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ABSTRACT: Solid-state batteries are projected to exhibit improved energy densities and safety compared to liquid-electrolyte-based 
systems. Consequently, the development of solid electrolytes that can conduct cations at rates comparable to that of liquid electrolytes 
is an active area of research. To facilitate this search it is desirable to understand the chemical and structural features that control ion 
transport through a crystalline lattice. Here, machine learning (ML) is used to identify features that influence ion mobility in solids, 
quantify the relative importance of those features, and demonstrate how the variation of individual features alters ion mobility. 
Adopting the anti-perovskite lattice as a model system, ML algorithms were trained to predict migration barriers from a data set 
containing hundreds of barriers calculated using density functional theory. More than 106 feature sets of non-redundant descriptors 
were evaluated for their ability to predict migration barriers. The present analysis correctly reiterates the importance of several features 
that are known to influence mobility – for example, anion polarizability – but also identifies others whose importance is not widely 
recognized.  Lattice properties such as hopping distance and channel width exhibit the greatest influence on cation mobility. Individual 
conditional expectation analyses performed on these features shows that barriers decrease as hopping distance decreases and as 
channel width increases. The defect formation energy – which is commonly associated with the concentration of defects, but not with 
their mobility – is identified as an important feature for interstitial migration. In sum, this analysis aids in the design of optimal solid 
electrolytes by simplifying the multi-dimensional design space to a sub-set of properties that are the most important. 

INTRODUCTION
Li-ion batteries (LIBs) have achieved wide-spread use in 
applications ranging from portable electronics to grid-scale 
energy storage.1 Despite this success, further improvements in 
the performance of LIBs are desirable, an important example 
being their safety. One way to enhance safety is to replace the 
flammable and volatile liquid electrolytes used in present LIBs 
with a solid electrolyte (SE).1–3 An additional benefit of a SE-
based battery derives from the high stiffness of some SEs, 
which may allow for use of a Li-metal anode in place of 
graphitic carbon. This substitution would increase energy 
density.4,5

Although an increasing number of materials have been 
suggested as SEs,6–12 many are not stable with Li metal, have 
small electrochemical windows, or are susceptible to dendrite 
penetration at practical current densities.13–16 Hence, new SE 
compositions may be needed to realize the benefits of solid-
state Li-metal batteries.

To design suitable SEs it is desirable to understand which 
fundamental properties (or 'features') control ion mobility in 
solids. Several features that may impact ion transport have been 
described in the literature. For example, the frequencies and 
amplitudes of phonons have been proposed to influence ion 
mobility.17,18 Chemical features such as the polarizability of 
atoms have also been proposed to correlate with ion 
migration.19–23 The structure of the crystalline lattice can also 
play a role: migration barriers have been reported to increase 

for coordination geometries that increase the stability of the 
cation site.24 Low energy barriers can be achieved by adopting 
a bcc anion sublattice, which allows for direct hopping between 
tetrahedral sites.25 Volume effects have also been discussed: 
larger cell volumes resulting from the use of larger anions tend 
to decrease migration barriers by widening the size of the 
migration channel.25–27 (Note that larger anions are also more 
polarizable.)28 Solids having relatively low densities, such as 
high-temperature polymorphs and glasses, have been reported 
to exhibit enhanced ionic conductivity arising from 
‘paddlewheel’ dynamics.29–36 Finally, lattice distortions 
introduced by mis-matched atom sizes can lower the barriers 
associated with a subset of migration ion pathways.37

Although several studies have examined features that impact 
ion mobility in solids, the relative importance of these features 
has not been examined in detail. Furthermore, additional 
features that correlate with ion mobility may exist that have not 
yet been brought to light. Finally, multiple features may impact 
ionic mobility simultaneously.38 Consequently, a mechanism 
for systematically identifying and assessing the importance of 
various features on ion mobility would be helpful. Such an 
approach would facilitate the design of new SEs by reducing 
the multi-dimensional feature space to a sub-set of properties 
that are the most important. 

Machine learning (ML) provides a mechanism to accomplish 
these goals. ML can identify complex relationships between 
features and a target property.39 In prior work, ML was used to 
screen for new superionic conductors.40–46 In the taborite system, 
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Jalem et al. showed that structural features are the most 
important features to decrease migration barriers using neural 
network and Gaussian processing models.42,45 Sendek et al. 
suggested several features that can be used to classify ionic 
conductors: Li-anion distance, Li-Li distance, ionicity, anion 
coordination, and Li coordination.44 Also, Katcho et al. trained 
a random forest model on migration barriers from Li and Na 
oxides (predicted by the bond-valence method). They showed 
that the channel size, cation-anion coordination number, and the 
volume fraction of the cation are important features.46

This present study uses ML to quantify the importance of 
several chemical, physical, and structural features on ion 
transport within a crystalline lattice. Adopting the anti-
perovskite (AP) crystal structure as a model system, several ML 
algorithms were trained to predict ion migration barriers. The 
algorithms were informed from a data set containing more than 
300 barriers that were calculated using density functional theory. 
The training set is derived from 36 alkali metal chalco-halide 
anti-perovskites, and includes vacancy and interstitial migration 
mechanisms.37,47 Highly correlated (i.e., redundant) features 
were identified and eliminated, thus maximizing the simplicity 
of the resulting models and minimizing overfitting. Using the 
most accurate algorithm, the feature combinations that yielded 
the most accurate predictions were identified. Finally, the 
relative importance of the features and their influence on ion 
transport were quantified using the mean decrease in impurity 
(MDI) and individual conditional expectation (ICE) plots.

This analysis reveals that lattice properties such as hopping 
distance and channel width have the greatest influence on cation 
mobility. These features comprise 70% of the total feature 
importance for vacancy migration, and ~50% of the importance 
for interstitial migration. Individual conditional expectation 
analyses performed on these features show that barriers 
decrease as hopping distance decreases and as channel width 
increases. Additional significant features include the anion 
polarizability (22% for vacancy migration) and the defect 
formation energy (35% for interstitial migration). The 
identification of the interstitial formation energy as a significant 
feature is noteworthy, and perhaps unexpected, because this 
feature is well-known to control the concentration of defects, 
but it is not widely recognized as one that influences mobility. 
In sum, this feature importance analysis facilitates the design of 
efficient solid electrolytes by reducing the multi-dimensional 
design space to a sub-set of properties that are the most 

impactful. An additional benefit derives from the fact that many 
of the identified features are elementary properties that are 
tabulated or are straightforward to evaluate, thus further 
simplifying the discovery process.  

METHODS
The scikit-learn ML package was adopted for this study.48 
Figure 1 summarizes the computational workflow. The 
workflow consists of four stages: (1) In the Data stage hundreds 
of migration barriers and 44 features were assembled and 
evaluated (the complete dataset, including all descriptors and 
their associated migration barriers, is provided in the 
Supporting Information); (2) Feature filtering was 
subsequently used to eliminate highly correlated (redundant) 
features; (3) Next, in the ML model selection stage, 18 ML 
algorithms were trained, optimized, and assessed for to their 
ability to predict migration barriers; (4) In the last stage, 
Feature subset evaluation, the features that most strongly 
impact migration barriers were determined. 

Migration barrier data. The elementary migration barriers 
for cations in 36 model alkali metal-chalcohalide APs with 
formula X3AZ (where X = Li, Na, or K, A = O, S, or Se, and Z 
= F, Cl, Br, or I), were adopted from self-consistent set of DFT 
calculations.37,47 In the AP system the cation (X) sublattice 
consists of vertex-sharing octahedra. The smaller chalcogen 
anion (A) typically occupies the octahedron center, while the 
larger halogen anion sits at the vertices of a cubic 
framework.37,49 Cation migration occurs along pathways that 
correspond to the edges of the octahedra. Due to their high 
symmetry, cubic APs have one unique migration pathway (i.e., 
all pathways along the octahedron edges are identical), whereas 
12 unique paths exist in the lower-symmetry orthorhombic 
systems (due to tilting of the alkali-metal octahedra), 
corresponding to the 12 edges of the octahedra. Energy barriers 
were evaluated for both vacancy and interstitial dumbbell 
migration mechanisms. (Details of the calculation methods, 
migration mechanisms, and distribution of the barrier energies 
are provided in Ref. 37,47,50.)

A total of 603 barriers were evaluated, including 322 and 281 
for vacancy and interstitial mechanisms, respectively. This 
quantity of data satisfies the guideline that the amount of 
training data should exceed the number of descriptors by 
approximately a factor of five.51  This guideline has been 
proposed as a means avoid the ‘curse of dimensionality’ (i.e., 

Figure 1. Machine learning workflow used to identify features that influence ion migration barriers in anti-perovskite SEs.
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overfitting).52 Importantly, the dataset includes a mixture of 
low- and high-barrier pathways: barriers range from 38 to 847 
meV for vacancy migration and from 12 to 382 meV for the 
interstitial dumbbell mechanism. This diversity of data will 
improve the reliability of the ML models.51 Furthermore, all of 
the barrier data are evaluated using the same simulation method. 
This consistency presents advantages compared to approaches 
that mix data from several sources and/or incorporate 
experimental data. In the latter case, experimentally-measured 

activation energies can include contributions from grain 
boundaries or other defects that complicate comparisons. Here, 
the focus is solely on migration barriers. 

Descriptors. 44 descriptors with the potential to influence 
ion mobility were considered, Table 1. The descriptors were 
categorized into five groups based on the nature of the feature: 
‘lattice’, ‘mechanical’, ‘electronic’, ‘chemical’, or ‘elemental.’ 
The first 4 of these categories refer to properties of the AP 
compound. The latter category refers to properties of the 

Table 1. List of descriptors examined in this study, their categories, and whether a given descriptor was eliminated due to a 
high correlation with another descriptor.

Descriptor Category Redundant 
descriptor Descriptor Category Redundant 

descriptor

Unit cell volume per atom (Va) Lattice Ionic radius (rC) Cation 𝛼C

Octahedron volume (Vocta) Lattice Va Atomic mass (mC) Cation 𝛼C

Mass density ( )𝜌m Lattice Electronegativity (ENC) Cation 𝛼C

Packing fraction of anions (PFA) Lattice PW Ion polarizability (𝛼C) Cation

Tolerance factor (t) Lattice Bader charge (BCC) Cation

Channel size (Di) Lattice PW Born effective charge (BECC) Cation

Coordination number of cation (CNC) Lattice Ionic radius (rO) Octahedral 
anion

𝛼O

Path distance (CCD) Lattice Atomic mass (mO) Octahedral 
anion

𝛼O

Cation – octahedral anion distance 
(COD) Lattice CCD Electronegativity (ENO) Octahedral 

anion
𝛼O

Cation – framework anion distance 
(CFD) Lattice AAD Ion polarizability (𝛼O) Octahedral 

anion

Distance between anions (AAD) Lattice CCD Bader charge (BCO) Octahedral 
anion

Path width as determined by 
perpendicular distance to closest ion 

(PWc)
Lattice PW Born effective charge (BECO) Octahedral 

anion

Path width as determined by 
perpendicular distance to 2nd closest 

ion (PW2c)
Lattice PW Ionic radius (rF) Framework 

anion
𝛼F

Total path width (PW) Lattice Atomic mass (mF) Framework 
anion

𝛼F

Phonon frequency ( )𝜔LEO Lattice B Electronegativity (ENF) Framework 
anion

𝛼F

Bulk modulus (B) Mechanical Va Ion polarizability (𝛼F) Framework 
anion

Band gap (Eg) Electronic B Bader charge (BCF) Framework 
anion

Electronic dielectric constant ( )𝜀𝑒 Electronic Born effective charge (BECF) Framework 
anion BECO

Ionic dielectric constant ( )𝜀𝑖 Electronic Bond ionicity between cation 
and chalcogen anion (IC-Ch)

Chemical

Total dielectric constant ( )𝜀 Electronic 𝜀𝑖
Bond ionicity between cation 

and halogen anion (IC-H) Chemical

Polarizability ( )𝛼 Electronic Va
Bond ionicity between anions 

(ICh-H) Chemical IC-H

Decomposition energy (Ed) Chemical

Defect formation energy (Ef) Chemical

Page 3 of 13 Journal of Materials Chemistry A



4

individual cations and anions. The descriptors include 
information about the local atomic environments associated 
with each elementary migration path, thus allowing individual 
paths to be differentiated. Descriptor values were adopted from 
tabulated data or from DFT calculations on the APs.37,47,50 The 
polarizability of a compound was calculated using the Clausius-
Mossotti relation:53 

,𝛼 =
3

4𝜋(𝜀𝑒 ― 1
𝜀𝑒 + 2)𝑉a

where  is the electronic dielectric constant and Va is the unit 𝜀𝑒
cell volume per atom. Additional details about the calculation 
methods17,18,55–64,22,65,66,26,37,44,47,50,53,54 are provided in the 
Supporting Information.

Although the feature set employed here is intended to include 
essentially all elementary properties that could impact ion 
mobility in solids, one cannot rule out the possibility that the 
feature set remains incomplete due the omission of “unknown 
unknowns” – i.e., features that are significant and should be 
included, yet are absent due to gaps in our understanding. An 
additional opportunity for improvement would be to include 
features that capture dynamical phenomena. The present feature 
set emphasizes static properties; these features have the 
advantage that some are known to influence ion mobility in 
some systems; furthermore, they are straightforward to 
calculate and/or are tabulated in standard references. Thus, 
static properties are a reasonable and maximally-simple starting 
point. Nevertheless, several studies have pointed to the 
importance of dynamic phenomena in understanding ion 
mobility. These include the vibrational properties of the lattice 
and the rotational properties of complex anions (i.e., a 
paddlewheel effect).29–36 While anion rotations are not relevant 
for the present set of anti-perovskites, a more complete (but 
more expensive to evaluate) feature set would include 
dynamical properties. 

Feature filtering. Filtering was used to reduce the 
dimensionality of the feature space by eliminating highly-
correlated (redundant) descriptors. By reducing the number of 
features, filtering minimizes both the computational expense of 
the ML model and the risk of overfitting. Potential relationships 
between descriptors were assessed by evaluating their Pearson 
correlation, :67𝜌X,Y

, 𝜌X,Y =
𝑐𝑜𝑣(X,Y)

𝜎X𝜎Y

where cov(X,Y) is the covariance of features X and Y and  𝜎X or Y
is the standard deviation of feature X or Y.  measures the 𝜌X,Y
degree of linear correlation between features X and Y, and has 
a range -1 ≤  ≤ 1. Here, 0 implies no correlation and 1 𝜌 ±
represents a perfect positive/negative correlation. Redundant 
descriptors were defined as those with  ≥ 0.80. In the case of |𝜌|
correlated features, only one of the correlated descriptors was 
retained in the feature set; the other feature(s) were removed. 
An example of a correlated pair of features is the unit cell 
volume per atom (Va) and polarizability ( ) (  = 0.97). This 𝛼 𝜌
correlation is expected since the polarizability of an atom or ion 
scales with its ‘size.’28 From these redundant feature subsets, 
the feature that was retained for use in the ML analysis was 
selected based on a combination of: (a) the ease of evaluating 
the descriptor, and (b) a desire to reflect existing knowledge 
from the literature, when appropriate. Additional details 
regarding feature filtering are provided in the SI.

Model selection. 18 ML algorithms were examined with the 
goal of identifying the one that predicted migration energies 
most accurately. These algorithms included 9 linear regressors, 
3 support vector regressors (SVRs), and 6 tree-based regressors. 
A summary of the algorithms51,68,77–86,69–76 explored is provided 
in the Supporting Information.

The dataset of migration barriers was randomly divided into 
a training set (80% of the data) and a test set (20%). As needed, 
this random division was repeated until the two sets exhibited 
similar distributions of barriers as measured by the mean and 
standard deviation. The mean and standard deviation of the 
training set were 262 and 136 meV, respectively, while those of 
test set were 268 and 145 meV, respectively. Hyperparameter 
optimization was performed using a grid search with stratified 
10-fold cross-validation (CV). Training samples were divided 
into 10 validation sets evenly so that the maximum difference 
between the mean target values of the validation sets was less 
than 10% of the mean target value of the entire training set (i.e., 
stratified). Literature reports have shown that although 10-fold 
CV is a reasonable choice, stratification is generally a better 
scheme than a regular CV for both bias and variance, and that 
stratified 10-fold CV may be better than more expensive leave-
one-out CV for model optimization.87 The test set was not 
involved in the model optimization process, but was used to 
estimate the prediction performance of the optimized model 
from each algorithm after training. The model with the smallest 
error was used to evaluate feature subsets.

Feature subset evaluation. The ‘wrapper’ method was used 
to identify the subset of features that result in the most accurate 
ML models for a specified number of features, n.88 Like filtering, 
the wrapper method is an example of feature selection. Unlike 
filtering, it proceeds via repeatedly selecting distinct subsets of 
features and training a given ML algorithm with those feature 
sets. With 20 descriptors remaining in the feature set after 

filtering (see discussion below),  = 1,048,575 n-∑20
𝑛 = 1(20

𝑛 )
feature sets were evaluated. The most predictive feature set was 
determined based on the accuracy of its resulting ML model. 
Notably, the case of n = 1 allows one to answer the question: 
“what is the most important single feature for predicting ion 
migration barriers?”  

Feature importance and influence on barriers. A goal of 
the present study is to evaluate the relative importance of 
features on the size of ion migration barriers. This is 
straightforward for linear regression models that explicitly 
show the importance via their coefficients, but is more 
complicated for models such as neural networks, SVM, tree 
models, etc. These algorithms are often referred to as ‘black 
box’ models because they are not directly interpretable.86

As described below, a tree-based algorithm was found to be 
the most accurate model for predicting migration barriers. For 
tree-based algorithms feature importance can be quantified with 
the mean decrease in impurity, MDI. MDI is defined as the total 
decrease in impurity (for classification models) or variance (for 
regression models) contributed by a certain feature:78

.𝑀𝐷𝐼(𝑥) = ∑
𝑖[𝑛𝑖𝑣𝑎𝑟𝑖(𝑥) ― (𝑛𝐿𝐿𝑣𝑎𝑟𝐿𝐿(𝑥) + 𝑛𝑅𝐿𝑣𝑎𝑟𝑅𝐿(𝑥))]

Here, the sum is over nodes i split by a feature x, n is the number 
of samples in a node i and its left and right leaves (denoted as 
subscripts LL and RL, respectively), and var is the variance of 
target values of samples in the node and leaves. MDI measures 
how much a feature contributes to minimizing the variance by 
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node division throughout the tree model. Features with larger 
MDI values are more important.

Although MDI can evaluate if a given feature is important, it 
does not describe how a feature affects a target property. For 
example, MDI can evaluate if ‘path distance’ is important, but 
cannot identify whether longer path distances increase or 
decrease the migration barrier. In contrast, the individual 
conditional expectation (ICE) plot can quantify how changing 
an individual feature changes the target property.86,89 The ICE 
plot illustrates the variation in the predicted target value (i.e., 
size of the migration barrier) using conditional expectation 
curves generated from the training data.89 A conditional 
expectation curve is created using the optimal ML model for 
each set of features that corresponds to a given AP composition 
and migration path in the training set. [The number of curves in 
the ICE plot is equal to the number of data points (i.e., barriers) 
contained in the training set.] The feature whose impact is to be 
determined is varied, and the values of all other features are held 
fixed. ICE plots were constructed such that the migration barrier 
is assigned a value of zero when the selected feature adopts its 
minimum value within the training set. This convention is 
known as a ‘centered’ ICE plot; this approach makes explicit 
how the barrier varies as the value of the selected feature 
increases. ICE analysis was performed using the PDPbox 
package.90

RESULTS AND DISCUSSION
Feature filtering. Figure 2 illustrates the matrix of Pearson 

correlation coefficients ( ) for descriptors used to predict 𝜌
migration barriers via the vacancy mechanism. The calculated 
migration barriers are included in the correlation analysis as the 
last row and column in the matrix. (Data used to generate Figure 
2 is provided in the Supporting Information.) Looking first at 
the correlations between features and the barriers, it is observed 
that no single feature exhibits a high correlation with the barrier 
– the largest correlation, = 0.34, is obtained for the path 𝜌
distance, CCD. A similar result was obtained for the dumbbell 
mechanism, where a max correlation of 0.14 is calculated 
between the barrier and the phonon frequency, , see Figure 𝜔LEO
S1. This confirms that linear correlations involving a single 
feature do not strongly correlate with ion migration in the APs. 
In contrast, and as shown below, ML successfully identifies 
more complex connections between features and migration 
barriers. 

Table 1 also identifies twenty-four redundant features that 
were eliminated from the feature set in favor of other features 
with which they exhibit strong correlations,  ≥ 0.80. For |𝜌|
example, the band gap (Eg) and phonon frequency ( ) 𝜔LEO

correlate to the bulk modulus (B) with  = +0.85 and +0.81, 𝜌
respectively. Also, the volume of the unit cell per atom (Va) 
correlates strongly with the volume of the cation octahedra 

Figure 2. Pearson correlation analysis for descriptors and vacancy migration barriers. 
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(Vocta,  = +0.98), polarizability ( ,  = +0.97), and bulk modulus 𝜌 𝛼 𝜌
(B,  = -0.88). Consequently, the descriptors Vocta, , B, Eg, and 𝜌 𝛼

 were dropped in favor of retaining Va, since the latter is 𝜔LEO
straightforward to calculate. As expected, the total dielectric 
constant ( ) is strongly correlated with the ionic dielectric 𝜀
constant ( ),  = +0.99, because the ionic contribution to the 𝜀𝑖 𝜌
total dielectric constant is observed to be much larger than the 
electronic contribution ( ) in APs.47,50 Hence,  was retained 𝜀𝑒 𝜀𝑖
and  was removed. 𝜀

Regarding properties of the ions, the ionic radius, atomic 
mass, electronegativity, and ion polarizability of each species 
are highly correlated, as expected. For example, in the case of 
cations, the ion polarizability (  correlates strongly with the 𝛼C)
ionic radius (rC,  = +0.96), the atomic mass (mC,  = +0.94), and 𝜌 𝜌
the electronegativity (ENC,  = -0.98). Similar correlations hold 𝜌
for the anions. Based on these correlations, the ionic radius, 
atomic mass, and electronegativity were dropped in favor of 
retaining ion polarizability. (Although the former three features 
are more straightforward to obtain than the latter, anion 
polarizability has previously been discussed as a parameter that 
impacts conductivity in SEs, and was thus retained to maintain 
consistency with the extant literature.19–23) The Born effective 
charge of the octahedral anion (BECO) correlates with that of 
the framework anion (BECF),  = -0.85; hence, BECF was 𝜌
eliminated in favor of retaining BECO. [We note that the 
Pearson correlation between the Bader charges and Born 
effective charges is moderate for anions (  = -0.62) and weak 𝜌
for cations (  = +0.15). The absence of a strong correlation 𝜌
between these two measures of local charge may arise from the 
stronger sensitivity of the Bader charge to the local 
environment, and the relative insensitively of the Born charges 
to the same. A full tabulation of these charges is provided in the 
Supporting Information.]

Regarding geometric properties of the lattice, the path 
distance for cation migration (CCD, the linear distance between 
cation sites) correlates with the distance between cations and 
octahedral anions (COD,  = +0.91). CCD also correlates with 𝜌
anion-anion distances (AAD,  = +0.82), while AAD correlates 𝜌
with cation – framework anion distances (CFD,  = +0.96). 𝜌
Consequently, COD, AAD, and CFD were dropped in favor of 
retaining CCD. The total path width (PW, the sum of PWc and 
PW2c) correlates strongly with 4 descriptors: the path width 
determined by the perpendicular distance to the closest ion 

(PWc,  = +0.83), the path width determined by the second 𝜌
closest ion (PW2c,  = +0.86), the channel size (Di,  = +0.85), 𝜌 𝜌
and the anion packing fraction (PFA,  = -0.87). All these 𝜌
descriptors relate to the space available for cation migration. 
Hence, PWc, PW2c, Di, and PFA were removed in favor of 
retaining PW.

 Regarding chemical properties, the bond ionicity between 
cations and halogen anions (IC-H) correlates with the bond 
ionicity between anions (ICh-H),  = +0.81; hence ICh-H was 𝜌
removed in favor of retaining IC-H. The latter term was retained 
based on the expectation that bond interactions between cations 
and anions are more relevant for predicting cation migration 
than are those between anions. 

In total, the correlation analysis for vacancy migration 
resulted in the elimination of 24 redundant descriptors, with 20 
descriptors retained. A similar result, with identical retained 
features, was obtained for the interstitial mechanism, Figure S1. 

Model selection. Using the reduced feature set, 18 ML 
algorithms were optimized and evaluated with respect to their 
predictive accuracy on the training data set, Figure 3. For the 
vacancy migration mechanism, most of the linear regressors, 
SVRs, and ‘adaboost + ERTR’ algorithms exhibit good 
accuracy [exceptions include ridge and passive-aggressive 
regression (PAR)], with root mean squared errors (RMSE) of 
82 to 89 meV. For the interstitial mechanism, tree-based 
regressors exhibit good accuracy [exceptions include the 
decision tree regressor (DTR) and gradient boosting regression 
tree (GBRT)] with RMSE of 53 to 57 meV. In total, the 
‘adaboost + ERTR’ algorithm yielded good accuracy for both 
migration mechanisms; this algorithm exhibits the lowest 
summed RMSE over both the vacancy and interstitial 
mechanisms. Therefore, the ‘adaboost+ ERTR’ algorithm was 
adopted for use in the remainder of this study. 

Figure 4 compares the migration barriers predicted by the 
‘adaboost + ERTR’ ML algorithm (with input from the 20 non-
redundant features) to those calculated by DFT. Figures 4a-b 
show comparisons for the training data for vacancy and 

Figure 3. Comparison of the accuracy of ML models for 
predicting migration barriers for (a) vacancy and (b) 
interstitial dumbbell mechanisms. 

Figure 4. Comparison of ML predictions of migration 
barriers (adaboost + ERTR algorithm) with DFT 
calculations. 
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interstitial mechanisms, respectively, while Figs. 4c-d show 
similar comparisons for the test set data. Overall, the agreement 
between ML and DFT is satisfactory for both the training and 
test data. In the case of the test set, the root mean squared error, 
RMSE, is 86 meV for the vacancy mechanisms and 55 meV for 
the interstitial mechanism. In the case of vacancy migration, a 
large portion of the RMSE derives from five data points having 
barriers larger than 550 meV; 48% of the sum of squared error 
(SSE) originates from these 5 samples. This error can be traced 
to the presence of limited data with barriers over 550 meV in 
the training set (~4% of the training set, Figure 4a). In the case 
of interstitial migration, a large portion of RMSE in the test set 
predictions derives from 8 data points with barriers larger than 
180 meV; 70% of the SSE originates from these samples. As 
was the case for the vacancy training data, only 5% of the 
interstitial training data have barriers over 180 meV (Figure 4b), 
suggesting that additional training data would be helpful in 
predicting these high-barrier cases. 

Feature subset evaluation. To determine the number and 
combination of features that yields the most accurate ML 
predictions, ML models were built using all possible subsets of 
the 20 non-redundant features. Figure 5 plots the RMSE for test 
set predictions for the most accurate resulting models as a 
function of the number of features used, n. (Tables S1 and S2 
summarize the combination of features that minimize the 
RMSE for each value of n.) In the case of the vacancy 
mechanism, Fig. 5a, the RMSE initially decreases with n until 
a minimum RMSE of 71 meV is reached at n = 5. The RMSE 
is nearly constant for n = 5 to 15 before increasing for larger n. 
Such a ‘U-shaped’ trend is a well-known example of 
overfitting.51 A similar trend is observed for the predictions of 
interstitial migration barriers: the RMSE initially decreases to a 
minimum at n = 3 (RMSE = 46 meV), remains roughly constant 
up to n = 15, and then increases again thereafter. It is 
noteworthy that the optimal ML models employ feature sets 
with fewer features – 5 features for vacancy migration, 3 for 
interstitial migration – than were used in the full 20-feature 
models, yet the former models exhibit superior accuracy. For 
example, the scatter plot in Figure 6 shows that the 5-feature 
model for vacancy migration has RMSE = 71 meV, whereas the 
20-feature model has RMSE = 86 meV. In the case of interstitial 

migration, the RMSE is reduced from 55 meV in the 20-feature 
model to 46 meV in the 3-feature model. In addition to their 
improved accuracy, a further benefit of the reduced-feature 
models is their simplicity: models that rely on less input data 
are more easily interpreted, and are therefore more helpful in 
improving one’s understanding.   

In the spirit of improved understanding, it is instructive to 
consider the ML models constructed using only a single feature. 
The accuracy of these models is summarized in Figure S2 as a 
function of the feature employed. Although these models are 
less accurate than the multi-feature models (Fig. 5), they have 
the advantage of addressing the question: “if one is restricted to 
a single feature, which feature is most important?” In the case 
of vacancy migration, Fig. S2a indicates that Va, the unit cell 
volume per atom, yields the most accurate predictions. This 
result seems reasonable when one recognizes that Va is an 
information-rich descriptor: a larger Va implies a longer 
migration distance, wider migration channel, and larger 
polarizability. These same factors have an impact on the 
vacancy migration barrier, as shown in the multi-feature 
importance analysis discussed below. Furthermore, since Va is 
strongly correlated with the polarizability, , and the bulk 𝛼
modulus, B, (Table 1) it can be concluded that the electronic 
and elastic “softness” of the SE are also relevant properties that 
are accounted for by the appearance of Va.19–23 In the case of 
interstitial migration (Fig. S2b), the formation energy, Ef, was 
identified as the single descriptor with the smallest error. This 
feature also appears in the multi-feature importance analysis, 
and will be discussed in more detail below.

Feature importance – vacancy migration. Using the mean 
decrease in impurity (MDI), Figure 7 illustrates the relative 
importance the features used by the reduced-feature ML 
models. Figure 7a illustrates feature importance for the vacancy 
mechanism. In this case, properties related to the crystal lattice 
– the path distance (measured by the cation-cation distance, 
CCD) and total path width (PW) – have the greatest impact on 
migration barriers; together, these two properties comprise 70% 
of the total importance. Path distance, with an importance of 
42%, is the most impactful feature overall. Features that are 
strongly correlated with CCD, which were dropped during 
feature filtering, include: cation – octahedral anion distance 
(COD), cation – framework anion distance (CFD), and the 
anion-anion distance (AAD). Path distance, PW, with an 
importance of 28%, is the 2nd-most impactful feature overall. 
Features that are strongly correlated with PW, which were 

Figure 5. Comparison between the ‘adaboost + ERTR’ 
models with different numbers of features for (a) vacancy 
and (b) interstitial dumbbell mechanisms. Each bar 
represents the lowest RMSE for predicting the test data 
among models with different feature subsets for a fixed 
number of features. The red bar indicates the optimal 
number of features.

Figure 6. Performance of the adaboost + ERTR ML model 
relative to DFT calculations using the optimal feature sets 
shown in Fig. 5. (a) vacancy migration barriers predicted 
using five-features, and (b) dumbbell migration barriers 
predicted using three features.
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dropped during feature filtering, include: PWc, PW2c, Di, and 
PFA. It is noteworthy that CCD, PW, and all their correlated 
properties convey information related to the amount of ‘free 
space’ available for cation motion through the crystal lattice. 
Hence, one may conclude that lattice structure is the most 
important factor in determining ion mobility via a vacancy 
mechanism. 

The next-most-important category of features for vacancy 
migration, comprising the remaining 30% of feature importance, 
are all related to the electronic properties of the anions. This 
group includes the polarizabilities of the framework anion ( , 𝛼F
11%) and the octahedral anion ( , 10%), and the Bader charge 𝛼O
of the octahedral anion (BCO, 9%). Correlations between anion 
polarizability and cation migration have been reported in the 
literature.19–23 Anions that are more polarizable more readily 
allow for deformation of their electron clouds, and this 
deformation can facilitate cation migration. Redundant features 
that strongly correlate with polarizability include ionic radius 
(r), atomic mass (m), and electronegativity (EN). The Bader 
charge measures the net charge on an atom; thus BCO reflects 
the degree of charge transfer from the cations to the octahedral 
anions. The Bader charge exhibits a moderate Pearson 
correlation with an ion’s polarizability (  = -0.67 for BCO and 𝜌

 and  = -0.63 for BCF and ). As all of , , BCO, and 𝛼O 𝜌 𝛼F 𝛼F 𝛼O
their redundant/correlated features are intrinsic properties of the 
respective anions, we conclude that the choice of the anions (or 
composition of the SE) is the 2nd-most-important factor in 
influencing vacancy-mediated ion migration. 

Figure 8 shows ICE plots for the five features used in the ML 
model for vacancy migration. These plots quantify how 
changing one of these features (while keeping all others 
constant) changes the barrier value. Figure 8a shows the 
dependence on path distance; increasing the path distance 
increases the barrier. Hence, shorter migration distances are 

desirable for enhancing cation mobility. Notably, the magnitude 
of the average increase in the barrier (shown by the bold line in 
Fig. 8) from smallest to largest CCD is nearly 400 meV. This is 
the largest change in the barrier for any of the 5 features shown 
in the ICE plots. The high sensitivity of the barrier to CCD is 
consistent its high importance as determined by the MDI, Fig. 
7a. A previous ML study also reported that the average distance 
between mobile ions is a useful feature for classifying 
superionic conductors.44 

Figure 8b shows that the migration barrier decreases with 
increasing PW, implying that wider migration channels are 
beneficial for facile ion transport. The magnitude of the change 
in barrier height is approximately 200 meV over path widths 
ranging from 0.21 to 2.17 Å. This degree of barrier variation is 
roughly half that observed for CCD, yet is larger than that for 
the remaining three features in Figures 8c-e. Hence, this 
behavior is consistent with PW being the second-most 
important feature based on MDI, Fig. 7a. 

Figure 8c shows that the barrier height decreases (in a step-
wise fashion) with increasing polarizability of the framework 
anion, . The three leftmost data points corresponding to small 𝛼F

 values originate from fluorine ions in different anti-𝛼F
perovskite environments: K3OF (  = 0.89), Na3OF (  = 1.02), 𝛼F 𝛼F
and Li3OF (  = 1.20). Systems with this degree of 𝛼F
polarizability for the framework anions have the highest 
migration barriers compared to other APs containing other 
framework anions (i.e., Cl, Br, I, S, and Se). For larger  the 𝛼F
energy barrier initially decreases by ~100 but then plateaus for 
larger polarizabilities. Figure 8d also shows an overall decrease 
in the barrier with increasing polarizability of the octahedral 
anion, . This decrease is preceded by a small increase in the 𝛼O
barrier at small  corresponding to polarizabilities typical of 𝛼O
fluorine ions. Overall, these results demonstrate that the 
migration barrier decreases with increasing polarizability of the 
anions, as proposed in earlier studies.   

Figure 7. Relative importance of features used in ML models for ion migration via (a) vacancy and (b) interstitial mechanisms. 
Feature importance was assessed using the mean decrease in impurity. Colors distinguish the feature categories, which are defined 
in Table 1.
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Finally, Figure 8e shows that the migration barrier decreases 
with increasing BCO, although the sensitivity to the barrier is 
negligible for small BCO. Furthermore, the overall change in the 
barrier size across the full range of BCO is the smallest of the 5 
features investigated, consistent with the smaller feature 
importance percentages shown in Fig. 7. 

Feature importance – interstitial migration. Figure 7b 
shows the feature importance analysis for interstitial dumbbell 
migration. Similar to vacancy migration, the width of the 
migration channel (PW) plays an important role in determining 
the migration barrier for interstitials. PW is the most important 
feature, comprising 49% of the total importance for interstitial 
migration, surpassing its importance (28%) for vacancy 
migration. The greater importance played by the path geometry 
for interstitial migration likely reflects a sensitivity to the 
greater lattice strain induced by interstitial ions compared to that 
of vacancies (i.e., atom crowding is exacerbated in the presence 
of interstitials). Different from the case for vacancy migration, 
the path distance (CCD), which appeared as the most important 
feature for vacancy migration, does not appear as an important 
feature to describe the migration of the interstitial dumbbell. 
(Indeed, CCD was not identified as a necessary feature in 
training the ML model.)

The formation energy of the interstitial dumbbell (Ef) and the 
bond ionicity between the cation and chalcogen anion (IC-Ch) 
appear as the second- and third-most important features, 
comprising 35% and 16% of the relative importance, 
respectively. It is noteworthy that the formation energy emerges 
as a relevant feature, as it is not widely recognized as a property 
that correlates with the migration barrier of interstitials. (Rather, 
Ef is well-known to impact the concentration of interstitials.) Its 
identification highlights a benefit of the present ML analysis in 
pinpointing overlooked features. Ef includes contributions from 
lattice strain, as well as from alterations in the bonding network 
of the interstitial. As discussed above, strain dependence was 
also cited as an explanation for the greater importance of the 
path width in interstitial vs. vacancy migration. Consequently, 
it may be hypothesized that Ef is a relevant feature for interstitial 
migration due to its similar dependence on lattice strain.

Figure S3 presents ICE plots for the important features 
associated with interstitial migration. Regarding the 
dependence on PW, figure S3a shows that the migration barrier 
is approximately insensitive to PW for channel widths less than 
1.7 Å. The barrier then decreases for increasingly larger PW. 
The fact that the PW must be larger than a threshold value (~1.7 
Å) to observe a reduction in the barrier suggests that the 
interstitial exhibits a characteristic size that the channel must 
accommodate to allow for enhanced cation mobility. Regarding 
the dependence on Ef, Figure S3b shows that the migration 
barrier generally increases with increasing Ef. This behavior is 
consistent with the previously-discussed notion that lattice 
strain is necessary to both form the interstitial and for it to 
migrate; the energy penalties associated with these strains 
impede cation mobility.  Finally, Figure S3c illustrates a gradual 
increase in the barrier with increasing IC-Ch.

Conclusion
This present study has employed ML to quantify the importance 
of several chemical, physical, and structural features on ion 
transport within a crystalline lattice. Adopting the anti-
perovskite crystal structure as a model system, several ML 
algorithms were trained to predict ion migration barriers. The 

Figure 8. Individual conditional expectation (ICE) plots for 
the features relevant for vacancy migration: (a) path 
distance, CCD, (b) total path width, PW, (c) polarizability 
of the framework anion, , (d) polarizability of the 𝛼F
octahedral anion, , and (e) Bader charge of octahedral 𝛼O
anion, BCO. Blue lines represent the change in migration 
barrier for each migration path in the training dataset as the 
target feature is varied from its minimum to its maximum 
value. The bold line depicts the average of the migration 
barrier over all curves.  denotes the standard deviation of 𝜎
a given feature within the training data. 
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algorithms were informed by a data set containing more than 
600 barriers that were calculated in a consistent fashion using 
density functional theory. The training set is derived from 36 
alkali metal chalco-halide anti-perovskites, and includes 
vacancy and interstitial migration mechanisms. Highly 
correlated (i.e., redundant) features were identified and 
eliminated from the analysis, thus maximizing the simplicity of 
the resulting models and minimizing overfitting. Using the most 
accurate algorithm, the feature combinations that yielded the 
most accurate predictions were identified. Finally, the relative 
importance of the features and their influence on ion transport 
were quantified using the mean decrease in impurity (MDI) and 
individual conditional expectation (ICE) plots.

This analysis correctly reiterates the importance of features 
that are known to influence mobility – for example, anion 
polarizability – but also identifies others whose importance is 
not widely recognized.  Lattice properties such as hopping 
distance and channel width were observed to have the greatest 
influence on cation mobility. These features comprise 70% of 
the total feature importance for vacancy migration, and ~50% 
of the importance for interstitial migration. Individual 
conditional expectation analyses performed on these features 
showed that barriers decrease as hopping distance decreases and 
as channel width increases. Additional significant features 
include the anion polarizability (22% for vacancy migration) 
and the defect formation energy (35% for interstitial migration). 
The identification of the formation energy as a significant 
feature for interstitial migration is noteworthy because this 
feature is not widely recognized as one that influences mobility; 
rather, the formation energy is typically associated with the 
concentration of defects.  

In sum, this analysis will facilitate the design of efficient 
solid electrolytes by reducing the multi-dimensional design 
space to a sub-set of properties that are the most important. 
Nevertheless, as this work specifically targets ion mobility in 
anti-perovskites, an important next step will be to generalize the 
results to other crystal structure classes. An example of an 
improvement that would facilitate application to a wider range 
of solids is the inclusion of dynamical phenomena such as 
lattice vibrations and poly-anion rotations within the feature set. 
In support of such a more general analysis, it should be noted 
that essentially all of the features that were used in the present 
study of APs are straightforward to evaluate (or obtain) for 
other categories of crystalline conductors. Moreover, several of 
the most important features identified here for vacancy 
migration have been discussed in the literature for other crystal 
systems, implying a degree of transferability of the present 
results.19–23,44 
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