered exotic hardwood that is subject to the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES)29 that restricts logging, export, and import of different rosewood 
species. Consequently, multiple federal and international law enforcement agencies are interested in 
building a database and model for rapid determination of CITES compliance. Handheld LIBS is one of the 
methods under consideration for this role. To assess compliance, a model does not need to 
unambiguously determine the identity of a suspected Dalbergia log or sample. Instead, all that is 
needed is to determine whether the actual species of the exotic wood agrees with this species specified 
on the manifest. To best accomplish this, a separate model for each species in the library could be 
optimized for sensitivity and selectivity using the available tools as needed. 

Conclusions

Supervised discretization, such as performed by CAIM, provides a reliable alternative to External 
Parameter Orthogonalization (EPO) for decluttering multivariate chemical sensor data. With EPO the 
number of factors in the model warrant careful consideration; too many can lead to prediction biases 
from overfitting the decluttering step. Because supervised discretization by the CAIM algorithm has no 
user adjustable parameters, CAIM is less prone to overfitting than EPO and more amenable to 
automated implementation. The one caveat to implementing CAIM is the method seems to work best 
with simple models where there are only two or three classes to be discerned. For more complicated 
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multiclass models, this leads to better performance of hierarchical decision trees than with flat 
classifiers. 
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