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Abstract

High-throughput screening and material informatics have shown a great power in novel 

materials discovery including batteries, high entropy alloys, photocatalysts, etc. However, the 

lattice thermal conductivity (κ) oriented high-throughput screening of advanced thermal 

materials is still limited to the intensive use of first principle calculations, which is inapplicable 

to fast, robust, and large-scale material screening due to the unbearable computational cost 

demanding. In this study, 15 machine learning algorithms are utilized for fast and accurate κ 

prediction from basic physical and chemical properties of materials. The well-trained models 

successfully capture the inherent correlation between these fundamental materials properties 

and κ for different types of materials. Moreover, deep learning combined with semi-supervised 

technique show the capability of accurately predicting diverse κ values spanning 4 orders of 

magnitude, especially the power of extrapolative prediction on 3,716 new materials. The 

developed models provide a powerful tool for large-scale thermal materials screening with 

target thermal transport property.
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1. Introduction

In many fields of modern science and engineering, knowledge of the thermophysical 

properties, in particular the lattice thermal conductivity (κ) of materials, is becoming more and 

more important.1,2 The interest to precisely predict κ of crystalline materials has been triggered 

by the collective realization of the dramatic consequences of climate change3. For instance, a 

very typical application is the recovery of waste heat, which could be realized through a very 

simple and clean method, i.e. the thermoelectric (TE) effect. The energy conversion efficiency 

of a TE device is characterized by the figure of merit, ZT,4 which is inversely proportional to 

the κ. In the past decades, searching for high-efficient TEs has been guided by the concept of 

‘phonon glass-electron crystal’,5 i.e. an ideal TE material should have high electrical carrier 

mobility and low κ simultaneously. Therefore, there is a strong quest for designing complex 

crystalline structures with unprecedentedly low κ. Besides, the κ of semiconductor materials is 

a key parameter for designing high performance electronic devices. Due to the significant 

amount of excess heat during operation, thermal management for high performance heat 

dissipation must be taken to prolong the durability and to increase the operating reliability. 

Thus, searching for materials with ultrahigh κ is extremely important for the disruptive 

development of micro-/nano-electronics. For non-metallic solids such as semiconductors, the 

heat transfer is viewed as being transferred via lattice vibrations and the quanta of such lattice 

vibration in a solid is called phonons6. Historically, the classical kinetic theory provides a rough 

estimation of κ based on the phonon gas model7. Since κ is one of the intrinsic physical 

properties of materials, which relates to its ability of conducting heat energy, demands of 

understanding and characterizing thermophysical properties of materials are ever increasing for 

a wide range of modern science, advanced engineering, and materials-based energy 

technologies.

Despite the significance of understanding and controlling thermal transport ability of 

materials, accurately predicting κ of a crystalline material from its atomic structure is not an 

easy task. Historically, κ can only be calculated theoretically by some empirical models, such 

as the Debye-Callaway model,8–10 the Slack model,11 etc. The empirical models could be very 

fast but with less accuracy because of the limitations of capturing phonon transport details. 
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Besides, classical equilibrium and nonequilibrium molecular dynamics (EMD/NEMD) 

simulations based on empirical potentials and the Newton’s second law have been widely used 

to characterize thermal transport properties of various materials in the past decades12. The 

difficulty and limitation of classical MD simulations lie in the description of interatomic 

interactions by the empirical potentials12. Beyond that, direct numerical calculation of κ of a 

single crystalline material from its atomic structure by accurate first-principles coupled with 

phonon Boltzmann transport equation (BTE) without any other inputs has just been made 

available for a few years13. However, such computations are usually tedious and very 

computationally demanding even for primitive cells that are not too complicated14–20. Because 

of the huge computational loads, current density functional theory (DFT) based on first-

principles method for κ calculation is out of the question for high-throughput screening thermal 

materials. Despite the very few successes of high-throughput computational screening low κ 

materials,2,21 fast and robust κ oriented material design is still limited, not only because of the 

complex relationship between the intrinsic κ and the atomic structures, but also due to the 

unbearable computational costs. Thus, it is necessary to develop efficient and accurate κ 

prediction models for high-throughput screening thermal materials.

The recent success of AlphaGo in 2016-2017 fully let people appreciate the tremendous 

development potential of artificial intelligence (AI) technology. At present, machine learning 

(ML) technique has been widely used in lots of fields such as computer vision, natural language 

processing, data mining, robot application, etc22. With the powerful capacity, ML has been 

widely used by researchers to conduct research and design functional materials. In particular, 

ML has been increasingly used in material properties prediction and computational screening23–

31. Most of these studies are defined as a regression problem, which is usually composed of 

three parts: property dataset acquisition, feature engineering, and selection of the ML 

algorithms. Commonly used ML algorithms include linear regression(LR), support vector 

regression(SVR), ridge regression(RR), neural networks, Random Forests, gradient boosting 

decision trees(GBDT), etc24,28. So far, only general materials properties have been used as 

prediction targets such as different kinds of energies, band gap, bulk modulus, shear modulus, 
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Poisson’s ratio, hardness, etc,24,26,30 while the applications of ML in predicting thermal transport 

properties are still limited and need to be explored.

In this paper, by using typical ML algorithms for fast and accurate prediction of κ from basic 

properties of materials, it is found that the well-trained ML models successfully capture the 

inherent correlation between basic materials properties and κ for different types of materials. 

Compared with the optimized Slack model, a few selected ML models show the capability of 

accurately predicting κ spanning 4 orders of magnitude. Moreover, the Pearson correlation 

coefficient map for 21 thermal-related properties of materials is generated to achieve insight 

into the performance of the ML models. The development of ML models for fast and accurately 

predicting κ provides a powerful tool for the large-scale thermal functional materials screening 

with targeted thermal transport property.

2. Computational methodology

ML. — All the ML models are built based on the ML library of TensorFlow32. A total of 15 

different ML models have been constructed and trained for thermal transport property 

prediction. According to the different types of ML algorithms, these models can be classified 

into the following four categories24,28: 

(1) Generalized linear regression models33: multiple linear regression (MLR) model, 

optimization of multiple linear regression models using Stochastic Gradient Descent (SGD), 

and ridge regression model (RR).

(2) Support vector regression (SVR) models with four different kernel functions,34 including 

Linear kernel function, Gaussian kernel function, Sigmoid kernel function, and Polynomial 

kernel function.

(3) Tree-based models35,36: The classification and Regression Tree (CART), as well as some 

ensemble learning models37,38 which contain Random Forests, gradient boosting decision trees 

(GBDT), and light gradient boosting machine (LGB).

(4) Neural network models22,39: artificial neural network (ANN), convolutional neural 

network (CNN), recurrent neural network (RNN), and long short-term memory network 

(LSTM).

Page 5 of 22 Journal of Materials Chemistry A



6 / 22

To build and train the ML models, we firstly need to obtain the experimental data for the 

dataset. The large amount of κ for the training and testing procedures are collected from 

previously published papers and databases,21,40–45 which consist of experimentally measured κ 

for 350 different materials.

Pre-process data. — To optimize the performance of the ML models, it is vital to select 

appropriate basic material properties as descriptors. The descriptors of materials are chosen 

based on three principles: 1) the descriptors should be basic properties of materials and should 

be representative; and 2) the descriptors can be easily collected from literature or calculations 

with limited effort. In this work, the descriptors are chosen as a combination of V, M, n, np, B, 

G, B', and G' (detailed explanation of the descriptors can be found in Table 1). Additionally, 

normalization processing is necessary, and the experimental data will conform to the normal 

distribution, which would help improve the prediction accuracy of the models. Then, the data 

is transformed into standard normal distribution through standardized processing. When the 

training process is finished, the inverse transformation is performed on the results, for the 

purpose of facilitating the comparison with the original data. 

The training process of the these ML models are based on  the well-known n-fold procedure, 

with the typical n = 5,46 which means that 280 (80%) types of materials are used to train these 

ML models and 70 (20%) types of materials are used to test the trained model. In the process 

of training and testing, the material types in the training and test set of each model should be 

exactly the same, which is important for effectively comparing the performance of these models 

by controlling variables.

Model Performance Evaluation Metrics. — By training ML models, the goal is to select the 

model with optimal performance, which can be evaluated by a series of statistical indicators47. 

Some of the most important evaluation metrics as listed below have been applied to evaluate 

the performance of different models.

(1) root mean square error (RMSE)

(1)RMSE = [1
N∑N

i (κi
ML ― κi

Exp.)2]
1
2

(2) coefficient of determination (R2)
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(2)R2 = 1 ―
κi

Exp. ―κi
ML

κi
Exp. ― κi

avg

(3) mean absolute error (MAE)

(3)MAE =
1
N|κi

ML ― κi
Exp.|

, where i specifies ith material sample and N is the total number of samples in the dataset. In 

addition to the above metrics, we also take into account the running time of models to measure 

the prediction efficiency of different models.

We also introduced K-fold cross-validation algorithm in both training and testing process, 

not only to better reflect the average performance of the model and obtain relatively accurate 

evaluation metrics, but also to serve as a comparison for incompletely supervised learning 

models in the subsequent testing process. More details can be found sin Note S4.

LSTM. — The LSTM is introduced to overcome the exploding/vanishing gradient problems 

when training very deep neural networks48. The principle of LSTM is shown in Fig. 1. The 

concept of three thresholds is introduced as input gate , output gate  and forgetting gate ,  it ot  ft

which can be written as

(4)it = σ(ωi[ht ― 1,xt] + bi)

 (5)ot = σ(ωo[ht ― 1,xt] + bo)

(6)ft = σ(ωf[ht ― 1,xt] + bf)

,where , and  are the parameter matrices to be trained, and ,  and  are offset ωi ωo ωf bi bo bf

terms. The input gate stores the information in the cellular Ct, the forgetting gate discards it 

according to the specified proportion, and the output gate selectively exports the information. 

At this moment, the long-term memory in the cellular state can be defined as

 (7)Ct = ft ∗ Ct ― 1 + it ∗ Ct

,where  represents the long-term memory stored in the cell state at the previous time and Ct ― 1

means the candidate state memory at the current time. Therefore, the long-term memory at Ct 

the current time is the sum of the long-term memory at the previous time through the forgetting 

gate and the candidate memory through the input gate. The model used in this work is 

constructed with an input layer, two LSTM layers, two dropout layers, a dense fully connected 

layer, and an output layer. 
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Fig. 1 The LSTM network architecture. (a) The cyclic kernel structure with a threshold. (b) The 

detailed structure within a single LSTM neuron and its relationship with the two neurons before and 

after in the forward direction.

Before feeding into the LSTM network, the data needs to be converted into a three-

dimensional form. The 8 neurons in the input layer correspond to the 8 fundamental properties 

of materials. With the aim of updating network parameters iteratively, we use the Adam 

optimizer as the activation function. The first hidden layer is an LSTM layer with a total of 50 

LSTM neurons (Fig. 1), which is used to extract features from the input layers. After the dropout 

layer (dropout rate is set as 20%), the LSTM_1 layer with 20 LSTM neurons converts the three-

dimensional data into two-dimensional form and transfers the data to the dropout_1 layer 

(dropout rate is set as 20%). Finally, the result is passed to the fully connected layer and the 

predicted value of thermal conductivity can be obtained. 

Incomplete supervision. — Only 350 samples are labeled in the whole dataset, while the test 

set contains a great number of unlabeled data samples. Generally, it is quite costly to label the 

samples one by one. Therefore, incomplete supervision has been developed to make full and 

effective use of unlabeled samples, so as to further improve the generalization ability of the 

model. Both active learning and semi-supervised learning belong to the incomplete supervision, 

which are utilized to predict the thermal conductivity of materials. Their predictive performance 

will also be compared in the following contents. More details about the principles of active 

learning and semi-supervised learning can be found in the Supplementary Note S2 and S3.
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Slack model. — To compare with the ML models, an optimized Slack model49 is further 

used to predict κ based on the basic properties that are used as descriptors in ML models, and 

the prediction results are shown in the Supplementary Note S1. The κ is expressed as49 

(8)                                                                                                                                    𝜅 = 𝐴
𝑀𝛿𝑛1/3

𝑝 𝛩3
𝐷

𝛾2𝑇 ,

where δ = V/n is the cubic root of the average volume per atom, T is the absolute temperature, 

and the explanations of other symbols are available in Table 1. The coefficient A is calculated 

as49 . All the properties in the Slack equation, such as Debye 𝐴 =
1

1 + 1 𝛾 +8.3 × 105 𝛾2.4

temperature and Grüneisen parameter, can be calculated from the elastic properties of bulk 

modulus (B) and shear modulus (G), and their derivations (B′ and G′) can be obtained with 

respect to the change of volume50. According to the Voigt-Reuss-Hill (VRH) theory,51–53 the 

elastic properties can be evaluated from the elastic constants, which can be obtained based on 

accurate first-principles calculations. The above formula has been applied for the evaluation of 

κ for 353 materials, 49 which has been verified to have better performance than the widely used 

Slack model.

Table 1: The symbols and the corresponding properties of materials.

Symbols Properties

V The volume of conventional cell ( )Å3

M The total mass of conventional cell

n The number of atoms in conventional cell

np The number of atoms in primitive cell

 𝜌 Mass density (g/cm3)

B Bulk Modulus (GPa)

G Shear Modulus (GPa)

E Young’s Modulus (GPa)

 𝜈 Poisson’s ratio

H Hardness (GPa)

B′ The derivative of B with respect to volume
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G′ The derivative of G with respect to volume

 𝜈𝐿
Sound velocity of longitude waves (103 

m/s)

 𝜈𝑆 Sound velocity of shear waves (103 m/s)

 𝜈𝑎 The averaged sound velocity (103 m/s)

 𝛩𝐷 The Debye temperature

 𝛾𝐿
The Grüneisen parameter of longitude 

waves

 𝛾𝑆 The Grüneisen parameter of shear waves

 𝛾 The overall Grüneisen parameter

A The parameter in the Slack model

κ The Lattice thermal conductivity

First-principles. — All the basic properties mentioned above can be obtained from first-

principles calculations on the basis of the density functional theory (DFT), and the calculation 

uses the projector augmented wave (PAW) technique54, which is implemented in the Vienna ab 

initio simulation package (VASP)55. The generalized gradient approximation (GGA) Perdew-

Burke-Ernzerhof (PBE)56 is taken as the exchange-correlation functional, while the kinetic 

energy cutoff of wave functions for each material is set as the default maximum energy cutoff. 

For sampling the Brillouin Zone (BZ), A Monkhorst-Pack57 k-mesh with the grid density of 

0.42  is used to sample the Brillouin Zone (BZ). The self-consistent field (SCF) π/Å

calculations are converged with energy difference smaller than 10−5 eV. Before any further 

calculations, all the geometries are fully optimized with the maximal Hellmann-Feynman force 

smaller than 0.01 . The elastic constants are calculated using the density functional eV/Å

perturbation theory (DFPT). The derivative of elastic properties (bulk and shear modulus) is 

evaluated by changing the volume from -1.5% to 1.5% (5 points in total).

3. Results and discussion
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By performing elaborate testing, it is found that the neural network models, especially the 

LSTM, have better performance in predicting thermal conductivity of materials compared to 

other ML models. The best performance of LSTM is confirmed by both the lowest RMSE of 

8.3593 and the lowest R2 of 0.8866 when testing on the test dataset of 70 materials, while the 

lowest MAE value of 0.8799 is achieved by the CNN model.

The corresponding numerical data of material descriptors were obtained based on the state-

of-the-art first-principles calculations (Table 1), which were used as input of the ML models. 

Fifteen different ML models were constructed, and each model was trained separately using 

280 experimental data. To test the performance of the trained model, the trained model is used 

to predict the thermal conductivity of 70 separate materials in the test set. Different root mean 

square error (RMSE) values between the predictive values and the true values in the test set 

have been collected in Table 2.

Table 2: Comparison of evaluation metrics for predicting thermal conductivity among the 15 

machine learning models.

ML model
RMSE of test 

set
R2 of test set MAE of test set time cost

Linear 26.4930 0.8096 13.5803 6.49s

Ridge 26.3697 0.8103 13.5384 3.46s

SGD 17.4929 0.8241 9.5713 3.58s

linearSVR 11.9823 0.8479 6.8762 3.68s

sigmoidSVR 20.6119 0.3432 9.7734 1.94s

rbfSVR 14.6274 0.7547 6.9582 1.80s

ploySVR 12.0221 0.7496 7.2365 3.61s

Decisiontree 19.3780 0.5348 8.6358 4.56s

DGBT 10.3623 0.8158 6.9570 5.69s

Random Forests 9.6385 0.8767 6.0574 3.76s

lightGBM 12.9994 0.7398 7.7365 4.56s

ANN 8.7211 0.8593 5.7933 18.19s

CNN 8.4061 0.8799 5.1674 19.57s

RNN 8.3726 0.8748 5.3209 61.03s

LSTM 8.3593 0.8866 5.4011 125.46s
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The performance of the 15 ML models is comparably visualized in Fig. 2, and the following 

observations can be concluded from Fig. 2 combined with Table 2 and Table S2: 1) The 

performance of testing even exceeds that of the training process, indicating the excellent fitting 

of the ML models. 2) The trained ML models show the capability of accurately predicting κ 

over 4 orders of magnitude. In particular, the high κ ~1000 W/mK is successfully predicted by 

the trained ML models, showing the ability of extrapolation prediction. 3) Nonlinear models, 

including tree-based models, ensemble learning models and neural network models, have better 

prediction performance. Compared with generalized linear models, they have great advantages 

in predicting thermal conductivity, which also reflects the highly complex nonlinear 

relationship between thermal conductivity and basic properties of materials.
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Fig. 2 Comparative analysis of thermal conductivity (κ) predicted by 15 different machine learning 

models with comparison to experimental measurements. 21,40–45. Both the training (80%, 280 materials) 

and testing (20%, 80 materials) data are plotted.

With the trained ML models, we further explore the thermal transport properties of more 

materials in three types: half Heusler (328),21 materials with fcc structure (2,249),58 and the 

1521 dataset (1,139)41. The numbers in the parenthesis denote the numbers of materials in the 

specific structure type, where the non-stable structures are excluded. In combination with the 

performance of the above-mentioned 15 ML models in the thermal conductivity predictions 

(Fig. 2), four deep learning models with relatively better performance have been selected to 

predict the thermal conductivities of 3,716 materials. The selected models are ANN, CNN, 

RNN, and LSTM. The thermal conductivities predicted by the ML models are collected to those 

predicted by the optimized Slack model49 to evaluate the performance. More details on the 

optimized Slack model49 can be found in Supplementary Note S1.

To improve the predicting performance of these models, training set (80%, 280 materials) 

and test set (20%, 70 materials) are synthesized into a big dataset involving 350 materials. The 

combined dataset is used as a labeled training set. In addition, two incomplete supervised 

algorithms of active learning and semi-supervised learning algorithms, as well as K-fold cross-

validation are used to predict the 1521, FCC, and Half Heusler datasets separately. The semi-

supervised learning algorithm has shown relatively superior performance in this process as 

shown in Fig. 3, which may be due to the fact that the semi-supervised learning algorithm can 

efficiently utilize a large amount of unlabeled data to improve the generalization ability of the 

model. If the detailed prediction results of K-fold cross-validation and active learning are 

needed, please refer to the Supplementary Note S4 and S5. Moreover, the efficiency of the 

developed models is successfully demonstrated by the fact that each model only takes less than 

30 seconds to predict the thermal conductivity of all materials in a single test set.

Moreover, the averaged predicted values of the four models are taken to reflect the average 

performance of these ML models. At the same time, this method is also taken to avoid the 

impact of prediction error from a single model on the overall prediction results. The comparison 
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of the developed four deep semi-supervised learning models and the Slack model is shown in 

Fig. 3. 

Fig. 3 Comparison between the κprediction calculated by the optimized Slack model [Eq.(8)] and the κML. 

predicted by the four deep semi-supervised learning models for a large set of materials: (a)the 1521 

dataset, (b)FCC structures, (c)half Heusler, (d)average prediction values of the four deep learning 

models. The blue shade marks the boundary of the discrepancies by one order of magnitude higher and 

lower.

Overall, the κprediction agrees well with the κML., particularly in terms of high thermal 

conductivity predictions. Such an excellent agreement verifies the outstanding performance of 

the well-trained ML models in predicting thermal conductivity. The discrepancy mainly lies in 
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about one order of magnitude, which might stem from the uncertainty in the κ prediction of the 

optimized Slack model as revealed in previous studies11,49,50. 

It is interesting to note that some of the κprediction predicted by the optimized Slack model for 

the 3716 materials deviate largely from those κML. predicted by the ML models by more than 

one order of magnitude, as shown in Fig. 3. Similar performance of the optimized Slack model 

is also observed when compared with the experimentally measured κExp. for the 350 materials 

as marked in the Supplementary Fig. S1. Besides, the κ predicted by the Slack model agree very 

well with those from the ML models for the high-κ materials with κ >~300 W/mK. 

To have a deep insight into the performance of the ML models, the Pearson correlation 

coefficient map for the 21 properties (Table 1) of materials is generated. Among the 21 

properties, all the other properties can be derived from the 8 basic properties of V, M, n, np, B, 

G, B′, and G′ (Table 1). The relationship between these properties can be found in 

Supplementary Note S6. The Pearson correlation coefficient is calculated based on the 350 

materials with κ available from experiments using the formula:

(9)𝑟 =
∑𝑛

𝑖 = 1(𝑥𝑖 ― 𝑥)(𝑦𝑖 ― 𝑦)

∑𝑛
𝑖 = 1(𝑥𝑖 ― 𝑥)2 ∑𝑛

𝑖 = 1(𝑦𝑖 ― 𝑦)2

,where  and  denote the average value of x and y respectively, n is 350, and r is the Pearson 𝑥 𝑦

correlation coefficient between the properties of x and y, which indicates the correlation 

strength. The values of 1 and -1 represent totally positive and negative linear correlations, 

respectively. As shown in Fig. 4, the κ positively correlates with B, G, E, H, , , and 𝜈𝐿 𝜈𝑆 𝜈𝑎 

, where E, H, , ,  and  can be derived from the basic properties of V, M, n, np, B 𝛩𝐷 𝜈𝐿 𝜈𝑆 𝜈𝑎 𝛩𝐷

and G50. Among these properties, B and G can be used to represent the harmonicity of materials. 

On the contrary, the κ negatively correlates with ν, , , , B′, and G′, where the , ,  𝛾𝐿 𝛾𝑆 𝛾 𝛾𝐿 𝛾𝑆 𝛾

can be derived from the basic properties of B′ and G′ 50. These properties can be used to 

represent the anharmonicity of materials. Thus, the combination of the basic properties 

including V, M, n, np, B, G, B′, and G′ as descriptors is effective for the prediction of κ using 

the ML models. 

Note that the overall Grüneisen parameter (γ) quantifying the phonon anharmonicity can be 

also derived from the basic properties of B′ and G′,50
 which shows almost no correlation with 
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the κ. The weak correlation is abnormal from first look because they are supposed to be strongly 

negatively correlated. The reason might be that, 1) the γ is not correctly calculated in the Slack 

model, which also explains the generally more than one order of magnitude discrepancy of the 

κSlack model from the κExp; 2) a single value of γ is not sufficient to fully describe the complex 

phonon anharmonicity of crystalline materials, which, rigorously speaking, should be phonon 

mode dependent . The results suggest that further improvement to the Slack model and 𝛾(𝜔, 𝑞)

more accurate formula for γ is needed to better describe the phonon thermal transport.

Fig. 4 The Pearson correlation coefficient map for the 21 properties of materials as listed in Tab. 1, 

which is calculated based on the 350 materials with κ available from experiments. The onsite values 

indicate the correlation strength, with 1 and -1 representing totally positive and negative linear 

correlations, respectively.

4. Conclusion
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In summary, fifteen ML models are constructed and trained for accurate κ prediction. During 

the training process, 8 basic properties of materials are used as descriptors (inputs) and the 

experimentally measured κ are used as targets (output). The trained ML models, especially the 

deep learning models show the capability of accurately predicting thermal conductivity 

spanning 4 orders of magnitude, which have a great advantage over the widely used empirical 

Slack model. With the trained 4 deep learning models, combined with semi-supervised learning 

strategy, the thermal transport properties of 3,716 materials are further predicted, and the results 

are also verified by the optimized Slack model. Furthermore, the Pearson correlation coefficient 

map for 21 thermal-related properties of materials is generated to gain a deep insight into the 

performance of the ML models. It is confirmed that the combination of the basic properties of 

B (+), G (+), B′ (−), and G′ (−) as descriptors is effective for the prediction of κ using the ML 

models, where (+) and (−) denote the positive and negative correlation with κ, respectively. 

The developed ML models in our work for fast and accurately predicting thermal conductivity 

provide a powerful tool for the large-scale thermal material screening with targeted thermal 

transport property.
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