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A numerical and analytical study is made of the macroscopic or homogenized mechanical response

of a random isotropic suspension of liquid n-spherical inclusions (n = 2,3), each having identical

initial radius A, in an elastomer subjected to small quasistatic deformations. Attention is restricted

to the basic case when the elastomer is an isotropic incompressible linear elastic solid, the liquid

making up the inclusions is an incompressible linear elastic �uid, and the interfaces separating the

solid elastomer from the liquid inclusions feature a constant initial surface tension γ. For such a

class of suspensions, it has been recently established that the homogenized mechanical response is

that of a standard linear elastic solid and hence, for the speci�c type of isotropic incompressible

suspension of interest here, one that can be characterized solely by an e�ective shear modulus µn in

terms of the shear modulus µ of the elastomer, the initial elasto-capillary number eCa = γ/2µA, the
volume fraction c of inclusions, and the space dimension n. This paper presents numerical solutions

� generated by means of a recently introduced �nite-element scheme � for µn over a wide range

of elasto-capillary numbers eCa and volume fractions of inclusions c. Complementary to these, a

formula is also introduced for µn that is in quantitative agreement with all the numerical solutions, as

well as with the asymptotic results for µn in the limit of dilute volume fraction of inclusions (c↘ 0)
and at percolation (c↗ pn). The proposed formula has the added theoretical merit of being an

iterated-homogenization solution.

1 Introduction

Elastomers filled with liquid inclusions — contrary to conven-
tional solid fillers — have emerged over the past few years as a
new class of materials with unique macroscopic mechanical and
physical properties1–5. From a qualitative point of view, the rea-
sons for these unique properties are well settled. On one hand, as
opposed to conventional solid fillers, the addition of liquid inclu-
sions to elastomers increases the overall deformability and, on the
other hand, the behavior of the interfaces separating a solid elas-
tomer from embedded liquid inclusions, while negligible when
the inclusions are “large”, may dominate the macroscopic prop-
erties of the material when the inclusions are sufficiently “small”.
From a quantitative point of view, by contrast, the understand-
ing of the fascinating properties of elastomers filled with liquid
inclusions is yet to be fully developed.

In this context, Ghosh and Lopez-Pamies6 and Ghosh, Lefèvre,
and Lopez-Pamies7 have recently worked out several theoretical

a Department of Civil and Environmental Engineering, University of Illinois, Urbana–
Champaign, IL 61801; E-mail: pamies@illinois.edu
b Department of Mechanical Engineering, Northwestern University, Evanston, IL
60208, USA

results aimed at explaining and describing the mechanics of de-
formation of elastomers embedding liquid inclusions. They in-
clude the governing equations that describe the macroscopic or
homogenized mechanical response of elastomers filled with liq-
uid inclusions under finite quasistatic deformations, this for the
fundamental non-dissipative case when:

• the elastomer is a hyperelastic solid,

• the liquid making up the inclusions is a hyperelastic fluid,

• the interfaces separating the solid elastomer from the liquid
inclusions feature their own hyperelastic behavior, which in-
cludes the presence of an initial surface tension as a special
case, and

• the inclusions are initially n-spherical* (n = 2,3) in shape.

The equations show that the resulting macroscopic behavior of
such filled elastomers is that of a hyperelastic solid — distinctly,
one that depends directly on the size of the inclusions and the

* Following the terminology commonly employed by geometers 8, we refer to circles
as 2-spheres and to spheres as 3-spheres.
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constitutive behavior of the interfaces — and hence that it is
characterized by an effective stored-energy function W (F) of the
macroscopic deformation gradient F. What is more, the equa-
tions show that the effective stored-energy function W (F) reduces
asymptotically to the quadratic form

W (F) =
1
2

H ·LH+O(||H||3) (1)

in the limit of small deformations as H := F− I→ 0, where the
initial effective modulus of elasticity

L :=
∂ 2W
∂F∂F

(I) (2)

possesses the standard major and minor symmetries,

Li jkl = Lkli j and Li jkl = L jikl = Li jlk, (3)

of a conventional linear elastic solid.

The result (1) is striking on two counts. First, the asymptotic
behavior (1) implies that the macroscopic first Piola-Kirchhoff
stress tensor specializes to

S =
∂W
∂F

(F) = LH+O(||H||2) (4)

in the limit of small deformations as H→ 0 and hence that elas-
tomers filled with liquid inclusions are free of macroscopic resid-
ual stresses (since S = 0 in the absence of deformation when
H=0), this in spite of the fact that there are local residual stresses
within the underlying liquid inclusions due to the presence of ini-
tial interface stresses. Second, precisely because of the presence
of local residual stresses within the liquid inclusions and of ini-
tial interface stresses, the local moduli of elasticity in the bulk
and on the interfaces do not posses the standard minor symme-
tries of conventional elastic moduli. Yet, the resulting effective
modulus of elasticity (2) turns out to possess the standard minor
symmetries (3)2. While the absence of a macroscopic residual
stress in (4) is a direct consequence of the average of the local
residual stresses within the inclusions canceling out the average
of the initial interface stresses, the minor symmetries (3)2 can be
traced back to the effective stored-energy function (1) satisfying
macroscopic material frame indifference6.

Granted the above general homogenization result, the object
of this paper is to work out the solution for the effective modu-
lus of elasticity L for an isotropic incompressible elastomer filled
with a random isotropic distribution of incompressible liquid n-
spherical inclusions, each having identical (monodisperse) initial
size, wherein the elastomer/liquid interfaces feature a constant
initial surface tension. This, arguably, is the most basic type of
elastomer filled with liquid inclusions. Clearly, by virtue of the
symmetries (3), the effective modulus of elasticity for this type of
isotropic incompressible filled elastomer is of the form

L = 2 µnKKK+∞JJJ,


Ki jkl =

1
2
(
δikδ jl +δilδ jk

)
− 1

n
δi jδkl

Ji jkl =
1
n

δi jδkl

, (5)

where KKK and JJJ are the classical deviatoric and volumetric orthog-
onal projection tensors† and where µn stands for the effective
shear modulus. The problem thus amounts to determining the
effective shear modulus µn in (5) directly in terms of the elastic-
ity of the elastomer, the surface tension on the elastomer/liquid
interfaces, and the size and amount of liquid inclusions.

We begin in Section 2 by formulating the homogenization prob-
lem that defines the pertinent effective modulus of elasticity (5).
In Section 3, we discuss the asymptotic solutions for the effec-
tive shear modulus µn in (5) in the limit of dilute volume frac-
tion of inclusions and at percolation. The former is analytically
tractable by means of plane/spherical harmonics. The latter, on
the other hand, is analytically tractable only in part. In Section
4, we present numerical solutions — generated by means of a
recently introduced finite-element scheme — for µn over a wide
range of volume fractions of inclusions between the dilute limit
and percolation. Complementary to these numerical solutions,
we then propose in Section 5 an explicit formula for µn. By con-
struction, in direct analogy with a new result for suspensions of
monodisperse rigid n-spheres9, the proposed formula is in quanti-
tative agreement with all the asymptotic and numerical solutions
presented in Sections 3 and 4 and, in addition, it has the theo-
retical merit of being an iterated-homogenization solution that is
realizable by a certain class of random isotropic suspension of liq-
uid n-spherical inclusions with infinitely many sizes. We devote
Section 6 to describing the details of its realizability. We conclude
in Section 7 by recording a few final comments.

At the close of this introduction, it is fitting to mention that
several recent works10–13, motivated by the experiments of Style
et al.2, have heuristically extended classical homogenization re-
sults in linear elasticity14–16 to estimate an effective shear mod-
ulus µ3 (and an effective bulk modulus κ3) for isotropic elas-
tomers filled with isotropic distributions of incompressible liquid
3-spherical inclusions featuring a constant surface tension at the
elastomer/liquid interfaces. In so doing, consciously or not, they
have assumed that the presence of residual bulk and interface
stresses and the lack of symmetry of the local moduli of elastic-
ity do not change the type of homogenization limit. As summa-
rized in the preceding paragraphs, the work of Ghosh and Lopez-
Pamies6 and Ghosh, Lefèvre, and Lopez-Pamies7 has established
that the type of homogenization limit, rather remarkably, does
indeed remain of the classical form (1) with (3).

2 The problem

Initial configuration and kinematics. Consider a suspension com-
prised of a statistically uniform distribution of n-spherical inclu-
sions, each having identical initial radius A, embedded in an elas-
tomer that occupies a domain Ω ⊂ Rn (n = 2,3) of length scale
`, with boundary ∂Ω and outward unit normal N, in its initial
undeformed configuration. Denote by Γ the smooth interfaces
separating the inclusions from the elastomer, by N̂ the associated
outward unit normal pointing from the inclusions towards the

† Throughout, the components of all tensorial quantities are referred to a Cartesian
frame of reference {ei} (i = 1, ...,n) and the summation convention is employed.
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Fig. 1 (a) Schematic, in its initial undeformed con�guration Ω, of a

suspension of liquid n-spherical inclusions of monodisperse radius A em-

bedded in an elastomer. (b) In the limit of separation of length scales

as ε = A/`↘ 0, when the inclusions are much smaller than the length

scale ` of the domain Ω occupied by the body, the suspension can be

shown6,7 to behave as a homogeneous elastic solid. Speci�cally, within

the setting of small quasistatic deformations, its mechanical response is

fully characterized by an e�ective modulus of elasticity L.

elastomer, and identify material points in the body by their initial
position vector X ∈Ω. See Fig. 1(a) for a schematic.

In response to a nominal traction s(X) applied on the part of
the boundary ∂ΩN and a displacement u(X) applied on the com-
plementary part of the boundary ∂ΩD = ∂Ω\∂ΩN , the position
vector X of a material point may occupy a new position x spec-
ified by a continuous‡ invertible mapping x = y(X). In terms of
the displacement field u(X) := X−y(X), we write

x = X+u(X).

Constitutive behaviors of the bulk and the interfaces. All the
inclusions are made of the same elastic fluid with first Lamé con-
stant — or bulk modulus (since the shear modulus of an elastic
fluid is zero) — Λi > 0 and have the same residual hydrostatic
stress riI. The elastomer, on the other hand, is an isotropic linear
elastic solid with Lamé constants µ > 0 and Λ > 0. As opposed
to the inclusions, the elastomer is free of residual stresses. More-
over, the interfaces separating the elastomer from the inclusions
exhibit a constant initial surface tension γ ≥ 0.

Precisely, within the setting of small quasistatic deformations,
the first Piola-Kirchhoff stress tensor Sε at any material point in
the bulk, X ∈Ω\Γ, reads6

Sε (X) = rε
i(X)I+Lε (X)∇uε (6)

with

Lε (X) = rε
i(X)(AAA−KKK+(n−1)JJJ)+2µ

ε (X)KKK+nΛ
ε (X)JJJ, (7)

where Ai jkl = 1/2(δikδ jl −δilδ jk) and where the superscript

ε :=
A
`

‡ We expect the interfaces between liquid inclusions and elastomers to be coherent,
thus our restriction to continuous deformation fields.

has been introduced to denote dependence on the size A of the
inclusions and their spatial location. In particular, note that the
dependence of the modulus of elasticity (7) on X is such that
rε
i
(X)= 0, µε (X)= µ, Λ ε (X)=Λ when X lies within the elastomer

and rε
i
(X) = ri, µε (X) = 0, Λ ε (X) = Λi when X lies within an

inclusion.

Furthermore, the interface first Piola-Kirchhoff stress tensor Ŝε

at any material point on the interfaces, X ∈ Γ, reads6

Ŝε (X) = γ Î+ L̂∇̂uε with L̂ = γ(ÂAA−“KKK+ ĴJJ), (8)

where Î = I− N̂⊗ N̂, Âi jkl = δik Î jl − 1/2
Ä

Îik Î jl + Îil Î jk

ä
, “Ki jkl =

1/2
Ä

Îik Î jl + Îil Î jk− Îi j Îkl

ä
, Ĵi jkl = 1/2Îi j Îkl , and ∇̂uε = ∇uε Î stands

for the interface gradient of the displacement field. That is, in
indicial notation, (∇̂uε )i j = Îk j∂uε

i /∂Xk

Local governing equations. Absent inertia and body forces, sub-
stitution of the bulk and interface constitutive relations (6) and
(8) in the balance of momenta yields the Lagrangian equations of
equilibrium6

Div [rε
i
(X)I+Lε (X)∇uε ] = 0, X ∈Ω\Γ

D̂iv
î
γ Î+ L̂∇̂uε

ó
− Jrε

i
(X)I+Lε (X)∇uεKN̂ = 0, X ∈ Γ

[Lε (X)∇uε ]N = s(X), X ∈ ∂ΩN

uε (X) = u(X), X ∈ ∂ΩD

(9)

for the displacement field uε (X). In these equations, J·K is the
jump operator across the interfaces Γ based on the convention
J f (X)K = f (i)(X)− f (e)(X), where f (i) (resp. f (e)) denotes the
limit of any given function f (X) when approaching Γ from within
the inclusion (resp. elastomer), while D̂iv stands for the inter-
face divergence operator. That is, in indicial notation, (D̂ivT)i =

Îk j ∂Ti j/∂Xk when applied to a second-order tensor T.

In the initial configuration, prior to the application of the
boundary conditions s(X) and u(X), the displacement field
uε (X) = 0 and hence the equations of equilibrium (9) reduce to

∇rε
i
(X) = 0, X ∈Ω\Γ

γ D̂iv Î− rε
i
(X)N̂ = 0, X ∈ Γ

, (10)

which can be viewed as the definition of the residual hydrostatic
stress riI within the inclusions required to balance out the con-
stant initial surface tension γ on the elastomer/liquid interfaces.
Given that the inclusions are initially n-spherical, the solution of
(10) yields the constant

ri =−
(n−1)γ

A
,

the same for all the inclusions. Granted this last relation, it is a
simple matter to deduce that the Lagrangian equations of equilib-
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rium (9) reduce to

Div [Lε (X)∇uε ] = 0, X ∈Ω\Γ

D̂iv
î
L̂∇̂uε

ó
− JLε (X)∇uεKN̂ = 0, X ∈ Γ

[Lε (X)∇uε ]N = s(X), X ∈ ∂ΩN

uε (X) = u(X), X ∈ ∂ΩD

. (11)

Homogenization limit. In the limit of separation of length scales as
ε↘ 0, when the inclusions are much smaller than the length scale
` of the domain Ω occupied by the body, the solution uε (X) of the
local equations of equilibrium (11) converges to a macroscopic
displacement field u(X) solution of the homogenized equations
of equilibrium7:

Div
[

L∇u
]
= 0, X ∈Ω[

L∇u
]

N = s(X), X ∈ ∂ΩN

u(X) = u(X), X ∈ ∂ΩD

. (12)

In these equations, the constant fourth-order tensor L is the effec-
tive modulus of elasticity that describes the macroscopic mechani-
cal response of the suspension when subjected to small quasistatic
deformations; see Fig. 1(b) for a schematic.

A formula for L. For the case of filled elastomers with periodic
microstructure, much like for the classical case of linear elastic
composite materials without residual and interface stresses17, the
effective modulus of elasticity L in (12) is expediently given by a
formula that only involves computations over the unit cell defin-
ing the microstructure.

Precisely, taking the unit n-cube Y = (0,1)n as the unit cell and
denoting by

θ(Y) =

®
1 if Y lies within an inclusion
0 else

the Y -periodic characteristic function that describes the initial
spatial locations occupied by the inclusions, the formula for the
effective modulus of elasticity — written here in a form that is
valid for compressible as well as for nearly or completely incom-
pressible constitutive behaviors for the elastomer and liquid in-
clusions — is given by6,7

Li jkl =

 
Y

ß
Li jmn(Y)

Å
δmkδnl +

∂ωmkl

∂Yn
(Y)

ã
+δi jΣkl(Y)

™
dY+

 
G

L̂i jmn

Å
δmk Înl +

∂ωmkl

∂yp
(Y)Îpn

ã
dY, (13)

where L(Y) = (1−θ(Y))2µKKK−θ(Y)(n−1)γ/A(AAA−KKK+(n−1)JJJ),
G denotes the elastomer/liquid interfaces contained in Y , the
interface modulus of elasticity L̂ is given by (8)2, and ωi jk(Y) and
Σi j(Y) are the Y -periodic functions defined as the solution of the

unit-cell problem

∂

∂Y j

ï
Li jkl (Y)

∂ωkmn

∂Yl
(Y)+δi jΣmn(Y)

ò
=−

∂Li jmn

∂Y j
(Y) , Y ∈ Y \G

∂

∂Yq

ï
L̂i jkl

∂ωkmn

∂Yp
(Y)Îpl

ò
Îq j− JLi jkl(Y)

∂ωkmn

∂Yl
(Y)+δi jΣmn(Y)KN̂ j =

− ∂

∂Yq

î
L̂i jklδkm Înl

ó
Îq j + JLi jkl(Y)δkmδln +δi jΣmn(Y)KN̂ j, Y ∈ G

∂ωimn

∂Yi
(Y)− 1

n [(1−θ(Y))Λ +θ(Y)Λi]
Σmn(Y) = 0, Y ∈ Y \G

�
Y ωkmn(Y)dY = 0

.

(14)

The computation of the effective modulus of elasticity L for a
given filled elastomer of interest amounts thus to solving the unit-
cell problem (14) for the functions ωi jk(Y) and Σi j(Y) and then
carrying out the integral in (13). In general, the unit-cell problem
(14) can only be solved numerically.

Remark 1. While the unit-cell problem (14) can be solved di-
rectly for the components of the so-called concentration tensors
ωi jk and Σi j all at once, its linearity also allows to solve for the
individual components of ωi jk and Σi j one at a time. To see this,
note that after multiplying (14) by a constant second-order tensor
Hmn, ωkmnHmn and ΣmnHmn are nothing more than the displace-
ment field uk(Y) and pressure field p(Y) in a unit-cell problem
subjected to an average strain Hmn.

The specific case on interest here. The object of this paper is to
determine the effective modulus of elasticity (13) for the basic
case when the elastomer is incompressible

Λ =+∞,

the liquid making up the inclusions is also incompressible

Λi =+∞,

and the inclusions are randomly and isotropically distributed, this
for any choice of shear modulus µ of the elastomer, any choice
of initial surface tension γ, any choice of the initial size A of the
inclusions, and any choice of volume fraction

c :=
 

Y
θ(Y)dY

of inclusions from c= 0 to the percolation threshold c= pn, where
we recall that18–20

p2 ≈ 0.90 and p3 ≈ 0.64 (15)

for 2- and 3-spherical inclusions, respectively.

Remark 2. As anticipated in the Introduction, because of the
overall constitutive isotropy and incompressibility of the elas-
tomer and the liquid making up the inclusions together with the
overall geometric isotropy of the inclusions, the effective modulus
of elasticity (13) for the filled elastomer of interest here is of the
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isotropic incompressible form

L = 2 µnKKK+∞JJJ.

Id est, the macroscopic response of the filled elastomer is fully
characterized by an effective shear modulus µn. What is more, it
follows from the definition (13) that µn is of the functional form

µn = h(eCa,c,n) µ, (16)

where eCa stands for the initial elasto-capillary number

eCa :=
γ

2µA

and h(eCa,c,n) is a function solely of its three indicated argu-
ments.

Remark 3. In principle, to deal with a random and isotropic dis-
tribution of inclusions, one would have to consider unit cells Y

that contain infinitively many inclusions. In practice, as elabo-
rated in Section 4 below, away from percolation, it suffices to
consider unit cells that contain a sufficiently large but finite num-
ber N of inclusions21–23. As one approaches percolation, however,
that number N increases without bound.

3 Analytical solutions in the dilute limit and

at percolation

In general, the solution of the unit-cell problem (14) needed to
determine (13) is accessible only numerically. There are, how-
ever, two limiting cases in which (14) can be treated analytically
or quasi-analytically and hence in which the effective shear mod-
ulus µn can be determined in closed or quasi-closed form: (i) the
limit of dilute volume fraction of inclusions when c↘ 0 and (ii)
the percolation limit when c↗ pn. We discuss them next, one at
a time.

3.1 The dilute limit
In the limit of dilute volume fraction of inclusions as c↘ 0, it
suffices to consider a unit cell Y that contains a single inclusion
whose size relative to that of the unit cell is infinitesimally smaller.
The asymptotic problem that results from (14) — that of a single
inclusion embedded in an infinite medium — can then be solved
analytically in terms of plane/spherical harmonics24. Making use
of an Eulerian approach, Style et al.10 worked out the solution in
space dimension n = 3 and determined in turn the corresponding
effective shear modulus µ3. The same solution worked out within
a Lagrangian setting can be found in Appendix D of Ghosh and
Lopez-Pamies6. More generally, the solution for space dimension
n is given by

µn = µ +
(2+n)(eCa−1)
n+(2+n)eCa

µ c+O(c2). (17)

In the absence of surface tension on the elastomer/liquid in-
terfaces, when γ = 0 and hence eCa = 0, the dilute solution (17)
reduces identically to the classical Eshelby solution14

µ
dil, liq
n = µ−

Å
1+

2
n

ã
µ c+O(c2)

for the effective shear modulus of a dilute suspension of incom-
pressible n-spherical inclusions of vanishingly small shear stiff-
ness embedded in an isotropic incompressible solid. For later
reference, we recall that for the more general case when the n-
spherical inclusions are not liquid but just incompressible with
shear modulus µi, the corresponding Eshelby solution reads

µ
dil
n = µ +

(2+n)(µi−µ)

nµ +2µi
µ c+O(c2). (18)

In the presence of surface tension, when γ > 0 and hence eCa >

0, the dilute solution (17) is a monotonically increasing function
of the elasto-capillary number eCa such that

µn < µ if eCa < 1
µn = µ if eCa = 1
µn > µ if eCa > 1

.

In other words, the presence of inclusions goes unnoticed at
eCa = 1 in the sense that the macroscopic response is identical
to that of the elastomer without the inclusions. For eCa < 1, the
presence of inclusions leads to the softening of the macroscopic
response relative to that of the elastomer, while it leads to its
stiffening for eCa > 1. This behavior stems from the fact that the
presence of surface tension makes the inclusions resist deforma-
tion thereby providing a stiffening mechanism, one that increases
with increasing elasto-capillary number eCa. For eCa > 1, this
stiffening mechanism is stronger than the softening provided by
the lack of shear stiffness within the inclusions. In this regard,
note that the dilute solution (17) reduces to

µn = µ +µ c+O(c2) (19)

in the limit as eCa→ +∞, when the inclusions pose the largest
resistance to deformation and remain in fact n-spherical. Inter-
estingly, as already noted by Taylor25 for n = 3, this last result
is different — in particular, softer — than the classical Einstein-
Eshelby solution

µ
dil, rig
n = µ +

(
1+

n
2

)
µ c+O(c2)

for the effective shear modulus of a dilute suspension of rigid
n-spherical inclusions embedded in an isotropic incompressible
solid. The reason for this (factor of 1+n/2) difference is that the
forces at a solid/liquid-inclusion interface featuring surface ten-
sion are different from those at a solid/rigid-inclusion interface,
even in the limit as eCa→+∞.

Remark 4. The computation of the correction of O(c2) in the
Eshelby solution for n-spherical inclusions has been extensively
studied26–30, the case of 3-spheres more so than that of 2-spheres.
The techniques developed in those studies might be applicable to
the more general problem of interest in this work. Whether that
is the case is worth exploring in future work. Here, for complete-
ness, we simply recall the available correction29 to O(c2) in (17)
for n = 3 in the absence of surface tension on the interfaces, when
γ = 0 and hence eCa = 0:

µ3 = µ− 5
3

µ c+
1
2

µ c2 +O(c3). (20)
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3.2 Percolation
It is well-known from experiments and computations18–20 on the
random packing of n-spheres that the maximum volume fraction c
of n-spherical inclusions possible in the monodisperse filled elas-
tomer of interest in this work is given by the percolation thresh-
olds pn spelled out in (15).

In the limit as c↗ pn, contrary to the dilute limit discussed
above, the isotropic distribution of the inclusions dictates that we
have no option but to consider a unit cell Y that contains in-
finitely many inclusions; see Remark 3 above. This makes the
asymptotic problem that results from (14) challenging. This tra-
verse notwithstanding, it is still possible to determine analytical
approximations for the effective shear modulus µn as c↗ pn.

Space dimension n = 2. When the volume fraction c of n-spherical
inclusions reaches the percolation threshold pn, the inclusions
come into direct contact with one another at several points. For
space dimension n = 2 — but not for space dimension n = 3 — the
number of points of contact (the so-called coordination number)
is dense enough that the surrounding elastomer is fully severed
into disconnected pieces. This implies that the elasticity of the
elastomer plays no role in the governing equations at percolation;
in other words, setting µ = 0 would not change the response of
the suspension. In turn, this implies that the surface tension γ can
be factored out of the asymptotic problem stemming from (14)
when c = p2 and, in consequence, that the associated effective
shear modulus that results from the definition (13) is necessarily
of the simple asymptotic form

lim
c↗p2

µ2 = ζ2
γ

2A
, (21)

where ζ2 is a constant.
Now, the exact determination of the constant ζ2 in (21) is a

difficult endeavor because one has to deal with a unit cell Y that
contains infinitely many inclusions. Nevertheless, it is possible to
determine it approximately.

Princen31 estimated that the effective shear modulus of a
hexagonal — rather than random isotropic — distribution of
monodisperse liquid 2-spherical inclusions at percolation, when
c = π/2

√
3≈ 0.9069, is given by

µ
Hex,perc
2 ≈ 0.99

γ

2A
. (22)

It later emerged that the elastic response of a random isotropic
suspension of 2-spheres at percolation is likely the same as that
of a hexagonal suspension19,20. This is because both of these
microstructures lead to a macroscopic elastic response that is
isotropic, they have practically identical percolation thresholds,
and, moreover, random isotropic suspensions contain clusterings
of hexagonally packed inclusions. Motivated by these findings,
as elaborated in Appendix A, we have determined numerically
the effective shear modulus µ

Hex
2 of a hexagonal suspension of

monodisperse liquid 2-spherical inclusions up to a volume frac-
tion c = 0.9050§. By extrapolating the computed results to the

§ Reaching such high values very near percolation is numerically challenging but

percolation threshold c = π/2
√

3 ≈ 0.9069, we have then estab-
lished that

µ
Hex,perc
2 ≈ 0.97

γ

2A
, (23)

which is not far from the estimate obtained by Princen31. As-
suming that the response of a random isotropic suspension of
monodisperse liquid 2-spherical inclusions at percolation is in-
deed essentially the same as that of the corresponding hexagonal
suspension, for definiteness, we take

ζ2 = 1 (24)

as the constant in the percolation limit (21) for space dimension
n = 2.

Space dimension n = 3. For space dimension n = 3, contrary to n =

2, the number of points at which the inclusions come into contact
at percolation when c = p3 are not dense enough to severe the
surrounding elastomer into disconnected pieces. In other words,
the surrounding elastomer remains as a single piece of material,
albeit one with communicating holes. Accordingly, the elasticity
of the elastomer and not only the stiffness due to surface tension
contribute to the effective shear modulus µ3 of the suspension at
percolation. In view of the general functional form (16), we have,
in particular,

lim
c↗p3

µ3 = η3(eCa)µ, (25)

where η3(eCa) is a function solely of the elasto-capillary number.

For eCa� 1, when the elasticity of the elastomer is negligible
relative to the stiffness due to surface tension, it follows from
(13)-(14) that

η3(eCa) = ζ3eCa,

where ζ3 is a constant. For arbitrary values of the elasto-capillary
number eCa, however, the determination of the functional form
of η3(eCa) is difficult, again, because one has to deal with a
unit cell Y that contains infinitely many inclusions. To gain in-
sight, as elaborated in Appendix B, we have determined numer-
ically the two effective (axisymmetric and simple) shear moduli,
µ

BCCa
3 and µ

BCCs
3 , of a body-centered cubic (BCC) suspension¶ of

monodisperse liquid 3-spherical inclusions up to a volume frac-
tion c = 0.675, which is very close to their percolation threshold
c =
√

3π/8≈ 0.6802. By extrapolating the computed results to the
percolation threshold c =

√
3π/8 ≈ 0.6802, we have then estab-

lished that

µ
BCCa,perc
3 ≈ 18

1+0.00174eCa9 +
1.69
Ä

104+ eCa− 18
1+0.00174eCa9

ä
eCa

0.79+ eCa
(26)

doable because the pertinent unit cell contains a small number of inclusions, in
our case, only two inclusions.

¶ For space dimension n = 3, in contrast to n = 2, there is no simple periodic suspen-
sion of monodisperse 3-spheres that leads to a macroscopic elastic response that is
isotropic. As elaborated below, a BCC suspension can be thought of as the “next best
thing”.
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and

µ
BCCs,perc
3 ≈ 16

1+0.00019eCa9 +
0.48
Ä

405+ eCa− 16
1+0.00019eCa9

ä
eCa

0.95+ eCa
.

(27)
Now, while the macroscopic response of a BCC suspension is cubic
and not isotropic, the results in Appendix B show that the extent
of anisotropy for the case of liquid inclusions of interest here, as
measured by the difference µ

BCCa
3 −µ

BCCs
3 , is not large. Moreover,

the percolation threshold c =
√

3π/8 ≈ 0.6802 and coordination
number z = 8 of a BCC suspension are similar to the percolation
threshold p3 ≈ 0.64 and average coordination number z≈ 6.5 of a
random isotropic suspension32. For these reasons, it is sensible to
assume that the functional form of the function η3(eCa) in (25) is
the same as that found for (26) and (27). We therefore posit that

η3(eCa) =
a3

1+b3 eCa9 +
(1+c3)

Ä
1− a3

1+b3 eCa9

ä
+(eCa−1)ζ3

c3 + eCa
eCa

and hence that

lim
c↗p3

µ3 =
a3 µ

1+b3 eCa9 +
(1+c3)

Ä
1− a3

1+b3 eCa9

ä
+(eCa−1)ζ3

c3 + eCa
γ

2A
,

(28)
where, much like ζ3, a3, b3, and c3 are constants. The first de-
scribes the value of the effective shear modulus limc↗p3 µ3 = a3µ

at eCa = 0, while the latter two modulate the transition from a3µ

to ζ3γ/2A as eCa increases. The numerical results presented in
the next section suggest that

a3 = 0.1800, b3 = 0.0017, c3 = 0.7878, ζ3 = 0.0169. (29)

Remark 5. The apparent elasticity that foams and emulsions con-
taining monodisperse 3-spherical inclusions exhibit at percolation
has been the subject of many studies in the literature33–38. Such
a behavior falls squarely within the formulation presented here
when considering eCa� 1, since for large elasto-capillary num-
bers the elasticity of the elastomer surrounding the liquid inclu-
sions is negligible. The various existing approximations for foams
and emulsions indicate that34–38

lim
c↗p3

µ3 ≈ (1.01±0.09)
γ

2A
.

All such estimates overpredict the result limc↗p3 µ3 ≈ 0.0169
γ

2A
suggested by our simulations for eCa� 1.

A unifying expression for space dimension n. For space dimension
n, in view of expressions (21) and (28), we can compactly write

lim
c↗pn

µn = ηn(eCa)µ (30)

with

ηn(eCa) =
an

1+bn eCa9 +
(1+cn)

Ä
1− an

1+bn eCa9

ä
+(eCa−1)ζn

cn + eCa
eCa,

(31)
where the values of the constants an, bn, cn, ζn are given in Table
1.

Table 1 Values of the constants in the function ηn(eCa) for space dimen-

sions n = 2 and 3.

n an bn cn ζn

2 0 0 0 1
3 0.1800 0.0017 0.7878 0.0169

4 Numerical solutions for �nite volume frac-

tion of inclusions

In this section, we present numerical solutions for the effective
shear modulus µn over the range eCa ∈ [0,10] of elasto-capillary
numbers and the ranges c ∈ [0,0.6] and c ∈ [0,0.5] of volume frac-
tions of inclusions in space dimensions n = 2 and 3, respectively.
Making use of a recently developed finite-element (FE) scheme6,
the solutions are generated by solving numerically the unit-cell
problem (14) over suitably selected unit cells Y and then com-
puting the resulting effective modulus of elasticity (13).

4.1 Construction of the unit cells Y

Prior to presenting the results themselves, we outline the proce-
dure by which we constructed the unit cells Y .

As noted in Remark 3 above, in order to model the type of
isotropic filled elastomer of interest here, it suffices to consider
unit cells containing random distributions of a finite number N of
inclusions that is large enough that the resulting effective modu-
lus of elasticity (13) is indeed isotropic to a high degree of accu-
racy. Here, we follow in the footstep of recent contributions7,23

to construct the pertinent unit cells.
In a nutshell, we first constructed tens of thousands of real-

(a) (b)

(c) (d)

Fig. 2 Representative unit cells Y in space dimensions n = 2 and 3 con-

taining random distributions of (a) N= 120 and (b) N= 960 2-spherical in-
clusions and (c) N= 120 and (d) N= 960 3-spherical inclusions of monodis-

perse radius A at volume fractions (a,c) c = 0.3 and (b,d) c = 0.5 and

minimum distance d = 0.01A between the inclusions.
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izations with the algorithm introduced by Lubachevsky and Still-
inger19 for unit cells Y containing up to 960 randomly dis-
tributed 2-spheres with volume fractions in the range c ∈ [0,0.6]
and randomly distributed 3-spheres with volume fractions in the
range c ∈ [0,0.5] for several fixed values of the minimum distance
d between the n-spherical inclusions. We then filtered out the
realizations that did not exhibit an isotropic elastic response to
within a stringent tolerance. Precisely, realizations whose effec-
tive modulus of elasticity L did not satisfy the condition

||KKKLKKK−2 µnKKK||∞
||KKKLKKK||∞

≤ 0.02 with µn :=
1

n(1+n)−2
KKK ·L (32)

were discarded as not sufficiently isotropic. This last relation,
where we recall that KKK stands for the deviatoric orthogonal pro-
jection tensor (5)2, serves to define the effective shear modulus
µn in terms of the entire effective modulus of elasticity (13) that
is computed numerically.

The maximum difference in effective shear modulus (32)2 be-
tween any two realizations (with the same elasto-capillary num-
ber eCa, volume fraction c, and minimum inter-inclusion distance
d) that did satisfy condition (32)1 was small, less than 2%. This
confirmed that the values (32)2 obtained for µn could indeed be
considered39 as the effective shear modulus of an isotropic in-
compressible elastomer filled with a random isotropic suspension
of liquid n-spherical inclusions of monodisperse size.

For completeness, we have included as Supplementary Ma-
terial two realizations that satisfy (32) for each of the volume
fractions c = 0.1,0.2,0.3,0.4,0.5,0.6 that we have considered in
space dimension n = 2 and for each of the volume fractions
c = 0.1,0.2,0.3,0.4,0.5 that we have considered in space dimen-
sion n = 3. All these realizations correspond to a minimum inter-
inclusion distance of d = 0.01A. For illustration purposes, more-
over, Fig. 2 shows four of these realizations, two for n = 2, the
other two for n = 3, for volume fractions c = 0.3 and 0.5 of inclu-
sions.

Remark 6. For definiteness, the FE results that we present
throughout this work for µn correspond to the average of all the
realizations (with the same elasto-capillary number eCa, volume
fraction c, and minimum inter-inclusion distance d) that satisfied
condition (32). Moreover, for each elasto-capillary number eCa
that we considered, the results are presented up to the maximum
volume fraction c of inclusions for which we managed to gen-
erate converged solutions and correspond to the basic case of a
vanishingly small minimum inter-inclusion distance, i.e., d = 0+.

4.2 Results
Figures 3 and 4 present the FE solutions (solid circles) obtained
for the effective shear modulus µn of a random isotropic suspen-
sion of monodisperse liquid n-spherical inclusions in an isotropic
incompressible elastomer. While Fig. 3 shows the effective shear
modulus µ2 for 2-spherical inclusions, Fig. 4 shows the effective
shear modulus µ3 for 3-spherical inclusions. The results are pre-
sented normalized by the shear modulus µ of the elastomer as a
function of the volume fraction c of inclusions for seven differ-
ent values of elasto-capillary number, eCa = 0,0.1,0.5,1,2.5,5,10.

For better quantitative visualization, parts (a) of the figures show
the results for 0 ≤ eCa < 1, while parts (b) show the results for
eCa ≥ 1. For direct comparison, the figures also display the re-
sults based on the formula (33) introduced in the next section.

Three observations are immediate from Figs. 3 and 4. First,
irrespectively of the volume fraction c of inclusions, the effective
shear modulus µn is a monotonically increasing function of the
elasto-capillary number eCa. What is more, exactly as the behav-
ior noted in the dilute limit,

µn < µ if eCa < 1
µn = µ if eCa = 1
µn > µ if eCa > 1

.

That is, while the presence of liquid inclusions leads to the soften-

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FE

Formula (33)

(a)

0.8

1.2

1.6

2

2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FE

Formula (33)

(b)

Fig. 3 Finite-element results (solid circles) for the e�ective shear modulus

µ2 of a random isotropic suspension of monodisperse liquid 2-spherical
inclusions in an isotropic incompressible elastomer. The results are shown

normalized by the shear modulus µ of the elastomer as a function of the

volume fraction c of inclusions for elasto-capillary numbers 0≤ eCa < 1 in

part (a) and for eCa≥ 1 in part (b). For direct comparison, the proposed

formula (33) is also included (solid lines) in the �gures.
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FE

Formula (33)

(a)

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FE

Formula (33)

(b)

Fig. 4 Finite-element results (solid circles) for the e�ective shear modulus

µ3 of a random isotropic suspension of monodisperse liquid 3-spherical
inclusions in an isotropic incompressible elastomer. The results are shown

normalized by the shear modulus µ of the elastomer as a function of the

volume fraction c of inclusions for elasto-capillary numbers 0≤ eCa < 1 in

part (a) and for eCa≥ 1 in part (b). For direct comparison, the proposed

formula (33) is also included (solid lines) in the �gures.

ing of the macroscopic response relative to that of the elastomer
when eCa < 1, it leads to its stiffening when eCa > 1. The transi-
tion from softening to stiffening still appears to occur at eCa = 1,
at least up to the maximum volume fractions of inclusions that
we considered. The explanation for this monotonic behavior in
eCa remains the same as that for the dilute limit. Namely, the
presence of surface tension (i.e., eCa > 0) makes the inclusions
resist deformation thereby providing a stiffening mechanism. For
eCa > 1, this mechanism becomes strong enough that overtakes
the softening provided by the lack of bulk shear stiffness within
the inclusions resulting in the stiffening of the macroscopic re-
sponse relative to that of the elastomer. The second immediate
observation from Figs. 3 and 4 is that both the softening and the
stiffening afforded by the presence of liquid n-spherical inclusions
can be very significant even at moderate values of c and eCa. Fi-

nally, we note that the formula (33) is in good agreement with
the FE solutions.

5 An explicit formula for µn
In this section, we show that the formula

µn = µ

ñÇ
1+αn(eCa)

Å
c
pn

ã2
+βn

Å
c
pn

ãn+1åÅ
1− c

pn

ã
+Å

c
pn

ã3n−4
(ηn(eCa))−

n+(2+n)eCa
(2+n)pn(eCa−1)

ô− (2+n)pn(eCa−1)
n+(2+n)eCa

, n = 2,3,

(33)

with

αn(eCa) =
dn +fn eCa
en +gn eCa

,


β2 = 0

β3 = 0.4034
, (34)

where the values of the constants dn, en, fn, gn are given in Table
2, and where we recall that pn and ηn(eCa) are given by (15) and
(31) for space dimensions n = 2 and 3, is in quantitative agree-
ment with all the analytical results outlined in Section 3 and the
numerical results presented in Section 4 and hence that it pro-
vides an accurate description for the effective shear modulus of
a random isotropic suspension of monodisperse liquid n-spherical
inclusions in an isotropic incompressible elastomer.

Table 2 Values of the constants in the function αn(eCa) for space dimen-

sions n = 2 and 3.

n dn en fn gn
2 −0.0002 0.0010 0.3634 1.7768
3 0.0016 0.0100 0.8170 1.2252

The dilute limit. In the limit as the volume fraction of inclusions
c↘ 0+, the effective shear modulus (33) reduces asymptotically
to

µn =µ +
(2+n)(eCa−1)
n+(2+n)eCa

µ c+
(2+n)(eCa−1)

2pn

Å
1−2αn(eCa)
n+(2+n)eCa

−

(3−n)(ηn(eCa))−
n+(2+n)eCa

(2+n)pn(eCa−1)

1+2eCa
+

(2+n)pn(eCa−1)
(n+(2+n)eCa)2

é
µ c2 +O(c3).

(35)

Thus, irrespectively of the function αn(eCa), constant βn, and
function ηn(eCa), the formula (33) agrees identically with the ex-
act dilute result (17).

Higher-order correction to the dilute limit for eCa = 0. For the case
of 3-spherical inclusions and elasto-capillary number eCa = 0, the
asymptotic result (35) specializes to

µ3 =µ− 5
3

µ c+0.5 µ c2 +O(c3).

This result agrees identically with the higher-order exact result
(20).
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Percolation. In the limit as the volume fraction of inclusions c↗
pn, the effective shear modulus (33) reduces asymptotically to

µn =ηn(eCa)µ +O(pn− c). (36)

Thus, the formula (33) also agrees identically with the corre-
sponding result (30) at percolation.

Comparison with numerical solutions. For intermediate values of
volume fraction c of inclusions away from the dilute limit and
percolation, Figs. 3 and 4 above show comparisons between the
formula (33) and the numerical solutions presented in Section 4.
It is plain that both sets of results are in good quantitative agree-
ment for all elasto-capillary numbers eCa and volume fractions c
for which the numerical results are available.

The special cases of eCa = 0,1, and +∞. In the absence of surface
tension on the elastomer/liquid interfaces, when eCa = 0, the ef-
fective shear modulus (33) reduces to

µn = µ

ñÇ
1+

dn

en

Å
c
pn

ã2
+βn

Å
c
pn

ãn+1åÅ
1− c

pn

ã
+Å

c
pn

ã3n−4
a

n
(2+n)pn
n

ô (2+n)pn
n

.

Moreover, for elasto-capillary number eCa = 1, the effective shear
modulus (33) specializes to

µn = µ =
γ

2A
.

That is, the presence of liquid inclusions goes unnoticed in the
sense that µn = µ for any value of the volume fraction c of in-
clusions. Finally, for unbounded elasto-capillary number when
eCa =+∞, the effective shear modulus (33) reduces to

µn = µ

ñÇ
1+

fn

gn

Å
c
pn

ã2
+βn

Å
c
pn

ãn+1åÅ
1− c

pn

ãô−pn

.

As expected, in spite of the fact that the underlying inclusions
do not deform and remain n-spherical when eCa = +∞, this last
result is significantly softer than the corresponding result for a
suspension of monodisperse rigid n-spherical inclusions:9

µ
rig
n = µ

ñÇ
1+an

Å
c
pn

ã2
+bn

Å
c
pn

ãn+1åÅ
1− c

pn

ãô− (2+n)pn
2

,

(37)
where a2 =−0.238, b2 =−0.299, a3 = 0.017, b3 = 0.635 for space
dimensions n = 2 and 3. The reason for this difference is the same
already noted for the dilute result (19), namely, that the forces
at a solid/liquid-inclusion interface featuring surface tension are
different from those at a solid/rigid-inclusion interface, even for
unbounded elasto-capillary number eCa =+∞.

Connection with the classical differential scheme. The formula (33)
can be thought of as a generalization of the classical differential-
scheme (DS) result40,41

µ
liq
DSn

=
µ

(1− c)−
2+n

n

(38)

for the effective shear modulus of an isotropic suspension of poly-
disperse liquid n-spherical inclusions in an isotropic incompress-
ible solid in that: (i) the volume fraction c is re-scaled|| by the
percolation threshold c 7→ c/pn and (ii) the stiffness due to the
presence of a surface tension on the solid/liquid-inclusion inter-
faces is account for, including at percolation.

Realizability. In direct analogy with the effective shear modulus
(37) for suspensions of monodisperse rigid n-spheres, the pro-
posed formula (33) is not “just” a formula that happens to be in
agreement with the above-summarized analytical and numerical
results, but has also the merit to be realizable as an iterated-
homogenization solution. Precisely, as elaborated in the next
section, the formula (33) can be shown to be the exact homog-
enization solution for the effective shear modulus of a certain
class of random isotropic suspensions of liquid n-spherical inclu-
sions with infinitely many sizes in an isotropic incompressible elas-
tomer. That the effective shear modulus (33) is descriptive of
both isotropic suspensions with monodisperse and with (a spe-
cially selected class of) polydisperse liquid n-spherical inclusions
is nothing more than a manifestation of the richness in behaviors
that suspensions of polydisperse liquid n-spherical can exhibit.

6 Realizability

To show that the effective shear modulus (33) is realizable, we
begin by extending the generalized differential scheme for linear
elastostatics45,46 to account for the presence of surface tension
in the filled elastomer of interest here. The derivation goes as
follows.

Consider the domain Ω to be initially occupied by a “backbone”
elastomer, which we label s = 0 and take to be homogeneous,
isotropic, and incompressible with, as of yet, arbitrary shear mod-
ulus µ(0). Embed a dilute distribution of two different materials,
labeled s = 1 and 2, one being n-spherical inclusions** made of
another isotropic incompressible elastomer with shear modulus
µ(1), the other being n-spherical inclusions of monodisperse ra-
dius A[1] made of an incompressible liquid featuring an initial sur-
face tension γ [1] at the interfaces with the “backbone” elastomer.
Denoting the infinitesimal volume fractions of these two types of
added materials by v[1]1 and v[1]2 , respectively, it follows from use of
the dilute solutions (18) and (17) that the resulting three-phase
filled elastomer has an effective shear modulus µ̃

[1]
n given by

µ̃
[1]
n = µ

(0)+
(2+n)(µ(1)−µ(0))

nµ(0)+2µ(1)
µ
(0)v[1]1 +

(2+n)(eCa[1]−1)
n+(2+n)eCa[1]

µ
(0)v[1]2

(39)
to order O(1) in v[1]1 and v[1]2 , where eCa[1] = γ [1]/2µ(0)A[1].

Taking next the filled elastomer with shear modulus µ̃
[1]
n —

rather than µ(0) — as the “backbone” elastomer, we repeat ex-

|| A re-scaling of this type, which can be traced back to the work of Eilers 42, has
been repeatedly used — albeit heuristically, disconnected from the differential
scheme 40,41 — to model percolation in the analogous problem of the determina-
tion of the viscosity of suspensions of rigid 3-spheres in a Newtonian fluid 43,44.

** For our purposes here, we consider that the material s = 1 is added in the form of
n-spherical inclusions, but any other shape could be considered as well, so long as
the amount of added material in infinitesimal.
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actly the same addition of the two types of n-spherical inclusions
in dilute proportions. This second iteration requires utilizing the
same dilute distribution as in the first iteration, but with a larger
length scale, since (39) is being employed as the shear modulus of
a “homogenous” material. Denoting by v[2]1 and v[2]2 the infinites-
imal volume fractions of materials s = 1 and 2 embedded in this
second step, the resulting filled elastomer has now an effective
shear modulus given by

µ̃
[2]
n = µ̃

[1]
n +

(2+n)(µ(1)− µ̃
[1]
n )

nµ̃
[1]
n +2µ(1)

µ̃
[1]
n v[2]1 +

(2+n)(eCa[2]−1)
n+(2+n)eCa[2]

µ̃
[1]
n v[2]2

with eCa[2] = γ [2]/2µ
[1]
n A[2], where γ [2] and A[2] denote, respec-

tively, the surface tension of the liquid at the interfaces with the
new “backbone” material and the radius of the liquid inclusions.
Note that we are at liberty to choose an arbitrary value for the ra-
tio γ [2]/A[2]. Thus, we are at liberty to choose an arbitrary elasto-
capillary number eCa[2]. Note further that the total volume frac-
tions of materials s= 1 and 2 at this stage are given, respectively,
by φ

[2]
1 = v[2]1 +φ

[1]
1 (1−v[2]1 −v[2]2 ) and φ

[2]
2 = v[2]2 +φ

[1]
2 (1−v[2]1 −v[2]2 ),

where φ
[1]
1 = v[1]1 and φ

[1]
2 = v[1]2 .

It is apparent now that repeating the same above process k+1
times, for arbitrarily large k ∈N, generates a filled elastomer with

Iteration 1

Iteration 2

Iteration k+1

……

Fig. 5 Schematic of the of iterative construction process.

effective shear modulus

µ̃
[k+1]
n =µ̃

[k]
n +

(2+n)(µ(1)− µ̃
[k]
n )

nµ̃
[k]
n +2µ(1)

µ̃
[k]
n v[k+1]

1 +

(2+n)(eCa[k+1]−1)
n+(2+n)eCa[k+1]

µ̃
[k]
n v[k+1]

2 , (40)

which contains total volume fractions of materials s = 1 and 2
given by 

φ
[k+1]
1 = v[k+1]

1 +φ
[k]
1

(
1− v[k+1]

1 − v[k+1]
2

)
φ
[k+1]
2 = v[k+1]

2 +φ
[k]
2

(
1− v[k+1]

1 − v[k+1]
2

) . (41)

Figure 5 provides a schematic illustration of the construction pro-
cess leading to (40).

Upon inverting relations (41) in favor of v[k+1]
1 and v[k+1]

2 , tak-
ing the limit of infinitely many iterations (k→∞), parameterizing
the construction process with a time-like variable t ∈ [0,1], and
choosing µ(0) = µ(1) = µ, the difference equation (40) yields the
first-order nonlinear ordinary differential equation (ODE)

(1−φ1(t)−φ2(t))
dµ̃n

dt
(t) =

ï
(1−φ2(t))

dφ1

dt
(t)+φ1(t)×

dφ2

dt
(t)
ò
(2+n)(µ− µ̃n(t))

nµ̃n(t)+2µ
µ̃n(t)+

ï
(1−φ1(t))

dφ2

dt
(t)+

φ2(t)
dφ1

dt
(t)
ò
(2+n)(ẽCa(t)−1)

n+(2+n) ẽCa(t)
µ̃n(t) t ∈ (0,1], (42)

with initial condition

µ̃n(0) = µ, (43)

that defines the effective shear modulus

µn = µ̃n(1) (44)

of a very large family of random isotropic suspensions of incom-
pressible liquid n-spherical inclusions of infinitely many sizes in
an incompressible isotropic elastomer with shear modulus µ.

In equation (42), φ1(t), φ2(t), ẽCa(t) stand for non-negative
continuous functions of choice. The first two are subject to the
inequality constraint φ1(t) + φ2(t) ≤ 1. In addition, they must
be selected so that the combinations φ1(t)/(1−φ1(t)−φ2(t)) and
φ2(t)/(1−φ1(t)−φ2(t)) are monotonically increasing functions of
t, φ1(0) = φ2(0) = 0, and φ2(1) = c. The specific choice of func-
tions φ1(t), φ2(t), ẽCa(t) defines the type of suspension being con-
sidered, that is, the specific sizes and spatial distributions of the
liquid n-spherical inclusions as well as the specific elasto-capillary
numbers at all length scales. Different choices of φ1(t), φ2(t),
ẽCa(t) lead hence to different solutions for the effective shear
modulus µn of the resulting suspension.

From a computational point of view, we remark that the ODE
(42) needs to be solved from the initial condition (43) at t = 0
up to t = 1, as its solution then µ̃n(1) defines the effective shear
modulus (44) of the suspension.
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One-sided radial paths with constant path-independent elasto-
capillary number. At this stage, it is a simple matter to deduce
that the simple choice

φ1(t) = 0, φ2(t) = ct, ẽCa(t) = 0 (45)

in the initial-value problem (42)–(44) leads to the classical DS
result (38). The more general choice

φ1(t) = 0, φ2(t) = ct, ẽCa(t) = eCa, (46)

which accounts for the presence of surface tension via an elasto-
capillary number ẽCa(t) that is constant and the same for all
length scales in the construction process, leads to the effective
shear modulus

µDSn
=

µ

(1− c)
(2+n)(eCa−1)
n+(2+n)eCa

. (47)

This result was recently introduced (for n = 3) by Ghosh and
Lopez-Pamies6 as the simplest differential-scheme result that ac-
counts for surface tension.

Note that the construction paths (45) and (46) are one-sided
and radial in the sense that only material s = 2 (i.e., the liquid
n-spherical inclusions) is added linearly in time t throughout the
entire construction process. As a result, they lead to suspensions
wherein the liquid n-spherical inclusions are spatially distributed
in ways in which they can occupy the entire volume of the suspen-
sion at hand. For that reason, the ensuing effective shear moduli
(38) and (47) percolate at c = 1.

General radial paths with constant path-dependent elasto-capillary
number. To show that the result (33) proposed in this work is a
solution of the initial-value problem (42)–(43), we need to con-
sider the more general family of radial construction paths with
constant but path-dependent elasto-capillary number

φ1(t) = Φn(c)t, φ2(t) = ct, ẽCa(t) = χn(c)eCa, (48)

where the functions Φn(c) and χn(c) satisfy the inequalities 0 ≤
Φn(c) ≤ 1− c and χn(c) ≥ 0 but are arbitrary otherwise. We em-
phasize that in the construction process (48) — contrary to (45)
and (46) — material s= 1 (i.e., the elastomer) and material s= 2
(i.e., the liquid n-spherical inclusions) are both added linearly in
time t, while the elasto-capillary number ẽCa(t) is constant and
the same for all length scales but its value χn(c)eCa depends on
the construction path via the final volume fraction c of liquid n-
spherical inclusions.

Granted the family of construction paths (48), the initial-value
problem (42)–(43) can be integrated into the closed form

E (µn) =

Å
2

2+n
+

Φn

cK
+

Å
n

2+n
− Φn

cK

ã
µn
µ

ã Φn(Φn+c)(2+n)2

(2cK+(2+n)Φn)((2+n)Φn−cnK)

− (1−Φn− c)
Å

µn
µ

ã 2(Φn+c)
2cK+(2+n)Φn

= 0, (49)

where, for simplicity, we have introduced the notation K = (2+
n)(χn eCa−1)/(n+(2+n)χn eCa) and have omitted the argument
c in Φn and χn. For a given choice of functions Φn(c) and χn(c),

a given volume fraction c of liquid n-spherical inclusions, a given
elasto-capillary number eCa, and a given space dimension n, the
nonlinear algebraic equation (49) defines the effective shear mod-
ulus µn, normalized by the shear modulus µ of the underlying
elastomer, of the resulting suspension.

For each of the elasto-capillary numbers eCa = 0,0.1,0.5,1,
2.5,5,10 considered in the previous section, it is not difficult to
show — via numerical solutions of (49) — that one can find a plu-
rality of functions Φn(c) and χn(c) that do indeed lead to the effec-
tive shear modulus (33) thereby demonstrating that the proposed
formula (33) is realizable by a suspension of liquid n-spherical in-
clusions with infinitely many sizes. Again, the fact that the effec-
tive shear modulus (33) is descriptive of both isotropic suspen-
sions with monodisperse and with (a specially selected class of)
polydisperse liquid n-spherical inclusions is nothing more than a
manifestation of the wide range of behaviors that suspensions of
polydisperse liquid n-spherical inclusions can exhibit.

7 Final comments

Suspensions with polydisperse 3-spherical inclusions with constant
elasto-capillary number. It is instructive to compare the effective
shear modulus (33) for isotropic suspensions of monodisperse
3-spherical inclusions with earlier results for suspensions of 3-
spherical inclusions of infinitely many sizes featuring a constant
elasto-capillary number. Those are the DS result6 (47) already
referenced above and the differential-coated-sphere (DCS) result
worked out by Mancarella et al.11 following in the footstep of
Christensen and Lo16. The latter reads

µDCS3
= µ+

70(eCa−1)c
21+35eCa+30(1− eCa)c+(19−40eCa)c10/3 +

√
q3

µ

(50)
with

q3 =49(3+5eCa)2−28(1− eCa)(3+5eCa)c−4700(1− eCa)2c2+

9408(1− eCa)c8/3−14(393−25(1+8eCa)eCa)c10/3+

4(1− eCa)(19−40eCa)c13/3 +(19−40eCa)2c20/3.

In the limit of dilute volume fraction of 3-spherical inclusions
as c↘ 0, the effective shear moduli (47) and (50) reduce asymp-
totically to

µDS3
= µ +

5(eCa−1)
3+5eCa

µ c+
5(eCa−1)(5eCa−1)

(3+5eCa)2 µ c2 +O(c3)

and

µDCS3
= µ +

5(eCa−1)
3+5eCa

µ c+
10(eCa−1)2

(3+5eCa)2 µ c2 +O(c3). (51)

As expected, the coefficients of O(c2) in both of these expressions
are different from the one in (35). For eCa > 0 (but not for eCa =

0), a quantitative comparison reveals that the coefficient of O(c2)

in (51) is closest to the one in (35). In this regard, it is also worth
noting that the DCS result (50) happens to coincide identically up
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to and including O(c2) with the Hashin-Shtrikman (HS) formula

µHS3
= µ +

5(eCa−1)c
3+2c+(5−2c)eCa

µ = µ +5µ

∞

∑
k=1

2k−1(eCa−1)k

(3+5eCa)k ck,

(52)

which was heuristically introduced12 by replacing the shear mod-
ulus of one of the phases, say µi, in one of the HS bounds15

for two-phase isotropic composite materials with an equivalent
elasto-capillary stiffness, namely, µi = 8eCaµ/(5+ 3eCa). As op-
posed to (47) and (50), the HS formula (52) is not the homoge-
nization solution of a suspension of 3-spherical inclusions.

The behaviors as c↗ p3 of the effective moduli (47) and (50)
are also very different from that (36) of formula (33). This is not
surprising since the effective moduli (47) and (50) correspond
to suspensions wherein the 3-spherical inclusions are of infinitely
many different sizes and spatially distributed in ways in which
they can occupy the entire volume of the suspension at hand,
that is, they correspond to suspensions that percolate at c = 1, as
opposed to at c = p3.

Finite deformations. When considering finite quasistatic deforma-
tions, the homogenized behavior of a standard (without residual
stresses and interfacial forces) hyperelastic composite material is
characterized by an effective stored-energy function W (F) that,
in general, is functionally very different from the stored-energy
functions that describe the underlying hyperelastic constituents.
This is so even in the most specialized case of isotropic incom-
pressible composite materials made of isotropic incompressible
constituents, when the resulting effective stored-energy function
W (F), much like the local stored-energy function W (X,F), admits
representations in terms of just n−1 invariants.

Based on a wide range of analytical and numerical results that
have appeared over the past two decades, as well as some new
results, Lefèvre et al.23 have recently conjectured that the case
of isotropic incompressible Neo-Hookean elastomers in space di-
mension n = 2 is a rare exception to the aforementioned general
rule. Precisely, these authors have posited that the homogenized
behavior of an isotropic hyperelastic material comprised of in-
compressible Neo-Hookean elastomers with stored-energy func-
tion

W (X,F) =


µ(X)

2
[F ·F−2] if detF = 1

+∞ else

is itself exactly Neo-Hookean with effective stored-energy func-
tion

W (F) =


µ

2
[

F ·F−2
]

if detF = 1

+∞ else
,

where µ is the effective shear modulus of the composite material
under small quasistatic deformations. From work22 on suspen-
sions of rigid inclusions in rubber, we know that the same con-
jecture cannot possibly hold in space dimension n = 3. However,
from the same and ensuing works47–49, we also know that for
n = 3 the homogenized behavior of an isotropic hyperelastic ma-
terial comprised of incompressible Neo-Hookean elastomers is, in
essence, Neo-Hookean — that is, the resulting effective stored-

energy function is approximately linear in I1 = F ·F and indepen-
dent of I2 = F−1 ·F−1.

Interestingly, Ghosh and Lopez-Pamies6 have shown that the
above behavior remains true in the more general setting of an
isotropic incompressible Neo-Hookean elastomer filled with in-
compressible liquid inclusions that are separated from the elas-
tomer by interfaces featuring a constant initial surface tension.
This implies that the formula (33) can be used not only to charac-
terize the macroscopic mechanical response of a random isotropic
suspension of liquid n-spherical inclusions in an isotropic incom-
pressible elastomer under small quasistatic deformations, but also
under moderately large quasistatic deformations (when the elas-
ticity of the elastomer may be approximated as Neo-Hookean).
Precisely, we have that the macroscopic or homogenized mechani-
cal response of a random isotropic suspension of liquid n-spherical
inclusions, each having identical initial radius A, in an isotropic
incompressible elastomer subjected to finite quasistatic deforma-
tions is hyperelastic and that its effective stored-energy function
is given approximately by

W (F) =


µn
2
[

F ·F−n
]

if detF = 1

+∞ else
, n = 2,3,

where the effective shear modulus µn is given by the proposed
formula (33).
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Appendix A. The e�ective shear modulus of a

hexagonal suspension of monodisperse liquid

2-spheres
In this appendix, we present numerical solutions for the effective
shear modulus µ

Hex
2 of a hexagonal suspension of monodisperse

liquid 2-spherical inclusions. They are generated by solving — via
the same FE scheme utilized in Section 4 — the unit-cell problem
(14) over the pertinent unit cells Y and then computing the re-
sulting effective modulus of elasticity (13). The calculations are
performed over the ranges eCa∈ [0,10] and c∈ [0,0.905] of elasto-
capillary numbers and volume fractions of inclusions. For illustra-
tion purposes, Fig. 6 shows two of the unit cells used for c = 0.6
and c = 0.905.

Much like random isotropic suspensions, hexagonal suspen-
sions also lead to a macroscopic elastic response that is isotropic.
In particular, if the elastomer and the liquid making up the inclu-
sions are both incompressible, the effective modulus of elasticity
is of the isotropic incompressible form

L = 2 µ
Hex
2 KKK+∞JJJ.

Figure 7 presents the FE solutions obtained for the normalized
effective shear modulus µ

Hex
2 /µ as a function of the volume frac-
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(a) (b)

Fig. 6 Unit cells Y for hexagonal suspensions of monodisperse liquid

2-spherical inclusions of radius A at volume fractions (a) c = 0.6 and (b)

c = 0.905.

tion c of inclusions for seven different values of elasto-capillary
number, eCa = 0,0.1,0.5,1,2.5,5,10. Part (a) of the figure shows
the results for 0 ≤ eCa < 1, while part (b) shows the results for
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(b)

Fig. 7 Finite-element results for the e�ective shear modulus µ
Hex
2 of a

hexagonal suspension of monodisperse liquid 2-spherical inclusions in an

isotropic incompressible elastomer. The results are shown normalized by

the shear modulus µ of the elastomer as a function of the volume fraction

c of inclusions for elasto-capillary numbers 0 ≤ eCa < 1 in part (a) and

for eCa≥ 1 in part (b).

eCa≥ 1.
In order to estimate the effective shear modulus at percolation

µ
Hex,perc
2 , one can extrapolate the data in Fig. 7 from c = 0.905

to the percolation threshold c = π/2
√

3 ≈ 0.9069. The result ob-
tained is given by relation (23) in the main body of the text.

Appendix B. The two e�ective shear moduli of

a body-centered cubic suspension of monodis-

perse liquid 3-spheres
Finally, in this appendix, we present numerical solutions for the
effective modulus of elasticity L of a BCC suspension of monodis-
perse liquid 3-spherical inclusions. They are generated by solving
— via the same FE scheme utilized in Section 4 — the unit-cell
problem (14) over the pertinent unit cells Y and then computing
the resulting effective modulus of elasticity (13). The calculations
are performed over the ranges eCa ∈ [0,10] and c ∈ [0,0.675] of
elasto-capillary numbers and volume fractions of inclusions. For
illustration purposes, Fig. 8 shows two of the unit cells used for
c = 0.3 and c = 0.67.

(a) (b)

Fig. 8 Unit cells Y for BCC suspensions of monodisperse liquid 3-
spherical inclusions of radius A at volume fractions (a) c = 0.3 and (b)

c = 0.67.

In contrast to random isotropic suspensions, BCC suspensions
lead not to a macroscopic elastic response that is isotropic, but
to one with cubic symmetry. In particular, if the elastomer and
the liquid making up the inclusions are both incompressible, the
effective modulus of elasticity is of the cubic incompressible form

L = 2 µ
BCCa
3 KKKa +2 µ

BCCs
3 KKKs +∞JJJ,

where KKKa = SSS−JJJ, KKKs =KKK−KKKa, and

Si jkl =

®
1 if i = j = k = l
0 else

when the laboratory Cartesian frame of reference {ei} is chosen
to coincide with the principal axes of the cubic symmetry of the
suspension; see Fig. 8.

Figures 9 and 10 present, respectively, the FE solutions ob-
tained for the normalized effective axisymmetric shear modulus
µ

BCCa
3 /µ and effective simple shear modulus µ

BCCs
3 /µ as func-

tions of the volume fraction c of inclusions for seven different val-
ues of elasto-capillary number, eCa = 0,0.1,0.5,1,2.5,5,10. Parts
(a) of the figures show the results for 0≤ eCa < 1, while parts (b)

14 | 1�16Journal Name, [year], [vol.],

Page 14 of 16Soft Matter



0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a)

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b)

Fig. 9 Finite-element results for the e�ective axisymmetric shear modulus

µ
BCCa
3 of a BCC suspension of monodisperse liquid 3-spherical inclusions

in an isotropic incompressible elastomer. The results are shown normal-

ized by the shear modulus µ of the elastomer as a function of the volume

fraction c of inclusions for elasto-capillary numbers 0 ≤ eCa < 1 in part

(a) and for eCa≥ 1 in part (b).

show the results for eCa≥ 1.
In order to estimate the effective shear moduli at percolation

µ
BCCa,perc
2 and µ

BCCs,perc
2 , once again, one can extrapolate the

data in Figs. 9 and 10 from c = 0.675 to the percolation threshold
c =
√

3π/8 ≈ 0.6802. The results obtained are given by relations
(26) and (27) in the main body of the text.
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