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Abstract

Network materials with stochastic structure are ubiquitous in biology and engineering, which drives the 

current interest in establishing relations between their structure and mechanical behavior. In this work we 

focus on the effect of connectivity defined by the number of fibers emerging from a crosslink, , and 𝑧

compare networks with identical (z-homogeneous) and distinct (z-heterogeneous)  at the crosslinks. We 𝑧

observe that the functional form of strain stiffening is z-independent, and that the central z-dependent 

parameter is the small strain stiffness, . We confirm previous results indicating that the functional form 𝐸0

of  is a power function with 3 regimes and observe that this applies to a broad range of . However, 𝐸0(𝑧) 𝑧

the scaling exponents are different in the z-homogeneous and z-heterogeneous cases. We confirm that 

increasing  across the Maxwell’s central force isostatic point leads to a transition from bending to axial 𝑧

energy storage. However, we observe that this does not necessarily imply that deformation becomes affine 

in the large  limit. In fact, networks of fibers with low bending stiffness retain a relaxation mode based on 𝑧

the rotational degree of freedom of the crosslinks which allows  in the large  limit to be smaller than the 𝐸0 𝑧

affine model prediction. We also conclude that in the z-heterogeneous case, the mean connectivity  is 𝑧

sufficient to evaluate the effect of connectivity on  and that higher moments of the distribution of  are 𝐸0 𝑧

less important. 

1 Corresponding author. E-mail: picuc@rpi.edu, Tel: 1 518 276 2195.
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1. Introduction

The mechanical behavior of stochastic fiber networks was studied intensely over the last decades1,2–5 since 

such structures are proxies for a wide range of material systems known generically as network materials. 

Their behavior is defined by a network of filaments with non-vanishing bending stiffness. Examples include 

biological structures such as the cellular cytoskeleton,6,7 connective tissue and the extracellular matrix,8,9 

and man-made materials such as paper,10,11 cellulose products and non-wovens.12 Other network materials 

exist, including elastomers and various entangled polymeric melts, but in these cases the bending stiffness 

of the corresponding molecules is negligible compared to the axial stiffness. This distinction between 

axially-dominated networks and the networks of filaments stiff in bending is important, as it was shown 

that the second class exhibits a much richer physics.2,4,5,13,14 

The small strain modulus, , of network materials composed from fibers with non-zero bending and axial 𝐸0

stiffness is controlled by the fiber density,  (total length of fiber per unit volume), the relative importance 𝜌

of the bending and axial stiffnesses, characterized by parameter  (  and  are the 𝑙𝑏 = 𝐸𝑓𝐼𝑓 𝐸𝑓𝐴𝑓 𝐸𝑓𝐼𝑓 𝐸𝑓𝐴𝑓

bending and axial rigidities of fibers), and the connectivity index, , which represents the number of 𝑧

filament segments emerging from a crosslink. It has been shown that low density networks of floppy 

filaments (small ) deform non-affinely and store most of the strain energy in the bending mode of the 𝑙𝑏

fibers, while dense and densely crosslinked networks, with filaments rigid in bending, deform almost 

affinely and store the strain energy in the axial mode of fibers.4,15,16 This non-affine-to-affine transition 

reported for network with low  may be characterized using the structural parameter , 𝑧 𝑤 = 𝑙𝑜𝑔10𝜌𝑥 ― 1𝑙2
𝑏

large values of  corresponding to the affine deformation regime. The exponent  takes the value of 2 for 𝑤 𝑥

cellular networks like the open cell foams and Voronoi structures,17 3 for fibrous networks in 3D18 and 

collagen networks,19,20 and takes larger values in 2D.21,22

Fiber networks may be unstable (vanishing stiffness) at small strains in certain conditions. Maxwell 

determined that a central force network is unstable (floppy) when the number of constraints the structure is 

subjected to is smaller than the number of degrees of freedom.23 This may be written in terms of the 

connectivity index as , where  represents the connectivity at the central force isostaticity point 𝑧 < 𝑧𝑐 = 2𝑑 𝑧𝑐

(CFIP) and  is the dimensionality of the embedding space (we note that for a finite size model, the Maxwell 𝑑

counting argument leads to , where  is the number of crosslinks in the model; the 𝑧𝑐 = 2𝑑 ― 6(𝑑 ― 1) 𝑁𝑥 𝑁𝑥

models used here have  and hence  is closely approximated by ). Virtually all engineering Nx > 20,000 𝑧𝑐 2𝑑

and biological networks have connectivity much smaller than ; in fibrous networks a crosslink is 𝑧𝑐 = 6

formed by two fibers in contact and hence , cellular networks of Voronoi type in 3D have , and 𝑧 = 4 𝑧 = 4

crosslinks in collagen-based connective tissue are formed by the separation of fiber bundles into (typically 
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two) sub-bundles and hence . Such networks have finite small strain stiffness due to the stabilizing 𝑧 = 3

effect of the fiber bending stiffness and/or the presence of pre-stress,24–27 as captured by the updated stability 

criterion of Calladine.28 Therefore, if filaments have finite bending stiffness and the crosslinks transmit 

forces and bending moments, the network has non-vanishing stiffness when . 𝑧 ≤ 𝑧𝑐

Interestingly, it has been shown that in networks with non-zero axial and bending stiffness, CFIP remains 

a critical point associated with diverging strain amplitude fluctuations and associated correlation 

length.24,29,30 Specifically, while the emergence of non-zero stiffness as the network density increases takes 

place at the stiffness percolation threshold, which corresponds to  for these networks,13,27,31 the non-𝑧𝑝 ≈ 2.6

affinity measure diverges at . In the hypostatic range  the behavior is of the type described in 𝑧𝑐 𝑧𝑝 < 𝑧 < 𝑧𝑐

the preceding paragraph, i.e., it is bending dominated and non-affine when  is small and becomes axially 𝑤

dominated and approximately affine as  increases. In the hyperstatic regime , the axial deformation 𝑤 𝑧 > 𝑧𝑐

mode becomes energetically dominant.24,30 

Most studies investigating the effect of connectivity on network behavior were performed with lattice-based 

models in which struts were removed with specified probability to adjust the mean  of the network.24,29,30 𝑧

This procedure modifies  at the same time and renders  spatially non-uniform. While in such networks 𝜌 𝑧

the connectivity parameter is described by a distribution, it is generally conjectured that all above arguments 

hold provided the mean connectivity, , is used as parameter in place of .  𝑧 𝑧

In this work we revisit the effect of  on the small strain stiffness of networks by comparing structures in 𝑧

which all crosslinks have the same , which we denote as z-homogeneous, with z-heterogeneous networks 𝑧

constructed by modifying a fraction of the crosslinks of an initially z-homogeneous network with  to 𝑧 = 4

 This fraction is varied to adjust . Here and in the following,  and  always refer to z-homogeneous 𝑧 = 8. 𝑧 𝑧 𝑧

and z-heterogeneous cases respectively. In both cases we investigate hypo- and hyperstatic cases and seek 

the relation between ,  and  (or  in z-heterogeneous networks). We recover the behavior previously 𝐸0 𝑤 𝑧 𝑧

reported for z-heterogeneous networks24,29,30 and confirm that  is indeed a sufficient descriptor for such 𝑧

structures. However, we observe that the scaling exponents relating  (or ) to  are strongly dependent 𝑧 𝑧 𝐸0

on the type of structure considered. Further, we determine that the effects of  and  on the degree of 𝑧 𝑤

deformation non-affinity are not equivalent. A network of large  is essentially insensitive to increasing  𝑤 𝑧

since its deformation is already approximately affine. However, a network of small  is not rendered affine 𝑤

by increasing . To demonstrate this, we introduce a measure of the rotational non-affinity of the crosslinks 𝑧

and use it along with the commonly used measure of translational non-affinity. We determine that in the 

small  range, increasing  (or ) into the hyperstatic range decreases the translational non-affinity, but the 𝑤 𝑧 𝑧

rotational non-affinity remains large. This indicates that hyperstatic networks relax relative to the perfect 
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affine deformation and hence their stiffness is smaller than the stiffness of the purely affine regime reached 

at large . We also investigate the large deformation response of networks with low  for both hypo- and 𝑤 𝑤

hyperstatic conditions and confirm that the functional form of strain stiffening is independent of ,24,29 but 𝑧

high  structures, which have much larger  than the low  structures of same , undergo a structural 𝑧 𝐸0 𝑧 𝑤

instability before the onset of the non-linear, stiffening regime. 

The types of networks and models considered are presented in section 2, the relation between stiffness and 

network parameters is discussed in section 3.1, followed by an evaluation of the degree of non-affinity and 

energy partition (section 3.2) and of the large deformation response (section 3.3).

2. Models and Structural Parameters

The networks used in this study are derived from Voronoi networks with . These are generated by 𝑧 = 4

tessellation of uniformly distributed seed points in 3D which are defined in a cube of edge length , where 4𝐿

 is the size of the network model to be obtained. The initially generated tessellation is then trimmed to a 𝐿

 cube to remove boundary effects and the edges of the tessellation are retained as fibers. The fiber lengths 2𝐿

in the initial network are exponentially distributed with mean . Short edges ( ) and dangling ends 𝑙𝑐 𝑙 < 𝑙𝑐 25

are removed. 

To generate z-homogeneous networks with , fibers are added to the initial network by fulfilling two 𝑧 > 4

constraints: (i) the crosslinks connected by an added fiber are separated in the graph space of the original 

network by no more than 3 edges, and (ii) the length of added fibers should be smaller than  in real 2.5𝑙𝑐

space. Further, fibers are added to connect nearest neighbor crosslinks first. These conditions ensure that 

the mean segment length of the resulting network is within 6% to that of the original network, . This 𝑙𝑐

method prevents the creation of very long fibers which may trigger non-local effects and allows separating 

the effect of connectivity from that of non-local interactions. Fibers are added iteratively to reach the target 

coordination number, after which the modified network is trimmed to the intended size, , such to ensure 𝐿

that the boundary regions have density comparable to the interior. This procedure leads to z-homogeneous 

networks in which at least 90% of the crosslinks have exactly the desired  for all target connectivity values 𝑧

considered ( 10). The interior crosslinks (not located along the boundary of the model) have mean 𝑧 = 4… 

connectivity marginally different from the target. For example, with target , the network we generate 𝑧 = 6

has  for the interior crosslinks. Figure 1a shows a 2D schematic of the procedure used to select 𝑧 = 5.97

crosslinks to be connected by additional fibers and Fig. 1b shows a sectioned 3D network with  𝑧 = 7

produced by this procedure. 
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Figure 1: (a) Schematic of the network generation process. The newly connected crosslinks are required 
to be within prespecified distance in both graph and real spaces to reduce the effect of non-local 
interactions. (b) Example of a hyperstatic (z = 7) network used in this study.

The same procedure is applied to generate z-heterogeneous networks.  is increased to a value of 8 at a 𝑧

target fraction, , of spatially uncorrelated crosslinks selected through uniform random sampling.  varies 𝑓 𝑓

from 0.05 to 0.90. Hence, z-heterogeneous networks have  fraction of crosslinks with  and  𝑓 𝑧 = 8 1 ― 𝑓

fraction of crosslinks with . This creates heterogeneity within the network which is described by a 𝑧 < 8

characteristic length scale equal to the mean distance between crosslinks with , approximated by 𝑧 = 8 𝑙𝑠

, where  is the total number of crosslinks in a model of edge length . To avoid size = 𝐿/(3 𝑓𝑁𝑥 ―1) 𝑁𝑥 𝐿

effects, models with  are used for z-heterogeneous networks with  which translates to  𝐿\𝑙𝑠 ≈ 35 𝑓 >  0.10

 for these models. For all homogeneous networks considered, .40 < 𝐿 𝑙𝑐 < 85 𝐿 𝑙𝑐 ≈ 35

Fibers are considered athermal and are represented as beams. The crosslinks transmit both forces and 

moments and are rigid welds (the angle between fibers is not allowed to change during deformation). The 

model is discretized using beam finite elements32 (Timoshenko beam element, B32 in Abaqus) and the 

commercial package Abaqus Standard (2022)33 is used to obtain the solution. 

The boundary conditions represent uniaxial tension. Displacements are prescribed for one face of the cubic 

model in the direction normal to that face (loading direction), while zero normal displacements are 

prescribed to the nodes on the opposite face. The other degrees of freedom of the loaded faces are left free. 

The lateral model faces are kept planar. To this end, the nodes on each of the lateral faces are kinematically 

coupled and remain coplanar, although the respective plane is free to move in its normal direction such that 

tractions on these faces vanish, in average, and the model is free to contract in the direction transverse to 

loading. The rotational degrees of freedom of the nodes on the lateral faces are left free. 
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For the results presented in this study, approximately 600 realizations are used, with 6 samples for each 

homogeneous and 3 for each heterogeneous network specification (given  and ). The homogeneous 𝑧 𝑙𝑏

network models have between 50,000 and 122,000 fibers, function of the average connectivity. The total 

number of degrees of freedom per model ranges from 500,000 to 1,000,000. For reasons outlined in the 

previous paragraphs, z-heterogeneous networks of average connectivity  are much larger than z-𝑧

homogeneous networks with . The nominal stress is used in all calculations and only one component 𝑧 = 𝑧

of this tensor (normal stress in the loading direction, ) is non-zero. 𝑆

3. Results and discussion

3.1 Dependence of stiffness on network parameters

The dependence of the small strain stiffness on structural parameters is typically represented in the form of 

a master plot showing the normalized stiffness, , vs. parameter 16 The normalization 𝐸 ∗ = 𝐸0/𝜌𝐸𝑓𝐴𝑓 𝑤.

factor, , is, up to a constant, the modulus predicted by the affine model. For 3D Voronoi structures, 𝜌𝐸𝑓𝐴𝑓

. In the hypostatic case, , such plot shows two regimes: a plateau for , which 𝑤 = 𝑙𝑜𝑔10𝜌𝑙2
𝑏 𝑧 < 𝑧𝑐 𝑤 > ―1

indicates that  (denoted here as the affine regime III), and a regime at smaller , of slope 1, and 𝐸0~𝜌𝐸𝑓𝐴𝑓 𝑤

for which  (denoted here as the non-affine, hypostatic regime I).16 In these regimes, deformation 𝐸0~𝜌2𝐸𝑓𝐼𝑓

is approximately affine and non-affine, respectively. The fact that  and  in the two regimes 𝐸0~𝐸𝑓𝐴𝑓 𝐸0~𝐸𝑓𝐼𝑓

indicates the primary energy storage mode as axial and bending, respectively. Such master plot, which was 

previously discussed in the literature,15,22,34 does not consider the effect of  on .𝑧 𝐸0

Figure 2a shows the master plot for z-homogeneous networks with  ranging from 4 to 10. Hypostatic 𝑧

networks exhibit the two regimes I and III described in the previous paragraph. The curves corresponding 

to networks of increasing  shift gradually to the left in the  range. 𝑧 𝑧 < 𝑧𝑐 = 6

Networks with  behave differently in the low  range: the stiffness is -dependent, but essentially -𝑧 > 𝑧𝑐 𝑤 𝑧 𝑤

independent (regime II). As  increases above ,  exhibits a large jump from regime I to II. The 𝑧 𝑧𝑐 𝐸0

asymptote of  at constant  as  increases is lower than the affine limit of the stiffness reached for 𝐸0 𝑤 𝑧 𝑤 > ―1

, in regime III. This implies that, if  is sufficiently small, the network retains a relaxation mechanism 𝑤

which is inactive in regime III; this is discussed further in section 3.2. It is instructive to recall the 

expectation for  in the affine limit of regime III: . This relation results by observing that fibers 𝐸0 𝐸0~𝜌𝐸𝑓𝐴𝑓

are loaded axially, and deformation is approximately affine. The stiffness depends on the total fiber length 

per unit volume and not on how fibers are connected. This justifies the z-independence of the curves in 

regime III. 
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Figure 2: (a) Normalized stiffness, vs. the structural parameter  for z-homogenous E ∗ = E0/𝜌𝐸𝑓𝐴𝑓   𝑤
(filled symbols) and z-heterogeneous (open circles) networks. (b) Collapse of the data in panel (a) based 
on Eq. 1. The legend in (a) applies to both panels. The three regimes are highlighted in (a) by color shades 
and labeled as defined in text. 

 

The data in Fig. 2a is collapsed using the relation:24,29

  = , [1]𝐸 ∗ |Δ𝑧| ―ℎ = Φ𝑖(𝜌𝑙2
𝑏|Δ𝑧| ―𝑔) Φ𝑖(10𝑤|Δ𝑧| ―𝑔)

where  and function  has 3 branches ( ) corresponding approximately to the 3 regimes Δ𝑧 = 𝑧 ― 𝑧𝑐 Φ 𝑖 = 1,2,3

in Fig. 2a. The two branches at small values of the argument  are  and 𝑥 = 10𝑤|Δ𝑧| ―𝑔 Φ1(𝑥)~𝑥 Φ2(𝑥)

.  The slope of the branch  at larger values of the argument is defined by the observation = 𝑐𝑜𝑛𝑠𝑡 Φ3(𝑥)

that, as   is neither zero nor infinity and the behavior must be independent of . The slope in this Δ𝑧→0, 𝐸0 Δ𝑧

regime results equal to .24,29 The data collapse is shown in Fig. 2b, where the three regimes are visible. ℎ 𝑔

The data corresponding to all z-homogeneous networks collapses with  and .  ℎ = 1.5 𝑔 = 2.5

Three sets of z-heterogeneous networks are constructed as described in section 2. Each set has specific  𝑙𝑏

and  values and the mean connectivity  varies within each set from close to 4 to close to 8 as the fraction 𝑤 𝑧

f of crosslinks with  increases from 0.05 to 0.9. Results for these systems are shown in Fig. 2 with 𝑧 = 8

open circles. Data for given set does not align perfectly along a vertical line in Fig. 2a due to the minor 

variation of the density with increasing fraction f. No jump is observed in this case as  increases past 𝑧 𝑧𝑐

. The data collapse based on Eq. 1 leads to exponents  and , which are different from those = 6 ℎ = 3 𝑔 = 4

obtained for the z-homogeneous networks. The collapse of such data for z-heterogeneous networks was 

reported in the previous literature24,29,30 and the present results are in agreement with the respective reports, 

although the values of h and g are different. This points to the dependence of these exponents on the 

structure and possibly the size of the networks considered.  

3.2 Non-affinity and energy partition
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The behavior discussed in section 3.1 can be explained, in part, by evaluating the non-affinity and the 

energy partition of networks in different regimes. Figure 3 shows the fraction of the total strain energy 

stored in the axial deformation mode of fibers for networks with 4 different  values function of . The 𝑤 𝑧

filled and open symbols correspond to z-homogeneous and z-heterogeneous cases, respectively. The 

reminder of the strain energy is stored primarily in the bending mode, with only a small fraction (below 

10%) stored in the shear and torsion deformation modes of fibers. It is observed that networks with low  𝑤

which deform primarily in the bending mode in the hypostatic regime,  , exhibit a transition to the 𝑧 < 𝑧𝑐

axial deformation mode as  shifts to the hyperstatic regime. Networks with  in the transition regime 𝑧 𝑤

deform by a combination of the axial and bending modes and are much less sensitive to the variation of , 𝑧

which indicates that the effect of the fiber diameter is much stronger than that of connectivity. It is also 

observed that the energy partition of z-homogeneous and z-heterogeneous network of same  is identical 𝑤

provided .𝑧 = 𝑧

Figure 3: Fraction of axial energy in z-homogeneous (filled symbols) and z-heterogeneous (open 
symbols) networks of selected w subjected to small deformations.

This z-controlled energy storage transition was observed before, and it was interpreted as an indication that 

deformation becomes affine with increasing connectivity.4 This interpretation emerges by analogy with the 

similar bending-to-axial transition controlled by  which, indeed, is associated with a gradual reduction of 𝑤

the degree of non-affinity. However, this analogy does not apply to the z-controlled transition. A suggestion 

that this might be the case is provided by the observation made in section 3.1 in relation to Fig. 2a, that the 

asymptotic values of  in the low w regime as  increases (regime II) is lower than the asymptotic value 𝐸0 𝑧

obtained in regime III as  increases. To clarify the nature of the relaxation mode leading to this effect, two 𝑤

non-affinity measures are evaluated here characterizing translational and rotational degrees of freedom of 

the crosslinks. The translational non-affinity is evaluated as:
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, (2)Γ𝑡 = 〈|𝐮 ― 𝐮𝐚|〉 𝑙𝑐

where  and  are the actual and affine crosslink displacements, the average is performed over all 𝐮 𝐮𝐚

crosslinks and the measure is normalized for convenience with the mean segment length of the network.  𝐮𝐚

is computed based on the global deformation gradient defined by the imposed network stretch and the 

transverse stretch measured during the uniaxial deformation. A measure based on comparing nodal 

displacements with the affine model prediction, similar to that of Eq. (2), is typically used to evaluate the 

degree of non-affinity of stochastic networks.24,29,35 

The second measure introduced here quantifies the magnitude of the crosslink rotation and is evaluated as:

, (3)Γ𝑟 = 〈𝜃𝑖〉𝑖

where  is the magnitude of the rotation of crosslink  ( ), and  is the angle 𝜃𝑖 = 𝜃𝑖
1

2 + 𝜃𝑖
2

2 + 𝜃𝑖
3

2 𝑖 𝑖 = 1…𝑁𝑥 𝜃𝑖
𝑗

of rotation of crosslink   about axis  (see also Fig. 4c for a 2D schematic). Parameter  is computed by 𝑖 𝑗 Γ𝑟

averaging  over all crosslinks in the model. Note that the relative angular position of fibers forming a 𝜃𝑖

crosslink is fixed, but the crosslink may rotate rigidly. Since nodal translations and rotations are independent 

degrees of freedom, the two non-affinity measures of Eq. (2) and (3) are nominally independent. However, 

they are coupled through the overall network kinematics.  

Figure 4 shows the variation of  and  with  and  in the small deformation range for all homogeneous Γ𝑡 Γ𝑟 𝑤 𝑧

networks considered.  exhibits features previously reported:36,37 (i) in the hypostatic range, the non-Γ𝑡

affinity increases as  decreases and the rate of increase is smaller in the low  range, (ii)  exhibits a 𝑤 𝑤 Γ𝑡

peak at  in the low  range, and (iii)  is independent of  in the large  range. This correlates well 𝑧 ≈ 𝑧𝑐 𝑤 Γ𝑡 𝑧 𝑤

with the shift from the bending to the axial deformation mode controlled either by  or by  (at low ). 𝑤 𝑧 𝑤

We note that in the previous literature5,13,24, a peak of  for non-affine networks is reported to occur exactly Γ𝑡

at the CFIP threshold, while in the present data the peak is shifted to slightly larger values. This apparent 

discrepancy emerges since here we report z as the network internal connectivity, ignoring surfaces. 

Accounting for the low connectivity of surface crosslinks would reduce slightly the effective z but would 

also render the z of z-homogeneous networks a fractional number, which is not representative for the present 

networks. 

 leads to additional conclusions: (i)  increases as  decreases, (ii)  increases as  increases across the Γ𝑟 Γ𝑟 𝑤 Γ𝑟 𝑧

transition defined by  and remains large in the hyperstatic regime, and (iii)  is independent of  in the 𝑧𝑐 Γ𝑟 𝑧

large  range. Therefore, in the hyperstatic, low  regime II of Fig. 2a the network relaxes by crosslink 𝑤 𝑤

rotation even though the translational non-affinity is inhibited by the high connectivity. Interestingly, this 
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relaxation mode which necessarily involves fiber bending, does not lead to bending energy dominance. 

Rotational non-affinity is sufficient to allow the reduction of  relative to the prediction of the affine 𝐸0

model, but it is not large enough to change the energy storage mode of the network. 

To gain further insight into the mechanics underlying the rotational non-affinity measure of Eq. (3), refer 

to Fig. 4c. This 2D schematic shows a generic fiber of crosslinks M and N in the undeformed (dashed lines) 

and deformed states (continuous lines). The deformed configuration is shifted such to remove the translation 

of crosslink M and hence, the displacement of N is . Let us assume that the deformation is 𝐮𝑁 ― 𝐮𝑀

translationally affine, i.e. , where  is the deformation gradient of the respective 𝐮𝑁 ― 𝐮𝑀 = (𝐅 ― 𝐈)𝐫𝑀𝑁 𝐅

macroscale deformation and  is the position vector of N relative to M. Two possibilities exist: (i) the 𝐫𝑀𝑁

deformation is affine only at (and above) the scale of the crosslinks while the points along fiber MN may 

take any position, which is not constrained by , and (ii) the deformation is strictly affine at all scales, 𝐅

which implies that all points of MN move as defined by  and MN remains straight. In case (i), the strain 𝐅

energy of the network subjected to affine crosslink displacements may be reduced by fiber bending and 

crosslink rotation. The softer the bending mode (lower w), the more pronounced this relaxation is. This 

explains the observation that rotational non-affinity is pronounced in the low w range of hyperstatic 

networks in which the high z values force a reduction of the translational non-affinity. In case (ii), crosslink 

rotation is entirely defined by the affine displacements (Fig. 4c) and hence in the large w regime, where the 

bending mode is inhibited, the rotational and translational non-affinity measures vary in proportion.
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Figure 4: Non-affinity measures for (a) translational, , and (b) rotational, , degrees of freedom in z-𝛤𝑡 𝛤𝑟
homogeneous networks for various z-values. The data points represent the average of 6 replicas for each 
set of parameters (z, w). The legend in (a) applies to both panels. The bars represent standard error. (c) 2D 
schematic of the kinematics of a generic fiber MN with crosslinks that translate by  and rotate by . MN 𝐮𝑖 𝜃𝑖

and MN’ are the undeformed and deformed states of the fiber and the deformed configuration is shifted 
such to overlap the end M. 

Further insight into the effect of the connectivity on energy partition and the associated stiffening may be 

obtained by examining the z-heterogeneous networks. As described in section 2, these structures are 

generated by starting with a Voronoi network with  at all crosslinks and transforming a fraction f of 𝑧 = 4

the total number of crosslinks to  via enriching the local neighborhood of these crosslinks with 𝑧 = 8

additional fibers. In the dilute limit, e.g., for , the crosslinks with   are isolated within the 𝑓 = 0.05 𝑧 = 8

network with , i.e., almost all fibers emerging from a  crosslink have  crosslink at the other 𝑧 ≈ 4 𝑧 = 8 𝑧 = 5

end. Figure 5a shows the average energy partition for the neighborhood of crosslinks with  and with 𝑧 = 8

 in networks with various  and , and with . Interestingly, all fibers deform in the bending 𝑧 = 4 𝑓 𝑧 𝑤 ≈ ―7.5

mode in the dilute limit, up to , regardless of the connectivity at the crosslinks. For , 𝑓 ≈ 0.2 0.2 < 𝑓 < 0.4

fibers associated with  crosslinks deform strongly in the axial mode, while those bounded at least at 𝑧 = 8

one end by crosslinks with  deform in the softer bending mode. As  increases ( ), the 𝑧 = 4 𝑓 𝑓 > 0.4

probability for a fiber emerging from a  crosslink to have another  crosslink at the other end 𝑧 = 8 𝑧 ≫ 4

increases. At the same time, the energy partition of the neighborhood of crosslinks with  (considering 𝑧 = 8

only the fibers emerging from such node) shifts to axial. Two reasons can be identified for this behavior in 

relation to Fig. 5b. First, fibers with higher connectivity nodes tend to be axially dominated. Secondly, the 

rapid change near  for all fibers suggests that stiffening in the broader neighborhood (mean field) 𝑓 ≈ 0.30

has also an effect. This is suggested by the data in Fig. 5b which shows that the energy partition of a fiber 

with given z at the two crosslinks shifts to axial as f increases, i.e., it depends on the broader neighborhood 

and not just on its own connectivity. 
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Figure 5: (a) Average fraction of axial energy of the neighborhood of crosslinks with z = 8 and z = 4. (b) 
Variation of the fraction of axial energy with f for fibers with specified z at the two ends. 

3.3 Non-linear behavior

z-homogeneous networks with  and  and 8 are subjected to large uniaxial deformations. 𝑤 ≈ ―5.25 𝑧 = 4, 6

The tangent stiffness versus stress curves for these three types of networks are shown in Fig. 6a. The tangent 

stiffness is computed based on the nominal stress as . The curves exhibit the linear and first non-𝐸𝑡 = 𝑑𝑆 𝑑𝜆

linear regimes (denoted here as A and B, respectively) of the non-linear network deformation discussed in 

the literature4 and the stars mark the transition between these two regimes. The hypostatic networks have 

constant stiffness  in regime A and exhibit exponential stiffening ( ) in regime B. The hyperstatic 𝐸0 𝐸𝑡~𝑆

network with  undergoes an instability in regime A, after which it exhibits exponential stiffening in 𝑧 = 8

regime B. The instability is necessary in order to unlock the initial structure and allow for structural 

reorganization, which makes possible the emergence of the exponential stiffening regime B. It is interesting 

to observe that the stiffness-stress curves for networks with different  overlap in regime B. This indicates 𝑧

not only that the functional form of stiffening is independent of , but also that the only z-dependent 𝑧

parameter is the small strain stiffness, . A similar observation was made before regarding the structural 𝐸0

parameter : networks with given  and different  lead to  curves that overlap in regime B and the 𝑤 𝑧 𝑤 𝐸𝑡(𝑆)

relevant w-dependent parameter is 20. The present data indicate that the effect of  and  on the large 𝐸0 𝑧 𝑤

deformation behavior is similar. The novel observation here is the presence of the instability that separates 

the small and large strain regimes A and B in the case of hyperstatic networks. Although the analysis of 

this phenomenon falls outside the scope of the present discussion, we present in Fig. 7c the fiber orientation 

parameter  versus the stress, along with the tangent stiffness-stress curves from Fig. 𝑃2 =
1
2〈3 𝑐𝑜𝑠2𝜙 ― 1〉

7a, for z = 8 and z = 4.  Here  is the angle made by the end-to-end vector of a fiber with the stretch 𝜙

direction and the average is performed over all fibers.  if fibers are randomly oriented and  𝑃2 = 0 𝑃2 = 1
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when fibers are perfectly oriented in the loading direction. In the linear regime A,  has small values and 𝑃2

increases approximately in proportion to the nominal stress for both z values. For z = 4, there is no softening 

(reduction of ) observed at the end of regime A and the network enters regime B directly. The rate of 𝐸𝑡

alignment (increase of ) decreases in the exponential stiffening regime B. However, for z = 8, a rapid 𝑃2

increase of alignment is observed during the softening regime that separates regimes A from B (marked by 

I in Fig. 7c). The  curves for the two z values become parallel in regime B. 𝑃2

Figure 7b shows the evolution of energy partition during large deformations for the networks in Fig. 7a. In 

the small strain limit ( ) the fraction of energy stored in the axial mode increases as  increases from 𝜆→1 𝑧

the hypo- to the hyperstatic regime, in agreement with the data in Fig. 3. The hyperstatic network shifts 

from the axial to the bending mode as it goes through the intermediate state labeled by I in Fig. 7c. This 

variation of the energy partition supports the suggestion made above that large structural re-

organization/alignment takes place as the network moves from regime A to regime B. Both hypo- and 

hyperstatic networks deform in the bending mode up to a stretch of , after which the axial fraction ≈ 1.15

increases. The increase of the axial fraction at stretches above 1.2 is due to the emergence of stress paths, 

as typically observed in hypostatic networks.38,39 Interestingly, the hyperstatic networks gain sufficient 

kinematic freedom upon the instability to undergo the structural re-organization required to produce stress 

paths. 
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Figure 7. (a) The tangent stiffness vs. nominal stress under large deformations for networks with , 6 𝑧 = 4
and 8 and with  and (b) their energy partition. The approximate transition point to the 𝑤 ≈  ― 5.35
exponential stiffening regime B is marked by star symbols. (c) Data in (a) replotted along with fiber 
orientation data (  vs. ) for networks with and 8. Regimes A, B, which are separated in the z = 8 𝑃2 𝑆 𝑧 = 4 
case by an instability (denoted by I) are marked by vertical dotted lines.

Conclusions

The mechanical behavior of z-homogeneous and z-heterogeneous networks of hypo- and hyperstatic types 

is compared in the linear and non-linear range. It is concluded that the functional form of strain stiffening 

is exponential and z-independent. The central z-dependent parameter is the small strain stiffness, . The 𝐸0

dependence of  on the connectivity, , exhibits 3 regimes and is described by power functions with 𝐸0 𝑧

regime-specific exponent. The exponent is sensitive to the type of network (z-homogeneous vs. z-

heterogeneous). As  shifts from the hypo- to the hyperstatic regime, the axial mode becomes the preferred 𝑧

energy storage mode, but the deformation does not become affine. For low w and in the limit of large  the 𝑧

network retains a relaxation mechanism associated with the rotation of the crosslinks which allows  to 𝐸0

be smaller than the affine model prediction. In the case of z-heterogeneous networks, the mean connectivity 

 appears to be sufficient to characterize the network behavior as it plays a role similar to that of  of z-𝑧 𝑧

homogeneous structures. 
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