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7 ABSTRACT

8 Agarose gels are excellent candidates for tissue engineering as they are tunable, viscoelastic, and show a pronounced strain-
9 stiffening response. These characteristics make them ideal to create in vitro environments to grow cells and develop tissues. 

10 As many other biopolymers, viscoelasticity and poroelasticity coexist as time-dependent behaviors in agarose gels. While 
11 the viscoelastic behavior of these hydrogels has been considered using both phenomenological and continuum models, there 
12 remains a lack of connection between the underlying physics and the macroscopic material response. Through a finite 
13 element analysis and complimentary experiments, we evaluated the complex time-dependent mechanical response of 
14 agarose gels in various conditions. We then conceptualized these gels as a dynamic network where the global 
15 dissociation/association rate of intermolecular bonds is described as a combination of a fast rate native to double helices 
16 forming between aligned agarose molecules and a slow rate of the agarose molecules present in the clusters. Using the 
17 foundation of the transient network theory, we developed a physics-based constitutive model that accurately describes 
18 agarose behavior. Integrating experimental results and model prediction, we demonstrated that the fast 
19 dissociation/association rate follows a nonlinear force-dependent response, whose exponential evolution agrees with 
20 Eyring’s model based on the transition state theory. Overall, our results establish a more accurate understanding of the time-
21 dependent mechanics of agarose gels and provide a model that can inform design of a variety of biopolymers with a similar 
22 network topology.

23

24

25 1. INTRODUCTION

26 Biopolymers are used extensively as both commodity materials and for specialized applications1–3. For example, chitin is 
27 important for medical devices and wound-healing dressings4, carrageenan films play an important role in extending the shelf 
28 life of foods5, alginate is used to prevent dehydration of meats6, and agar is common for culturing cells7–9. Biopolymers are 
29 selected for their ease of manufacture from natural precursor materials as well as for their ability to bear loads over long 
30 time scales. However, biopolymers also exhibit complex behaviors that may influence their durability and function. An 
31 accurate characterization of these materials is thus critical to guide material selection and design, yet many aspects of how 
32 biopolymers respond to loads applied over time remain poorly understood. Their physical behaviors are complex and vary 
33 across multiple length scales10, where many behave as semiflexible networks. Typically, these polymeric systems have 
34 supramolecular assemblies which can vary between about one nanometer and tens of nanometers. Of particular interest are 
35 agarose-based hydrogels, which are commonly used as scaffolds in tissue engineering due to their low cost, biodegradability, 
36 and highly controllable elastic properties11. Agarose gels are viscoelastic semiflexible biopolymer hydrogels whose 
37 mechanical response depends on the polymer concentration12 and has been demonstrated to exhibit a strain stiffening 
38 response that is likely to influence cellular responses13,14. While bulk properties are important to bear loads, cells respond 
39 directly to the small-length scale properties and behavior of their host scaffolds. Modulus, viscoelasticity, plasticity, and 
40 nonlinear elasticity of substrates and scaffolds influence cells and alter the fundamental processes of growth, proliferation, 
41 migration, and differentiation15,16. 

42 To better understand the characteristic mechanics and time-dependent response of agarose gels, let us first describe its 
43 network features. Below the gelation point, double helices are formed through the conglomeration of agarose molecules. 
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44 Each agarose molecule participates in more than one double helix. Supramolecular fibers form from the aggregation of 
45 double helices through hydrogen bonding. These bonds govern the self-gelation of agarose gels (Figure 1.A) and enable the 
46 network to be dynamic through bond formation and dissociation which dissipates elastic stored energy when exposed to 
47 mechanical stimuli. The agarose molecules within the supramolecular fibers of the network structure thus possess a solid-
48 like behavior that has been proposed to be capable of fast energy dissipation. In contrast, agarose molecules present in the 
49 clusters or junctions and that are not aligned can dissipate energy much more easily as they slide over adjacent molecules 
50 thus generating a fluid-like behavior17. Hence, it has been proposed that bond exchange processes taking place in the 
51 junctions will correspond to longer relaxation times or slower dissipation of the stored elastic energy. Clusters formed by 
52 several suprafibers within agarose networks increase the number of connected bonds under deformation. The adjacent 
53 agarose molecules that are not part of the cluster in a stress-free configuration are then able to form new crosslinks which 
54 increases the size of the cluster and strengthens the network. This process enables agarose to dissipate stress when loaded 
55 over long time periods. Elucidating the complex behavior of agarose gels is crucial to design more controllable materials, 
56 but also to elucidate the factors leading to cell responses when subjected to externally applied loads. In addition, a deeper 
57 understanding of agarose behavior will provide novel insight into many biological materials which present similar network 
58 topology (i.e., actin filaments and collagen gels) (Figure 1.B).

59 The behavior of agarose gels, and many other biopolymers, is considered to be poroviscoelastic because of their high-water 
60 content18–20. Fluid movement and mass transport through the solid network influence behavior. However, existing 
61 poroviscoelastic models fail to connect the network topology with the mechanical response of the solid phase within 
62 hydrogels. Such models lack accuracy as they do not account for the movement and rearrangement of molecules within the 
63 polymer network. Generally, existing mathematical models used to characterize the macroscopic mechanical response of 
64 agarose are empirical. Most either describe the mechanical response by approximating its structure as a combination of 
65 simple linear elements (i.e., Maxwell or Kelvin-Voigt model) or describe the stress-strain relations from the stored elastic 
66 energy expressions (i.e., Neo-Hookean or Holzapfel model). Studies using a linear combination of phenomenological 
67 models, such as Prony series viscoelastic model21, can broadly be found in literature to describe the time-dependent response 
68 of agarose-based hydrogels. For example, Chen et al. (2011)22 used this approach to study the deformation of chondrocytes 
69 seeded in agarose gels while Pauly et al. (2017)23 investigated the effects of additives on the mechanical properties of 
70 agarose hydrogels. On the other hand, Caccavo and Lamberti (2017)24 used fundamental balance laws to describe the 
71 poroviscoelastic behavior of hydrogels under large deformation, and applied it to agarose-based hydrogels25. This latter 
72 model provided an important step towards the development of refined models for biopolymers; however, this modeling 
73 approach is empirical which limits its use for design purposes. High-precision atomistic simulations, such as molecular 
74 dynamics, have been the subject of an increasing developments in the last two decades. The molecular modeling of 
75 hydrogels incorporates into a model every single element that is part of the system (i.e., atomic positions, velocities, and 
76 forces). In this context, Casalini (2013)26 developed a molecular model of an agarose-carbomer hydrogel to explore the 
77 effect of mesh size on solvent diffusion at low solute concentration. Although atomistic models remove all the assumptions 
78 that limit the application of a specific model, they are still computationally expensive and difficult to apply to polymeric 
79 networks models at large time scales. Thus, while viscoelasticity in agarose networks have been studied extensively, no 
80 studies to date evaluate if the time-dependent response of hydrogels can be accurately described by dynamic bond evolution.
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81 In this study, we connect the viscoelastic macroscopic response with the chain-level physics of agarose-based hydrogels. 
82 This work seeks to establish a fundamental understanding of mechanisms responsible for nonlinear viscoelasticity of agarose 
83 hydrogels by adapting the Transient Network Theory (TNT)27 to the case of agarose networks. More specifically, the TNT 
84 is modified to capture the force-dependent response of the fast bond dynamics observed during creep and to capture the 
85 nonlinear plastic flow-like behavior observed during the multi-step stress-relaxation experiment. We propose bond 
86 dynamics as a novel mechanism for describing strain-stiffening and force-dependent viscoelastic material behavior of 
87 agarose. With new data we sought to better understand the time-dependent mechanics of agarose gels to inform their design 
88 and to provide a model that may be extended to a range of biopolymers which share similar network topology. The 
89 manuscript is organized as follows. In Section 2, we present and analyze experimental results on the behavior of agarose 
90 subjected to unconfined compression and study the poroelastic contribution on the overall time-dependent response. In 
91 Section 3 we review the main elements of the TNT to model the response of dynamic polymer networks and introduce the 
92 nonlinear bond dynamics of agarose-based gels based on network topology. We then modify the TNT to capture the 
93 experimental observations reported in Section 2. Finally, in Section 4, we provide a comprehensive overview of the model.

Figure 1. A. Gelation mechanism of agarose, from left to right: When water is added to agarose and it is heated up, 
agarose untangle and forms random coils. As the agarose cools (~45oC), coils pair to form helices. As the temperature 
continues to drop, the helices bundle and form higher-order assemblies (suprafibers) that are coincident with water inside 
the gel. B. Schematic representation of different biopolymer network showing cluster and thick fibers structure.  
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94 2. CHARACTERIZATION OF THE TIME-DEPENDENT RESPONSE OF AGAROSE UNDER UNCONFINED 
95 COMPRESSION

96 In this section, we present and analyze experimental results on the behavior of agarose subjected to unconfined compression. 
97 We described the time-dependent mechanical response of agarose gels for multi-step stress-relaxation and steady creep 
98 conditions with the objective of establishing a connection with chain-level physics. Because agarose is a biphasic material 
99 comprised of a solvent-filled biopolymer network, we first aimed to characterize the role of poroelastic effects, i.e., the time 

100 dependence of the response related to solvent transport, on the gel’s overall response. Thus, finite element analysis (FEA) 
101 was used to model and reproduce fluid transport in experimental specimens during loading over time. 

102 2.1 Experimental methodology

103 Agarose Gel Fabrication. Hydrogels were prepared by dissolving 5%, 7.5% and 10%, (w/w) agarose (Sigma A9539) into 
104 phosphate buffered saline (PBS, pH 7.4, Invitrogen), and while stirring the agarose powder was slowly added to prevent 
105 clumping. The solution was weighed, covered with aluminum foil to reduce evaporation, and boiled (~95oC) and 
106 magnetically stirred to maintain homogeneity for 5-10 minutes until agarose was dissolved. Agarose solutions were drawn 
107 into 3-, 5-, and 10-ml syringes cooled at room temperature. The hydrogels were removed from the syringes and cut into 
108 8.66 mm, 12 mm and 16 mm lengths, respectively, to create 1:1 cylinders (height:diameter ratio). 

109 Unconfined Compressive Multi-step Stress-Relaxation Test. A total of 15 samples were swelled to equilibrium in PBS for 
110 48 h. Unconfined Compressive stress-relaxation testing (n = 3 samples/composition/dimension) was conducted on a 
111 Mechanical Testing System (MTS Insight II; Eden Prairie, MN; 250 N load cell; data recorded at 1 Hz) at room temperature; 
112 testing was performed with samples immersed in PBS. Aluminum compression platens were rigid, impermeable, and 
113 smooth. A minimum contact force of 30 mN ensured full contact between platen and sample (Figure 2.A). A USB-camera 
114 (Dino-Lite 1.3MP EdgePLUS AM4117MZT) was used to assess for full contact prior to testing as well as to evaluate 
115 uncompressed, fully compressed, and recovered (48 hours of swelling after testing) dimensions to calculate lateral 
116 expansion. The test profile included four incremental steps in strain = {5%, 10%, 15%, 20%}. Each of these stages was 𝜖 
117 divided into a compression phase and a relaxation phase. Samples were deformed at a strain rate of  = 0.05/s over 1 s, and 𝜖
118 then each strain was held for 5 h to reach an equilibrium stress state (Figure 2.B). 

119 Water absorption/release quantification. After swelling in PBS for 48 hours, 5% w/w samples (n = 3) were weighed for 
120 initial mass  (before mechanical testing and final mass  (after stress-relaxation experiments). Samples were weighed 𝑚0 𝑚𝑓

121 quickly to avoid water reabsorption and minimize evaporation, and the amount  of solvent exchanged with the media Δ𝑚 Δ
122  was calculated. This procedure was used for the lower agarose concentration gels since their higher porosity (Table 1) 𝑚
123 made them best candidates to have larger values for . Samples were next re-submerged in PBS and weighed after 48 Δ𝑚
124 hours to assess for mass of fluid reabsorbed. 

125 Unconfined Compressive Creep Test. Unconfined compressive creep tests were also conducted to evaluate short-term time-
126 dependent responses. Creep testing was performed in PBS at room temperature on an MTS with closed-loop load control. 
127 A total of 9, cylindrical, 12x12 mm samples (n = 3/group) were subjected to constant compressive stress based on the overall 
128 strains achieved after a fast-loading stage (  = 0.05/s.). The overall strains achieved during the loading stage were = {1%, 𝜖𝑙 𝜖𝑙 
129 2.5%, 5%, 7.5%, 10%, 15%}. The loading stage was followed by a 120 s creep hold at .𝜖𝑙

130 2.2 Experimental approach: multi-step stress-relaxation

131 The multi-step stress relaxation depicted in Figure 2. C-E shows the mean stress versus time response of the three different 
132 sample sizes for each of the three agarose gels compositions. At each level of applied strain, the stress increased immediately 
133 after the step-strain application, followed by a relaxation stage that reaches a quasi-steady value, referred to as the plateau 
134 stress  in the remainder of the manuscript. We observed that this value increases with the applied strain while being 𝜎𝑝

135 independent of specimen size. Equilibrium values for the stress at the end of the stress-relaxation testing were determined 
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136 to be 0.028 ± 0.00082 MPa, 0.055 ± 0.0011 MPa and 0.083 ± 0.0005 MPa for 5% w/w, 7.5% w/w and 10% w/w respectively. 
137 The stress relaxation data were consistent between different samples showing a small variability.

138 A similar “stress-plateau effect” behavior was observed in multi-step stress relaxation testing (with a 30 minute relaxation 
139 period) on the data reported by Roberts et al. (2011)12 in their comparative study of the viscoelastic mechanical behavior of 
140 agarose and poly(ethylene glycol) hydrogels. Because of the relatively short time used between step strains in this previous 
141 study, the stress does not plateau as clearly as reported here although general trends are constant between the two studies. 

142 2.3. Experimental approach: steady-state creep. 

143 When subjected to a constant compressive load, the agarose sample displayed a combination of elastic deformation and 
144 creep as described below and as shown in Fig. 3.A. First, following a period of fast elastic deformation, the specimen 
145 displayed a transitory regime where creep rate first substantially decreased with respect the loading rate  = 0.05/s and then 𝜖
146 later increased before reaching a steady-state creep (Figure 3.C). We also observed a convergence of the strain rate to a 
147 constant over time, which indicated steady-state creep and not consolidation effects from fluid transport out of the gel. We 
148 further noted that the average creep rate increased with applied stress (Figure 3.B), suggesting that the creep response of 

Figure 2. A. Schematic of the unconfined compression test of a cylindrical disk of hydrated hydrogel. B. Strain vs. time 
function features multiple steps with holding times to observe relaxation. C, D, and E. Experimental results obtained 
from multi-step stress-relaxation (8.66 mm, 12 mm, and 16 mm) for 5%, 7.5%, and 10% w/w agarose compositions, 
respectively. For each dimension, the averaged data is represented. For each composition, agarose gels showed the same 
long-term stress-relaxation response independent of the sample size. The inset in C. shows the stress evolution for the 
first loading and relaxation step in a semilogarithmic scale along the x-axis.
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149 agarose is force dependent. At higher loads, however, creep could only be sustained for a while before the specimen ruptures. 
150 We finally did not notice major differences between the creep response of agarose with different compositions.

Figure 3. A. Experimental results obtained from creep tests of 12 mm height (and diameter) samples for each of the 
agarose compositions (n = 3/composition). Data is reported using a solid blue line (average values from samples tested), 
and a blue region (± standard deviation). The red-cross indicates mechanical failure. Agarose gels showed same creep 
response independent of agarose composition. B. Evolution of the average data for the creep strain rate  respect the 𝜖𝑐
average data of the constant stress applied ( ) during the creep test. C. Evolution of the average data for 𝜎𝑖 𝜎1 < … < 𝜎6

the creep strain rate  over time for the different constant stresses applied . Red-cross indicates the mechanical failure.𝜖𝑐 𝜎𝑖

151 2.4. Poromechanical effects

152 As most biopolymers, agarose can be considered as a biphasic mixture consisting of two constituents: a solid skeleton phase 
153 that is intermixed with a fluid phase. In the following, we therefore use superscripts  and  to denote the solid and fluid 𝑠 𝑓
154 phases, respectively18,28,29. For simplicity, the solid matrix is assumed to have an isotropic and uniform pore distribution on 
155 the whole domain while the mixture is assumed to have reached its equilibrium swollen state so it can be considered fully 
156 saturated. During deformation, however, the fluid can move relative to the solid skeleton, producing an effective time-
157 dependence of the mixture, independently of the material response of the polymer matrix. This poroelastic effect brings a 
158 challenge to data interpretation as it is difficult to decouple the viscoelastic and poroelastic origins of the material’s time 

159 behavior30–33. The volume fraction  of phase  (  or ) is defined as , where X is the material 𝑛𝛼(𝑿,𝑡) 𝛼 𝛼 = 𝑠 𝑓 𝑛𝛼(𝑿,𝑡) =
𝑑𝑣𝛼

𝑑𝑣

160 coordinate,  is the time, and  is the differential volume fraction of constituent . The saturation condition implies that 𝑡 𝑑𝑣𝛼 𝛼 𝑛𝑠

161  and the total Cauchy stress can be decomposed into a solid and fluid component as34:+ 𝑛𝑓 = 1

𝝈 =  𝝈𝒔 + 𝝈𝒇 = 𝝈𝒔 ― 𝑝𝑓𝑰 1
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162 Here,  stands for the fluid pressure,  is partial stress of solid skeleton35 and  is the identity tensor. Interstitial fluid flow 𝑝𝑓 𝝈𝒔 𝑰

163 is modeled based on isotropic Darcy’s law as 36 where  is the void ratio,  is the hydraulic ∇𝑝𝑓 = ―
1
𝐾

𝑒
1 + 𝑒 (𝑣𝑓 ― 𝑣𝑠) 𝑒 𝐾

164 conductance,  is the velocity of the solid phase and  is the velocity of the fluid phase, as before. 𝑣𝑠 𝑣𝑓

165 To explore the extent of these effects on material response, we implemented the above linear poromechanics model into a 
166 general-purpose FEA software Abaqus 2019 (Dassault Systèmes Simulia Corp., USA). The specimen was modeled as an 
167 axisymmetric cylinder around its axis of revolution (r = 0) (Figure 5.B). Solvent transport was assumed isotropic and 
168 modeled by defining the hydraulic conductance of the fluid K, the void ratio  and the specific weight of the fluid . Gu et 𝑒 𝛾𝑠

169 al. (2003)37 described the evolution of K and  as a function of the deformation applied to agarose gels (detailed description 𝑒
170 on Appendix I). The compression step was run using the SOILS analysis in Abaqus, which accounts for the pore pressure 
171 response and permeability. Because large deformation was used on our tests, the nonlinear geometric option (NLGEOM) 
172 was applied. To avoid discontinuities on the step resolution, the maximum pore pressure change per increment was set to 
173 10 Pa.

174 Regarding boundary conditions, the fluid pore pressure  was set to zero on the cylindrical periphery (right side) to allow 𝑝𝑓

175 the fluid flow in the radial direction. Furthermore, to simulate the rigid and impermeable platen, all displacements and 
176 rotations were constrained using an encastre boundary condition on the bottom platen. The contact with the platens 
177 compressing the hydrogels was assumed to be perfectly lubricated and defined as a frictionless contact. Two different 
178 predefined fields were created on the initial step. The first one was used to initialize the internal state variables, which were 
179 set to zero. The second one defined the initial void ratio of the sample and was set to  (see Appendix I).𝑒0

180 Nonlinear analysis was performed using the Newton-Raphson algorithm. The hydrogel sample was modeled by the coupled 
181 pore-fluid/stress CAX8P elements, 8-node quadrilateral axisymmetric elements that considers biquadratic displacement and 
182 bilinear pore pressure. By subsequent mesh refinements, the results presented here were demonstrated to be mesh-size 
183 independent.

184 This model was used to simulate the two different tests conducted for this study: multi-step stress-relaxation and creep. To 
185 simulate stress-relaxation, a displacement  was prescribed on the top platen using a tabular amplitude to match the strain 𝑢𝑦

186 previously described in Section 2.1. To simulate creep, a range of pressures  were prescribed to the top platen with its 𝑃𝑦

187 respective tabular amplitude as well to simulate a constant strain ratio during the compression stage. To assess the role of 
188 poromechanics alone, we first assumed that the solid skeleton behaves as a compressible Neo-Hookean hyperelastic solid. 
189 In this context, the sample deformation is measured by the deformation gradient  which represents the 𝑭(𝑡) = 𝑑𝒙(𝑡)/𝑑𝑿
190 linear mapping between the position vector  of a material point in the reference configuration and its position  in the 𝑿 𝒙(𝑡)
191 current configuration (Figure 4). In the case of unconfined compression, this tensor takes the simple form 𝑭(𝑡) = 𝑑𝑖𝑎𝑔[𝜆,𝜆𝑙,
192 , where  is the length ratio along the vertical direction and  represents the lateral length ratio. 𝜆𝑙] 0 < 𝜆 ≤ 1 𝜆𝑙 ≥ 1

Figure 4. Conceptual diagram of deformation gradient tensor , the length ratio along the axial direction  and the lateral 𝑭 𝜆
length ratio .  𝜆𝑙
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193 The material strain is defined by the Finger deformation tensor (or left Cauchy-Green deformation tensor) , which  𝒃 = 𝑭𝑭𝑇

194 may further be decomposed into a volumetric component  and an isochoric component . With these 𝐽𝑒 = det 𝒃 𝒃 = 𝐽 ―
2
3

𝑒  𝒃
195 definitions, the strain energy density (per reference volume) of our compressible Neo-Hookean model is provided by

𝜓 = 𝑐10(tr 𝒃 ― 3) +
1

𝐷1
(𝐽𝑒 ― 1)2 2

196  

197 The material constant  and  can further be written in terms of the more familiar elastic modulus  and the Poisson’s 𝑐10 𝐷1 𝐸𝑠

198 ratio  of the solid network respectively:𝜈𝑠

𝑐10 =
𝐸𝑠

4(1 + 𝜈𝑠) 
 𝑎𝑛𝑑 𝐷1 =

6(1 ― 2𝜈𝑠)
𝐸𝑠

2.b

199 The true (Cauchy) stress tensor can then be derived as: 

𝝈 =
2
𝐽𝑒

𝒃
∂𝜓
∂𝒃 =  

2
𝐽𝑒

𝑐10Dev 𝒃 +
2

𝐷1
(𝐽𝑒 ― 1)𝑰 3

200 where the deviatoric part of  is given by  = . The Poisson’s ratio  for the solid network was 𝒃 Dev(𝒃) (𝒃 ―
tr 𝒃

3 𝑰) 𝜈𝑠

201 experimentally determined by imaging and measuring dimensions of each sample before compression and 50 minutes after 
202 the load was applied.  Poisson’s ratio was found to be  = 0.17, which is in good agreement with previous studies19,38. The 𝜈𝑠

203 Poisson’s ratio in this study was assumed to remain constant during testing.

204 To obtain the elastic modulus  of the network, an optimization algorithm was developed to directly compare the contact 𝐸𝑠

205 force from modeling results and the experimental data (see Appendix III). In this case, contact force obtained from first 
206 compression stage (  = 0.05) on the multi-step stress-relaxation on 5% w/w agarose gels was used.  is set to be equal to 𝜖 𝐸𝑠

207 0.81 MPa.

208 Numerical simulations together with experimental findings indicate that poromechanics plays only a minor role stress 
209 relaxation. From simulations, we can state fluid transport occurred within the first 2000 s (  35 min) (Figure 5.C and 5.D); ~
210 then stress remained constant until the end of the simulation. 

211 2.5. Experimental confirmation of poromechanical effects

212 We next sought to experimentally confirm our finding that poroelasticity did not dominate the behavior of agarose under 
213 the parameters applied in our computational analysis. Mass loss from samples was performed to experimentally confirm the 
214 minor role of energy-dissipation from poromechanics (Table 1). The amount of water released increased with increasing 
215 sample diameter due to the higher water content in the initial state. In relative terms, Table 1 shows that the amount of water 

216 loss remained constant with respect the initial gel mass , independently of sample size. (‖Δ𝑚‖ = ‖Δ𝑚
𝑚1‖ = 10.1%)

[mm]𝑑  [g]𝑚1  [g]Δ𝑚

8.66 0.57 ± 0.022 - 0.05 ± 0.028 (-9.34%)

12 1.32 ± 0.084 - 0.14 ± 0.033 (-10.7%)

16 3.43 ± 0.17 - 0.35 ± 0.069 (-10.3%)
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Table 1. The initial mass of the agarose gels is shown as . Mass variation on gels due to the water mass loss, is reported 𝑚1
as  and is calculated as , where  initial mass of the sample and  is the mass measured after the Δ𝑚 Δ𝑚 = 𝑚2 ― 𝑚1 𝑚1 𝑚2
experimental test. 

217 The effect of water loss was also assessed through the diametrical contraction of the sample during stress-relaxation testing 
218 (Figure 5.E). When compression is held, pressurized pore fluid slowly leaves the system in the radial direction of the sample 
219 while pores within it collapse reducing its volume. When diametrical contraction stops due to this phenomenon, it can be 
220 understood as the end of the poromechanics contribution to the energy dissipation. The experimental data recorded 
221 dissipated energy after the poroelastic model (Section 2.4) plateaued which increased the difference between the equilibrium 
222 forces. Based on this observation, the purely poroelastic computational model was insufficient to explain the behavior of 
223 agarose in response to unconfined compression observed during the relaxation stage. However, for lower agarose 
224 concentrations, agarose network may become poorly crosslinked (i.e., near the percolation threshold). Arbabi and Sahimi 
225 (1993) concluded that for networks with low connectivity, the capabilities of continuum models may be limited since the 
226 affine deformation assumption can no longer be applied39. Due to the network's decreased cross-link density, viscoelasticity 
227 might not be as dominant in that situation as for higher agarose concentration.

Figure 5. A. Schematic of unconfined compression of a cylindrical agarose sample. B. The computational domain along 
with the mesh and the boundary conditions implemented. In the boundary conditions,  is the pore pressure and  the 𝑝 𝑢𝑦
axial displacement applied when multi-step stress-relaxation is simulated or  the axial pressure applied when creep is 𝑃𝑦
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simulated. C. Abaqus poroelastic model prediction results (red dashed line) for stress-relaxation test for 16 mm, 5% w/w 
agarose gels versus experimental data (solid blue line -average value from the different samples tested- and a blue region 
-average ± standard deviation). D. Three different time frames (from top to bottom, 1 s, 200 s and 2000 s) are plotted to 
show the stress distribution in the axial direction. It is possible to observe how the poroelastic effect generates a gradient 
on the stress distribution. After the fluid transport ceased, the stress field became uniform and the solid network was the 
only part of the system dissipating energy.  E. Photographs were taken during stress-relaxation test on 16 mm, 5% w/w 
agarose gels to experimentally quantify the Poisson’s ratio of the solid skeleton and determine the order of magnitude of 
the characteristic time corresponding to the fluid leaving the system. The compression stage had a duration of 1 s where 
the gel expanded laterally. The relaxation process was recorded while the gel contracted laterally due to the fluid leaving 
the system. The gel stopped shrinking at 3000 s after the compression stage.

228 3. AGAROSE AS A NONLINEAR TRANSIENT NETWORK 

229 The time-dependent inelastic response of agarose samples in this study was dominated by viscoelasticity, rather than 
230 poroelasticity. In the literature, the mechanical behavior of agarose have generally been characterized by an elastic and a 
231 time-dependent or viscous component using phenomenological viscoelastic models21–23 (i.e., the simplest being the Maxwell 
232 model). These models however remain mostly empirical, which motivates the current work as an attempt to build a 
233 connection between the gel’s network topology and its mechanical response. 

234 3.3. Preliminaries: the transient network theory

235 Let us start by introducing a theoretical framework to describe the nonlinear viscoelasticity of polymer networks, known as 
236 the transient network theory (TNT)27,40. Due to the presence of physical crosslinks in agarose structure41, the network is 
237 assumed to be dynamic, wherein the polymer chains associate and dissociate over time.

238 The polymer is thus idealized as a network of polymer strands with the end-to-end vector  which represents as the segment 𝒓

239 between two nodes or crosslinks. For convenience, we introduce the normalized end-to-end vector where  is the 𝝀 =
𝒓
𝑟0

 𝑟0

240 natural (force-free) length of a strand. In the TNT, a statistical description of the network is provided by the density  of 𝑐
241 connected strands and the so-called strand conformation tensor, with indices  given by𝜇𝑖𝑗

𝝁(𝑡) = 3⟨𝝀⨂𝝀⟩ 4

242 where the operation  denotes the average chain deformation of all connected strand within a representative volume ⟨ ⟩
243 element. If the network is initially isotropic, it verifies . Under the affine deformation assumption42, the change in 𝝁(0) = 𝑰
244 stretch of a connected strand verifies  where  is the velocity gradient . Therefore, it is possible to 𝝀 = 𝑳 ⋅ 𝝀 𝑳 𝑳 = 𝑭𝑭 ―1

245 construct an evolution equation for the strand conformation tensor if the rates of chain association and dissociation 
246 previously described are known27. 

𝝁 = 𝑳𝝁 + 𝝁𝑳𝑇 ― 𝑘𝑑𝝁 + 𝑘𝑎
𝐶 ― 𝑐

𝑐 𝑰
5

247 where C is the total number of strands per unit volume the network (including both connected and dangling contributions), 
248 and  and  are the kinetic rates describing polymer chains association and dissociation, respectively. For simplicity, we 𝑘𝑎 𝑘𝑑

249 assume there is a perfect bond exchange within the network, meaning each detachment event is immediately followed by 
250 an attachment event43. We also consider the case of incompressible plastic flow. The evolution equation becomes the 
251 following44:

𝝁 = 𝑳𝝁 + 𝝁𝑳𝑇 ― 𝑘𝑑(𝝁 ―
3

tr 𝝁 ―𝟏𝑰) 6

252 From this relation, it is straightforward to show  that for a covalently cross-linked network ( ) the conformation tensor 𝑘𝑑 = 0
253  is equivalent to the left Cauchy-Green tensor , i.e.  27. Similarly to Equation 3, the true stress tensor can 𝝁 𝒃 𝝁 = 𝒃 = 𝑭𝑭𝑇

254 then be derived in terms of the conformation tensor as40,45 
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𝝈 =
2
𝐽𝑒

𝝁
∂𝜓
∂𝝁 =

2
𝐽𝑒

𝑐10Dev 𝝁 +
2

𝐷1
(𝐽𝑒 ― 1)𝑰 7

255 where the deviatoric part of  is given by . Material constants  and  were defined in Equation 2b. 𝝁 Dev 𝝁 = 𝝁 ―
tr 𝝁

3 𝑰 𝑐10 𝐷1

256 This model describes a material that displays a linear elastic response (through its Neo-Hookean form), and a linear 
257 viscoelastic response (since the rate constant  remains constant). Note that this model may however still capture nonlinear 𝑘𝑑

258 geometrical effects since it is valid for large strains. The viscoelasticity of agarose was however observed to be quite 
259 nonlinear, which motivates the development of a more physical model regarding the relaxation mechanisms occurring 
260 within the polymer structure. Such a theoretical improvement must therefore involve a rate constant  that changes with 𝑘𝑑

261 stress as previously discussed in Hui et al. (2021)46.

262 3.4. Nonlinear bond dynamics of agarose-based gels

263 Hydrogen bonding not only governs the self-gelation of agarose gels, but it also facilitates the complex dynamics of the 
264 resulting network. Hydrogen-bonding side groups found in agarose facilitate the formation of transient supramolecular 
265 structures with viscoelastic responses47. It is theorized that there are two main microstructural features that contributes to 
266 agarose viscoelastic behavior. First, aligned agarose molecules that form double helices have a limited mobility in 
267 comparison with single agarose molecules. This dynamic gel structure has been proposed to occur at short relaxation times. 
268 In contrast, agarose molecules present in clusters that are not aligned with each other can dissipate energy much more easily 
269 as they slide over adjacent molecules, corresponding to a fluid-like behavior17. This behavior is illustrated in Figure 6.

Figure 6. Schematic of the short relaxation time on agarose corresponding to the fast bond dynamics (  and ) of the 𝑘𝐼
𝑑 𝑘𝐼

𝑎
strands aligned on the double helices (top) and of the long relaxation times associated to the slow bond dynamics (  and 𝑘𝐼𝐼

𝑑
)  where agarose molecules presented in the suprafibers clusters can dissipate energy much more easily as the they 𝑘𝐼𝐼

𝑎
slide over adjacent molecules (bottom).

270 Our experimental results suggest that agarose networks have two different dissipation mechanisms when subjected to an 
271 external stress48. To construct a model for this network, we first assume each mechanism has its own characteristic 
272 dissociation rate such that global the kinetic rate  is decomposed as:𝑘𝑑

𝑘𝑑 = 𝑘𝐼
𝑑 + 𝑘𝐼𝐼

𝑑 8

273 Here  is the fast dissociation rate associated to the rearrangement of the strands aligned forming the double helix structure 𝑘𝐼
𝑑

274 and  is the slow dissociation rate associated with the bond exchange in the suprafiber junctions. A closer look at 𝑘𝐼𝐼
𝑑

275 experimental data suggests that the transition between the above two relaxation mechanisms is smooth and a function of the 
276 overall stress-state of the specimen. The fast rates  is assumed to change with the level of stress, or alternatively, the level 𝑘𝐼

𝑑
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277 of elastic deformation while the slow constant  is assumed to remain constant over the time scale of the experiments. For 𝑘𝐼𝐼
𝑑

278 simplicity, we follow classical plasticity theory and assume that volumetric deformation does not affect inelastic flow49. 
279 This model assumption can easily be relaxed in future implementation of the model if further experiments show it to be 
280 inaccurate. We can therefore define a scalar measure of the isochoric elastic deformation via an “effective elastic strain” 
281 defined as:

282 𝜇 =
3
2Dev(𝝁):Dev(𝝁)  ,

283 such that the fast relaxation rate is defined with a generic function  in the form:𝑓(𝜇)

𝑘𝐼
𝑑 = 𝑘𝐼

𝑑0𝑓(𝜇) 9

284 The scalar function  need to be derived based on the experimental data collected. Observation of the creep test data 𝑓(𝜇)
285 suggests that agarose does not show significant creep for . However, for values of  (Figure 8.A), creep suddenly 𝜇 < 𝛽 𝜇 > 𝛽
286 accelerates and the function  maybe assumed to follow the relation . This exponential relation is in line 𝑘𝐼

𝑑 𝑘𝐼
𝑑 = 𝑘0

𝑑exp (𝛾𝜇)
287 with the theoretical model presented by Eyring experiencing force-dependent bond dynamics50–52. Combining this statement 
288 along with the observation made from multi-step stress relaxation tests, the evolution of  is hypothesized to follow a 𝑘𝑑

289 generalized logistic function with the following expression: 

𝑓(𝜇) =
𝑒𝛾𝜇

1 + 𝑒 ―𝛼(𝜇 ― 𝛽) 10

290 where  represents the elastic strain trigger for bond dynamics, and  is defined as the stress-sensitivity of bond dynamics. 𝛽 𝛾
291 In addition, as depicted in Figure 7, coefficient  describes the sharpness of the transition between the two energy dissipation 𝛼
292 mechanisms; if , the transition is very steep and converges to a step function while  indicates a very smooth 𝛼→∞ 𝛼→0
293 transition showing a perfect coupling between the two relaxation mechanisms during the whole relaxation process. The 
294 coefficient  follows the evolution of the equilibrium or plateau stress  point seen in Figure 2.C-D-E. 𝛽 𝜎𝑝

Figure 7. Physical interpretation of the fitting parameters used to describe the bond dynamic evolution:  is the bond 𝛼
dynamics transition steepness,  is the elastic strain trigger for bond dynamics,  is the stress-sensitivity of bond dynamics 𝛽 𝛾
and  is the spontaneous dissociation once the stress threshold is triggered. 𝑘𝐼

𝑑0

295 3.5. Implementation and experimental validation 

296 The above viscoelastic model was implemented into a UMAT Abaqus subroutine requiring the calculation of the Cauchy 
297 stress  and tangent stiffness matrix . Using expressions provided in Appendix II, Equation Error! Reference 𝝈(𝝁) 𝑪(𝝁)
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298 source not found. was invoked to enforce the evolution of the conformation tensor as a function of the dissociation ratio of 
299 the network. To summarize, the material behavior of the hydrogel depends on two physical processes that are captured by 
300 (a) a UMAT subroutine for the solid matrix based on the TNT to control the viscoelasticity of the skeleton, and (b) an 
301 Abaqus material library to describe the poroelasticity due to the pore fluid flow of the solvent.

302 Running the optimization procedure detailed on Appendix III on the creep data and, separately, on the multi-step stress-
303 relaxation data, it was further possible to accurate calculate model parameters , ,  and . Using data from the creep 𝛼 𝛽 𝛾 𝑘𝐼

𝑑0

304 test, it was further possible to accurate calculate the exponential evolution of  where, independently of the concentration 𝑘𝐼
𝑑

305 of agarose used, we found mean values of  1/s and  (Figure 8.A); this expression accurately 𝑘𝐼
𝑑0 = 0.001164 𝛾 = 2.412

306 predicts the values for  when . 𝑘𝐼
𝑑 𝜇 < 𝛽

307 Using data from the multi-step stress-relaxation and our optimization algorithm, the parameters  and  were empirically 𝛼 𝛽
308 fitted for various agarose composition and applied strain (see Figure 8.B). Different initial guess values were used as an 
309 input to the optimization algorithm.

Figure 8. A. Dissociation rate exponential evolution obtained from the optimization algorithm ran on the experimental 
creep test data on 12 mm, 5% w/w agarose gels. Graphing the results shows three different zones: slow relaxation domain 
(blue zone), fast relaxation domain (green zone) and the elastic strain trigger, 𝛽, zone for bond dynamic activation (red 
zone). B. For  500, average values for the different agarose concentrations of the evolution of the elastic strain trigger 𝛼 =
for bond dynamics  at different applied strains during the multi-step unconfined compression test. C. For 10% w/w 𝛽
agarose, evolution of the bond exchange rate as a function of . Vertical lines represent the values for the bond dynamic 𝜇
trigger parameter . 𝛽

310
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311 This data suggests that while the sharpness of the bond dynamics transition remains constant across the multiple 
312 compression steps, the elastic strain trigger, , changes its values to account for the stress plateauing during the whole test 𝛽
313 (Figure 8.B). Therefore,  follows the plateau point evolution. For the 5% w/w case,  decreases for the last stress-relaxation 𝛽 𝛽
314 step. This agrees with the experimental data of Figure 2.C where the plateau stress  measured in the last compression step 𝜎𝑝

315 (20% strain), is below the one measured for 15% strain. For 7.5% and 10% w/w agarose, the same fitting parameter were 
316 used for strains > 5%. In these cases, the sharpness of the transition remains constant, but  slightly increases its value at 𝛽
317 each deformation step. Taken together, these results suggest that the evolution of bond dynamics is independent of agarose 
318 concentration.

319 The dissociation constant  of the cluster was obtained using the optimization algorithm. We found that  is generally 𝑘𝐼𝐼
𝑑 𝑘𝐼𝐼

𝑑

320 insensitive to stress and agarose concentration which confirms it can be kept constant. We estimated the mean rate constant 
321 as 2.76E-6 1/s (i.e., ). In the remainder of our analysis (i.e., that concentrates on shorter time scales), this rate 𝑘𝐼𝐼

𝑑 =  𝑘𝐼𝐼
𝑑 ≪ 𝑘𝐼

𝑑

322 can therefore be neglected compared to , and a general evolution equation for the general kinetic rate is 𝑘𝐼
𝑑 𝑘𝑑 ≈ 𝑘𝐼

𝑑 = 𝑘𝐼
𝑑0𝑓(𝜇)

323 . Therefore, as an input for the UMAT subroutine five parameters are necessary to describe the solid matrix behavior: the 
324 elastic modulus  of the solid network, Poisson’s ratio  of the solid matrix and the empirical variables , ,  and . 𝐸𝑠 𝜈𝑠 𝛼 𝛽 𝛾 𝑘𝐼

𝑑0

325 Figure 9. demonstrates agreement between the poroviscoelastic model and the time-dependent mechanical response of 
326 agarose gels during experimental creep (5% w/w agarose) and multi-step stress relaxation (5, 7.5, 10% w/w agarose) testing. 
327 Figure 8.B. and Figure 9.B-D. also verify the evolution of bond exchange rate behaves independently of agarose 
328 concentration. Inset plot in panel A in Figure 9 corroborates the model captures the three creep regimes (primary, secondary 
329 and tertiary creep) in experimental data. Insets plots in panels B-D in Figure 9, shows the model captures the short-term 
330 experimental response of agarose gels. We notice energy is dissipated faster on the experimental data than on the 
331 computational model for short time scales, yet such difference does not affect the equilibrium response.  
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Figure 9. Comparison of the prediction from finite element predictions against experimental measurements for tested 
samples. Abaqus simulation results are represented by red dotted line, and experimental results are reported as a blue 
solid line (mean values from experimental tests) and blue region (average ± standard deviation). A. Results of creep test 
for 12mm, 5% w/w agarose gels. The inset in A. shows creep test results in a semilogarithmic scale along the x-axis. B., 
C., and D. Results of multi-step stress relaxation tests for 5%, 7.5% and 10% w/w agarose gels respectively. The inset in 
B-D. shows the stress evolution for the first loading and relaxation step in a semilogarithmic scale along the x-axis.

332 4. DISCUSSION

333 We developed a physically based model to describe and predict the time-dependent behavior of agarose networks under 
334 unconfined compression. Unlike prior phenomenological and continuum models describing viscoelasticity, our approach 
335 considers the time-dependent evolution of the stress-dependent variables that result from bond-exchange within the polymer 
336 network. This work provides a reinterpretation of agarose network viscoelastic behavior using the transient network theory 
337 (TNT). Using the characterization of the two main microstructural features that contribute to agarose viscoelastic behavior, 
338 which are based on dissociation and reassociation of molecular bonds within agarose, we demonstrated that the network 
339 deforms over time through non-linear force-dependent evolution of bond dynamics. 

340 Agarose gels are formed from hydrogen (e.g., dynamic) bonds that re-attach after disengaging which imparts gels with 
341 viscoelastic behavior. Here, viscoelasticity was assumed to follow the two main characteristic microstructures of the gel 
342 network described by Labropoulos et al. (2001)48. Assuming perfect bond exchange, we hypothesized that the overall 
343 dissociation rate ( ) results from a linear combination of the dissociation rate corresponding to double helices forming 𝑘𝑑

344 between aligned agarose molecules ( ) and the dissociation rate of the agarose molecules present in the clusters ( ). Due 𝑘𝐼
𝑑 𝑘𝐼𝐼

𝑑

345 to the degree of mobility of the agarose, these factors are responsible for the short (1/ ) and longer (1/ ) relaxation times, 𝑘𝐼
𝑑 𝑘𝐼𝐼

𝑑
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346 respectively. The present work incorporated these topologically based phenomena into a mathematical model, the TNT, 
347 thus enabling a novel quantitative understanding of the relationships between molecular physics and overall mechanical 
348 response. This methodology may be extrapolated to other biopolymer networks with similar topologies (i.e., collagen and 
349 fibrin networks) to predict their emerging material response as a function of bond kinetics.

350 The fast bond dynamics of agarose network ( ) associated to the aligned agarose molecules exhibited significant force-𝑘𝐼
𝑑

351 sensitive dynamics. In the creep test, we observed that the magnitude of the applied stress had the effect of weakening the 
352 solid-like behavior of the network associated to the fast energy dissipation mechanism. We interpreted this behavior as a 
353 reorientation of the agarose network along the direction of applied compression which is a particular property of semiflexible 
354 networks. Our model suggested an exponential force-dependent response of the fast dissociation rate, which agrees with 
355 Eyring’s theory50. Capturing this phenomenon revealed a novel insight in agarose viscoelastic properties: i.e., the lifetime 
356 of a bond depends on the force applied to that bond.

357 We further demonstrated the non-linear viscoelasticity of agarose hydrogels throughout the implementation of a non-
358 constant dissociation rate. In our study, the nonlinear viscoelasticity could be observed by a stress-plateauing effect during 
359 a multi-step stress relaxation test. In particular, the equilibrium stress at the end of the relaxation phase plateaued and reached 
360 the same value independent of the applied deformation. We developed a master equation to describe the bond exchange 
361 (Equation Error! Reference source not found.) based on physics-based parameters such as the elastic strain trigger for 
362 bond dynamics and the stress-sensitivity of the bond rate. The same behavior was observed in multi-step stress relaxation 
363 testing (with a 30 minute relaxation period) reported by Roberts et al. (2011)12 in their comparative study of the viscoelastic 
364 mechanical behavior of agarose and poly(ethylene glycol) hydrogels. Because of the relatively short time used between step 
365 strains in their study, the stress did not plateau as reported herein; however, the trends in both studies are consistent. 

366 Following the stability of adhesion clusters model presented by Erdmann and Schwarz (2004)53, we hypothesized that the 
367 clusters formed by several suprafibers within agarose networks increased the number of connected bonds during the 
368 deformation process (Figure 10). Cluster adhesion was presented in previous literature as a likely mechanism for stress 
369 relaxation in biopolymers54–56. For example, Prechtel et al. (2002) studied cluster dissociation under a linear ramp of force 
370 and described the strength of the adhesion of living cells to model membranes57. Briefly, Erdmann and Schwarz postulated 
371 a detailed theoretical analysis of the stochastic dynamics of a cluster of parallel bonds under shared constant loading and 
372 with rebinding. The adjacent agarose molecules that are not part of the cluster in a stress-free configuration may be available 
373 to later form new crosslinks with the initial components of the cluster. This theory provides a mechanism for increasing 
374 cluster size and a strengthening of the network. Following this theory, we found the elastic modulus of agarose slightly 
375 increased with elastic deformation which indicated a mild strain stiffening effect during sustained compression (Appendix 
376 IV). Future investigations should further evaluate our hypothesis for a potential relationship between the elastic strain trigger 
377 for bond dynamics and cluster size and should also consider other possible competing mechanisms such a viscoelastic 
378 elongation of the network chains58,59. 

379
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Figure 10. Schematic representation of the number of bonds  within a cluster in agarose network before and after a 𝑁𝑖
stress field is applied. Unbonded agarose molecules join the cluster as the external force increases. Variable  is defined 𝜂
to represent the cluster bond saturation plateauing after the force  held by the cluster exceed a certain threshold value. 𝑓

380 Poromechanical effects in agarose did not significantly contribute to energy dissipation during stress-relaxation. These 
381 results followed the well-studied poroelastic material behavior of agarose in the literature37,60–64. We observed that the 
382 influence of time-dependent fluid displacement on the gel’s response to be small. However, we still incorporated it in our 
383 analysis for the following reasons. First, we observed a reduction of the initial hydrogel mass during long-duration 
384 compression tests; this effect can only be captured by poromechanics. Second, the incorporation of fluid transport during 
385 loading allowed for a more general formulation that may explain coupling of poromechanics with network relaxation; this 
386 point can be used to better understand poroviscoelastic behavior of agarose gels. Demonstrating the minor role of 
387 poromechanics in agarose supported the use of the TNT to control and predict the macroscopical time-dependent response 
388 of physically crosslinked gels. 

389 Unlike prior applications of the TNT in 2D40, our study demonstrated the application of the TNT into a commercial FEA 
390 software. This approach will allow for future 3D modeling of complex polymer behavior (i.e., crack propagation or cavity 
391 generation65) using an underlying mechanism-based material model. We also demonstrated an initial step that will enable a 
392 continuum approach of the TNT to be applied to more complex geometries (i.e., 3D printed hydrogels) than the cylindrical 
393 geometry presented in this study. The computational implementation of the TNT into a commercial FEA package, combined 
394 with experimental testing, allowed us to assess the influence of poroelastic and viscoelastic effects in the overall 
395 macroscopic response of agarose to time-dependent experiments. 

396 Finally, we emphasize that the model presented in this study can be used to provide control guidance on the material design 
397 in numerous applications, many of which are applicable to bioengineering, that necessitate the use of agarose and similar 
398 gels. The TNT model also offers the possibility to design and fabricate gels based on their bond dynamic to obtain a specific 
399 time-sensitive behavior. One important future effort is to extend the current model to different biopolymers with similar 
400 network topology and to determine if the TNT can be universally applied to describe behavior of similar biopolymers. 
401 Finally, our work may also support a variety of tissue engineering applications and provide physical insights to understand 
402 the force-dependent viscoelastic behavior. For instance, understanding how the yielding behavior of agarose gels may be 
403 crucial for a wide range of biomedical applications where gels are subjected to loads over long periods of times.
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411 APPENDIX I: INTRINSIC PERMEABILITY AND VOID RATIO EVOLUTION IN AGAROSE GELS

412 The intrinsic permeability  for agarose gels was defined using the evolutions equations described by Gu et al. (2003)37. 𝜅

𝜅 = 𝜅0(𝐽𝑒 ― 𝜙0

1 ― 𝜙0)
𝑛

, 𝜙 =
𝜙0

𝐽𝑒
 

11

413 Therefore, in this study, the intrinsic permeability  and the solid volume fraction  were assumed to be a function of the 𝜅 𝜙
414 macroscopic deformation applied on the gel, in this case using the Jacobian  of the elastic deformation gradient tensor . 𝐽𝑒 𝑭𝒆

415 The initial permeability was defined as  where  and  were fitting parameters. Here, the initial solid  𝜅0 = 𝑝1(1 ― 𝜙0

𝜙0 )𝑝2

𝑝1 𝑝2

416 volume fraction  was obtained using the relationship established by Pluen et al. (1999)60;  where  𝜙0 𝜙0 =
1

𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒
𝑐

𝑜
𝑐𝑜

417 is the agarose concentration,  = 1.64 g/ml is the dry agarose density61 and  = 0.625 is the mass fraction of 𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒 𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒

418 agarose in a fiber62.

419 The initial hydraulic conductance  was defined as where  is the dynamic viscosity of the fluid and  is the 𝐾 𝐾 =
𝛾𝑠

𝜇 𝜅 𝜇 𝛾𝑠

420 specific weight of the fluid. Since the fluid was a PBS solution,  1E-9 N.s/mm2 and  = 9.81E-06 N/mm3. Once  was 𝜇 = 𝛾𝑠 𝜙

421 calculated and assuming the porosity , the void ratio was defined as . Values were summarized 𝜃 = 1 ― 𝜙 𝑒0 =
𝜃0

1 ― 𝜃0
=

𝐽𝑒

𝜙0
―1

422 in Table 2 and assumed to remain constant during the whole deformation process. 

[%]𝑐o [%]𝜙0 𝑒0  [mm2]𝜅0  [mm/s]𝐾0

5 4.88 19.5 2.32E-11 2.56E-07

7.5 7.32 12.67 1.22E-11 1.22E-07

10 9.76 9.25 7.75E-12 7.60E-08

Table 2. Parameters used to describe poromechanics for each agarose composition 
used in the study. 

423 APPENDIX II: CAUCHY STRESS AND TANGENT STIFFNESS MATRIX DERIVATION

424 To derive the required expressions for the implementation of the TNT into Abaqus, we first rewrote the elastic energy as: 

 𝜓 = 𝑐10(𝐼1 ― 3) +
1

𝐷1
(𝐽𝑒 ― 1)2 12

425 We here assumed elastic compressibility but inelastic incompressibility (from Equation 6). Consequently, in the remainder 
426 of our derivations, . The constitutive equation for the Cauchy stress can be written directly in terms of the deformation 𝐽𝑒 = 𝐽
427 gradient45: 
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𝜎𝑖𝑗 =
2
𝐽𝜇𝑖𝑘

∂𝜓
∂𝜇𝑘𝑗

13

428 Now we compute the derivatives of the invariants ,  and  with respect to the conformation tensor  components 𝐼1 𝐼2 𝐽 𝝁

∂𝜓
∂𝜇𝑖𝑗

=
∂𝜓

∂𝐼1

∂𝐼1

∂𝜇𝑖𝑗
+

∂𝜓

∂𝐼2

∂𝐼2

∂𝜇𝑖𝑗
+

∂𝜓
∂𝐽

∂𝐽
∂𝜇𝑖𝑗

,
14

429  and obtain the stress expression 

𝜎𝑖𝑗 =
2
𝐽[ 1

𝐽
2
3
(∂𝜓

∂𝐼1
+ 𝐼1

∂𝜓

∂𝐼2
)𝜇𝑖𝑗 ―

1
3(𝐼1

∂𝜓

∂𝐼1
+ 2𝐼2

∂𝜓

∂𝐼2
)𝛿𝑖𝑗 ―

1

𝐽
4
3

∂𝜓

∂𝐼2
𝜇𝑖𝑘𝜇𝑘𝑗 ] +

∂𝜓
∂𝐽 𝛿𝑖𝑗

15

430 In our case

𝜎𝑖𝑗 =
2
𝐽𝑐10(𝜇𝑖𝑗 ―

1
3𝛿𝑖𝑗𝜇𝑘𝑘) +

2
𝐷1

(𝐽 ― 1)𝛿𝑖𝑗
16

431  To obtain the tangent stiffness matrix we first need to define virtual rate of deformation 

𝛿𝐷𝑖𝑗 =
1
2

(𝛿𝐹𝑖𝑚 𝐹 ―1
𝑚𝑗 + 𝐹 ―1

𝑖𝑚  𝛿𝐹𝑗𝑚) =
1
2

(𝐿𝑖𝑗 + 𝐿𝑗𝑖)
17

432  The Kirchhoff stress is

𝜏𝑖𝑗 = 𝐽 𝜎𝑖𝑗 18

433 The material Jacobian derives from the variation in Kirchhoff stress.

𝜏𝑖𝑗 = 𝐽 𝐶𝑖𝑗𝑘𝑙 𝛿𝐷𝑘𝑙 19

434  then

𝐶𝑖𝑗𝑘𝑙 =
2
𝐽𝑐10[1

2
(𝛿𝑖𝑗𝜇𝑗𝑙 + 𝜇𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝜇𝑗𝑘 + 𝜇𝑖𝑙𝛿𝑗𝑘) ―

2
3(𝛿𝑖𝑗𝜇𝑘𝑙 + 𝜇𝑖𝑗𝛿𝑘𝑙 +

1
3𝛿𝑖𝑗𝛿𝑘𝑙𝜇𝑚𝑚)] +

2
𝐷1

(𝐽𝑒 ― 1)𝛿𝑖𝑗𝛿𝑘𝑙

𝑐10 =
𝐸

4(1 + 𝜈) 
 and 𝐷1 =

6(1 ― 2𝜈)
𝐸

20

435

436 APPENDIX III: FITTING PROCEDURE LINKING ABAQUS AND MATLAB

437 To estimate the input material parameters ( , , , ,  and ) of agarose gels, an optimization procedure linking 𝑘𝐼
𝑑 𝑘𝐼𝐼

𝑑 𝛼 𝛽 𝛾 𝑘𝐼
𝑑0

438 Abaqus and MATLAB (MathWorks, Natick, MA, USA) was developed. Briefly, initial guess values of the material 
439 parameters were assigned in the input file model and the Abaqus run was executed to compute the system contact force 
440 response . Then, the sum of root-mean-square error in the contact force was defined as𝐹𝑠𝑖𝑚

𝑆𝐸  = 𝑚𝑖𝑛
𝑛

∑
𝑖 = 1 

(𝐹𝑡𝑒𝑠𝑡
𝑖 ― 𝐹𝑠𝑖𝑚

𝑖 )2
21

441 where  is the number of iterations. Subsequently, an optimization algorithm was used to iteratively calculate the value of 𝑛
442 the input variables by minimizing the objective function . For solving the optimization problem, the in-house code was 𝑆𝐸
443 used based on the MATLAB function fminsearch. The lower and upper bounds in the function were properly chosen to 
444 accommodate a wide range of values for each of the material properties.
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445

446 APPENDIX IV: ELASTIC MODULUS OF THE SOLID NETWORK  AND AGGREGATE MODULUS  𝑬𝑺 𝑯𝑨

447 Once the Poisson’s ratio was properly determined and set to ; the elastic modulus of the solid network  was 𝜈𝑠 = 0.17 𝐸𝑠

448 obtained using the fitting procedure described on Appendix III. This procedure was repeated for each of the four loading 
449 steps for every sample. Fully swollen agarose gels exhibited an elastic response with a strong correlation between 
450 stress/strain ( ). Most studies in the literature report the aggregate modulus  instead of the elastic modulus of the 𝑅2 ≈ 1 𝐻𝐴

451 solid network. The aggregate modulus for different agarose composition can however be obtained directly from  and  𝐸𝑠 𝜈𝑠

452 as:

𝐻𝐴 =
3
2

(1 ― 2𝜈𝑠)
(1 ― 𝜈𝑠) 𝐸𝑠

22

453 At 5% strain and before relaxation, the mean aggregate modulus values could therefore be estimated as 0.97 MPa, 1.7 MPa, 
454 and 2.43 MPa for 5%, 7.5% and 10% w/w agarose respectively. These results were in excellent agreement with the 
455 previously reported by Normand et al. (2000)66. During the compressive stage that followed stress relaxation, we further 
456 observed an increase in the aggregate modulus with respect to its initial value. In this study,  was observed to 𝐻𝐴

457 exponentially increase with applied deformation in the following fashion ( ) (Figure 11):𝑅2 ≈ 1

𝐻𝐴 = 𝑎(𝜇)𝑏 + 𝑐 23

458 Values for fitting parameters were summarized in Table 3.
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Table 3. Control parameters a, b, and c as a function of 
the agarose concentration  used in the samples.𝑐o

Figure 10. Evolution of the aggregate modulus  as a 𝐻𝐴

function of the second invariant of the conformation tensor . 𝜇

459 The parameter  was directly related to the elastic modulus found at 5% strain ( ) before the network had time to relax. 𝑐 𝐻0
𝐴

460 This fact motivated the idea of finding the following master equation as a function of the agarose concentration .𝑐o

𝐻𝐴 = 𝐻0
𝐴[3

2106𝑐𝑜(𝜇)𝑏 + 1] 
24

461 The master Equation 27 shows that agarose network becomes stiffer as the overall deformation is increased and held during 
462 large periods of time. Parameter  increases as the concentration of agarose in the samples increases. However, we found 𝑏
463 that assuming parameter  constant and equal to the average of the values shown on Table 3  did not have major 𝑏 (𝑏 = 11.3)
464 differences in the fitted curves shown in Figure 9.

465

466

467

468

469

470

471

472

473

474

475

476
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