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Modeling high strain-rate microcavitation in soft materials:
The role of material behavior in bubble dynamics

Anastasia Tzoumaka,0 Jin Yang,1,2 Selda Buyukozturk,0,1 Christian Franck1 and David L.
Henann∗0

Inertial Microcavitation Rheometry (IMR) is a promising tool for characterizing the mechanical behavior of soft
materials at high strain rates. In IMR, an isolated, spherical microbubble is generated inside a soft material,
using either a spatially-focused pulsed laser or focused ultrasound, to probe the mechanical behavior of the
soft material at high strain rates (> 103 s−1). Then, a theoretical modeling framework for inertial microcavita-
tion, incorporating all the dominant physics, is used to extract information regarding the mechanical behavior
of the soft material by fitting model predictions to the experimentally measured bubble dynamics. To model
the cavitation dynamics, approaches based on extensions of the Rayleigh-Plesset equation are commonly
used; however, these approaches cannot consider bubble dynamics that involves appreciable compressible
behavior and place a limit on the nonlinear viscoelastic constitutive models that may be employed to describe
the soft material. To circumvent these limitations, in this work, we develop a finite-element-based numerical
simulation capability for inertial microcavitation of spherical bubbles that enables appreciable compressibility
to be accounted for and more complex viscoelastic constitutive laws to be incorporated. We first apply the nu-
merical simulation capability to understanding the role of material compressibility during violent spherical bub-
ble collapse, and based on finite-element simulations, we propose a Mach-number-based threshold of 0.08,
beyond which bubble collapse is violent, and the bubble dynamics involves compressibility not accounted for
in Rayleigh-Plesset-based approaches. Second, we consider more complex viscoelastic constitutive models
for the surrounding material, including nonlinear elastic and power-law viscous behavior, and apply IMR by
fitting computational results to experimental data from inertial microcavitation of polyacrylamide (PA) gels in
order to determine material parameters for PA gels at high strain rates.

1 Introduction
Soft materials–such as biological tissues and gels used as tissue
phantoms–undergoing high strain-rate deformation play a cru-
cial role in a number of important engineering problems–e.g.,
modeling head injuries due to blunt impact and blast1–4, esti-
mating tissue damage during histotripsy procedures5–7, and un-
derstanding the physics involved in laser-based surgical proce-
dures8,9. Therefore, there is a need for mechanical characteriza-
tion of soft materials at high strain rates (> 103 s−1). While low-
to-moderate strain-rate (10−4–102 s−1) testing techniques–such as
tension-compression experiments, indentation10, needle-induced
cavitation11,12, and volume-controlled cavity expansion13–15–
have been successfully deployed to understand the mechanical
behavior of soft materials, applying traditional high-strain-rate
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material characterization techniques–e.g., Kolsky bar16 or plate-
impact testing17–to soft materials remains challenging, due to
their low impedance and slow shear wave speeds.

To address this challenge, significant effort in recent years
has gone towards developing new characterization techniques
capable of extracting information on the high strain-rate me-
chanical behavior of soft materials–including small-scale bal-
listic cavitation18, laser-induced particle impact testing19,
shear impact testing20, and Inertial Microcavitation Rheome-
try (IMR)21–25, which is the focus of the present work. IMR
belongs to a class of cavitation-based material characteriza-
tion techniques26–including needle-induced cavitation11,12,18

and volume-controlled cavity expansion13–15–and is unique in its
ability to mechanically characterize soft materials at high strain
rates greater than 103 s−1. In IMR, a single spherical microbubble
is generated inside a soft material using either a spatially-focused
pulsed laser21,27 or high-amplitude focused ultrasound23,28,29,
inducing high strain-rate (> 103 s−1) deformation in the surround-
ing material. The subsequent radius versus time behavior of the
spherical bubble is measured using high-speed imaging. Then,
since the bubble dynamics involves inhomogeneous deformation
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in the surrounding soft material, a cavitation modeling frame-
work that accounts for the dominant physics, including the vis-
coelastic constitutive behavior of the soft material21,22,30,31, is
required. By fitting predictions of the cavitation modeling frame-
work to the experimentally measured bubble dynamics, nonlinear
viscoelastic material parameters for a given constitutive model
may be inferred, and the IMR approach has been successfully
applied to measuring the viscoelastic mechanical properties of
polyacrylamide21,22,27, agarose23,25, and collagen4 gels at high
strain rates. Moreover, similar efforts involving cavitation in-
duced by a pulsed laser have been applied to fibrin and polyethy-
lene glycol (600) diacrylate gels32 as well as to polydimethyl-
siloxane gels33 aided by laser-absorbing seed particles.

To obtain accurate estimates of high strain-rate material prop-
erties for soft materials using IMR, a high fidelity description of
the dominant physics must be incorporated into the cavitation
modeling framework. Approaches based on the Rayleigh-Plesset
(RP) equation34,35 and its extensions are commonly used to de-
scribe cavitation dynamics in liquids and soft solids. In particular,
the Keller-Miksis (KM) equation36 extends the RP equation to ac-
count for slight compressibility and stress wave propagation in
the surrounding material and has been used in many studies of
cavitation in soft solids21–25,27,28,30,31. However, use of both the
RP and the KM equations places several limitations on the types
of constitutive behavior for the surrounding material that may be
included in the cavitation modeling framework. First, since the
RP equation assumes the surrounding material to be incompress-
ible and the KM equation only accounts for slight compressibility,
predictions obtained using the RP or KM equation can become in-
accurate when the bubble dynamics involves appreciable material
compressibility, i.e., volumetric strain magnitudes on the order of
0.01 or greater. This situation is expected to arise for violently
collapsing bubbles, in which the maximum Mach number in the
surrounding material is on the order of 0.1 or greater22. Sec-
ond, the implementation of the viscoelastic, distortional material
response into the RP/KM framework requires the integration of
mathematical expressions, which are challenging to evaluate in
closed form for sufficiently complex constitutive models. A num-
ber of nonlinear viscoelastic models have been implemented in
the KM framework22,30,31 in an effort to capture the mechanical
behavior of soft materials; however, doing so remains mathemat-
ically intractable for many of the finite-deformation constitutive
models utilized in the literature for soft solids15,37,38. Therefore,
the RP/KM framework places limitations on the breadth of ma-
terial behavior that may be considered to characterize the high
strain-rate response of soft materials.

The purpose of this paper is to address the limitations that the
use of the RP/KM equation places on IMR. We develop a numer-
ical framework for modeling the cavitation dynamics of a single
spherical bubble using the finite-element (FE) method, which en-
ables the implementation of general constitutive models for the
surrounding soft material. With this numerical tool, we incorpo-
rate a description of the compressibility of the surrounding mate-
rial, which leads to a numerical framework that describes the bub-
ble dynamics more accurately when studying violently collapsing
bubbles. Furthermore, we consider more complex viscoelastic

constitutive descriptions of the surrounding material, including
nonlinear elastic and power-law viscous behavior, which enables
a higher fidelity characterization of soft materials at high strain
rates.

The remainder of this paper is organized as follows. In Sec-
tion 2, we summarize the continuum field equations governing
the dynamics of spherical bubbles in soft viscoelastic media, in-
cluding the nonlinear, finite-deformation viscoelastic constitutive
models considered in our cavitation modeling framework. In Sec-
tion 3, we describe the KM-based and FE-based modeling frame-
works for both laser-induced and ultrasound-induced cavitation.
Section 4 compares FE-based and KM-based simulations of bub-
ble dynamics as bubble collapse becomes increasingly violent and
proposes a Mach-number-based criteria for when the bubble dy-
namics involves material compressibility beyond that accounted
for in the KM-based approach, and Section 5 applies FE-based
simulations in IMR to obtain improved high-strain-rate properties
for polyacrylamide gels–specifically, using the laser-induced cavi-
tation data of Yang et al. 22 and Buyukozturk et al. 27 . Finally, we
close with some concluding remarks in Section 6.

2 Continuum framework
In this section, we summarize the continuum field equations gov-
erning the dynamics of spherical bubbles in soft viscoelastic me-
dia. We assume (1) that the bubble and the motion of the sur-
rounding material remain spherically symmetric during the cavi-
tation process and (2) that the surrounding material is a homo-
geneous, infinite, isotropic viscoelastic medium.

2.1 Kinematics
We denote the undeformed radius of the spherical bubble as '0
and the referential radial coordinate in the surrounding material
as A0, where A0 is measured from the center of the bubble. The
reference configuration for the surrounding material is identified
by the material points {A0 |'0 ≤ A0 <∞}. The time-dependent bub-
ble radius in the deformed configuration is '(C), and we assume a
spherically symmetric motion, in which material points A0 deform
to spatial points A = A (A0, C) (see Fig. 1). The deformation gradient
tensor F in the spherical coordinate system is

[F] =


mA

mA0
0 0

0
A

A0
0

0 0
A

A0


, (1)

with the volume ratio given by � = detF > 0.* For a spherically
symmetric motion, the only non-zero component of the displace-
ment vector is the radial component DA (A0, C) = A (A0, C) − A0. The
left Cauchy-Green deformation tensor is B = FF>, the distortional
deformation gradient tensor is F̄ = �−1/3F, the distortional left
Cauchy-Green deformation tensor is B̄ = �−2/3B, and the distor-
tional first principal stretch invariant is �̄1 = tr B̄.

* Notation: We write trA, detA, devA, symA, and skwA to denote the trace, determi-
nant, deviatoric part, symmetric part, and skew part of a tensor A, respectively.
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r0

R0

r(r0,t)

R(t)

Bubble wall
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Fig. 1 Schematic representation of the reference and deformed configurations.
The radial coordinates in the reference and deformed configurations are denoted
as A0 and A , and the undeformed and deformed bubble radii are '0 and '.

The referential descriptions of the radial components of the
velocity and acceleration vectors are ¤DA (A0, C) and ¥DA (A0, C), re-
spectively, where the superposed dot denotes the material time
derivative. The spatial descriptions of the radial components of
the velocity and acceleration vectors are EA (A, C) and 0A (A, C), and
the components of the spatial velocity gradient tensor L in the
spherical coordinate system are

[L] =


mEA

mA
0 0

0
EA

A
0

0 0
EA

A


. (2)

Finally, the stretching and spin tensors are D = symL and W =

skwL, respectively.

2.2 Viscoelastic constitutive models for the surrounding ma-
terial

Previous works21–23,25 have demonstrated that in order to accu-
rately describe the nonlinear behavior of soft materials at high
strain-rates, one must take into account both hyperelastic and
viscous material behavior. In this subsection, we discuss the li-
brary of finite-deformation viscoelastic constitutive models that
we have considered in our cavitation modeling framework, which
fall into two categories. The first category is based on a nonlinear
generalization of the Kelvin-Voigt (KV) model of linear viscoelas-
ticity and consists of a hyperelastic response in parallel with a
Newtonian rheological response, as illustrated in the rheological
schematic of Fig. 2(a). We refer to this category of models as KV-
type models, which are discussed in Section 2.2.1. The second
category is motivated by the standard linear solid model of lin-
ear viscoelasticity and consists of a hyperelastic response in par-
allel with a finite-deformation Maxwell element, as illustrated in
Fig. 2(b). We refer to nonlinear generalizations of the standard
linear solid model as Standard Nonlinear Solids (SNS), or SNS-
type models, which are discussed in Section 2.2.2.

2.2.1 KV-type models

Motivated by the Kelvin-Voigt model of linear viscoelasticity, we
consider a finite-deformation viscoelastic model consisting of a

a

b

Fig. 2 Rheological schematics of the of the nonlinear, finite-deformation vis-
coelastic modeling approaches for (a) KV-type models and (b) SNS-type models.

hyperelastic response (top branch in Fig. 2(a)) in parallel with a
Newtonian viscous response (bottom branch in Fig. 2(a)). The
contributions to the Cauchy stress due to the hyperelastic re-
sponse and the viscous response are denoted as 2e and 2v, re-
spectively, and the total Cauchy stress is 2 = 2e +2v.

The referential free-energy density describing the hyperelastic
response k is taken to depend upon the invariants �̄1 and � for
slightly-compressible, isotropic materials. In order to account for
strain-stiffening effects in the surrounding material, we consider
a quadratic-law distortional hyperelastic response22,39 with free-
energy density given by

k =
�

2

[ (
�̄1 −3

)
+ U

2
( �̄1 −3)2

]
+  

2
(� −1)2, (3)

where � is the ground-state shear modulus, U is a dimensionless
parameter that describes large-deformation strain-stiffening be-
havior, and  is the ground-state bulk modulus. The first terms
represent the free energy due to distortional (constant volume)
deformation, and the last term in Eq. (3) represents the free
energy due to purely volumetric deformation. Note that when
U = 0, Eq. (3) reduces to the free-energy density for a slightly-
compressible Neo-Hookean material. Regarding compressibility,
the ground-state bulk modulus  may be given through the lon-
gitudinal wave speed 2 and the ground-state shear modulus � by
 = d02

2 − (4/3)�, where d0 is the referential mass density. For
many soft viscoelastic materials,  � �, but instead of idealizing
the material as incompressible, we treat the material as slightly
compressible and examine the effect of compressibility on bubble
dynamics in Section 4. The associated hyperelastic contribution
to the Cauchy stress is then

2e = 2�−1 mk

mB
B = �−1�

[
1+U( �̄1 −3)

]
dev B̄+ (� −1) 1. (4)

Neglecting volumetric viscosity, the viscous contribution to the
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Cauchy stress for Newtonian rheological behavior is

2v = 2`dev(D), (5)

where ` is the shear viscosity. We note that it can be difficult
to incorporate more complex rheological behavior into KV-type
models. In particular, rheological constitutive equations involv-
ing shear-thinning, power-law behavior or a yield stress exhibit
a strain-rate dependent viscosity that diverges as the strain-rate
approaches zero, which is problematic in the modeling of bubble
dynamics since the strain rate approaches zero far from the bub-
ble as A→∞. Complex rheological behavior may be more readily
incorporated in SNS-type models, discussed in Section 2.2.2.

The total Cauchy stress is then

2 = 2e +2v = �−1�
[
1+U( �̄1 −3)

]
dev B̄+ (� −1) 1+2`dev(D).

(6)
When U > 0, the model accounts for strain-stiffening, and we re-
fer to this model as the quadratic-law Kelvin-Voigt (qKV) model.
The qKV model involves the following four material parameters:
the ground-state shear modulus �, the strain-stiffening param-
eter U, the bulk modulus  , and the shear viscosity `. When
strain-stiffening is neglected, U = 0, and three material parame-
ters remain. We refer to this model as the Neo-Hookean Kelvin-
Voigt (NH-KV) model.

2.2.2 SNS-type models

SNS-type constitutive modeling approaches are based on a de-
composition of the material response into an equilibrium hypere-
lastic response and a dissipative, non-equilibrium contribution.
With reference to the schematic in Fig. 2(b), the top branch
corresponds to the equilibrium hyperelastic response of the ma-
terial, and the bottom branch stands for the non-equilibrium,
rate-dependent material response, represented by the finite-
deformation Maxwell element in parallel with the equilibrium
branch.

The referential free-energy density k is additively decom-
posed into equilibrium and non-equilibrium contributions: k =

keq +kneq, and the equilibrium hyperelastic response is specified
through the free-energy density keq, which we take to be given
through Eq. (3), so that the corresponding equilibrium contri-
bution to the Cauchy stress 2eq is in the same form as given in
Eq. (4).

The non-equilibrium, rate-dependent material response is ac-
counted for by the finite-deformation Maxwell element (Fig. 2,
bottom branch). For the non-equilibrium branch, the deforma-
tion gradient F is multiplicatively decomposed into elastic and
viscous parts: F = FeFv, where Fe is the non-equilibrium elastic
distortion with �e = detFe > 0, and Fv is the viscous distortion with
�v = detFv = 1. The right polar decomposition of Fe is Fe = ReUe,
where Ue is the elastic right stretch tensor and Re is the elastic
rotation tensor, and the elastic logarithmic (Hencky) finite-strain
tensor is defined as Ee = lnUe. We take the non-equilibrium free-
energy density to be given by

kneq (Ee) = �1 |devEe |2, (7)

where �1 is the non-equilibrium shear modulus. The stress con-
jugate to the elastic logarithmic strain is referred to as the Mandel
stress and is given by

Me =
mkneq

mEe = 2�1 devEe, (8)

and the non-equilibrium contribution to the Cauchy stress is given
through the Mandel stress by 2neq = �e−1ReMeRe>. We note that
since the non-equilibrium free-energy density, Eq. (7), only in-
volves the deviatoric part of the elastic logarithmic strain, the
consequent Mandel stress Me and non-equilibrium contribution
to the Cauchy stress 2neq are both deviatoric as well, and the
volumetric material response is due to the equilibrium response
alone. The total Cauchy stress is then given by 2 = 2eq +2neq 40.

Neglecting viscous spin, i.e., assuming Wv = skw ( ¤FvFv−1) = 0,
the evolution of Fv is given by ¤Fv =DvFv, where Dv is the symmet-
ric viscous stretching tensor. Finally, it remains to specify a consti-
tutive equation for Dv. Defining the non-equilibrium equivalent
shear stress ḡ =

√
Me : Me/2, we adopt the following constitutive

equation for Dv:

Dv = ¤̄Wv Me

2ḡ
with ¤̄Wv = ¤W0

(
ḡ

�

)1/<
, (9)

where ¤̄Wv denotes the equivalent shear viscous strain rate. The
dimensionless material parameter < > 0 represents a strain-rate
sensitivity exponent, and the parameter ¤W0 > 0 is a reference shear
strain rate. The equilibrium ground-state shear modulus � is
included in Eq. (9) as a reference shear stress for dimensional
consistency. For 0 < < < 1, the rheological behavior of the non-
equilibrium response is shear thinning, and for < = 1, the rheo-
logical behavior is Newtonian. For the non-Newtonian case, two
material parameters are required to describe the rheological re-
sponse, < and ¤W0, while for the Newtonian case, only one material
parameter is required: the constant shear viscosity ` = �/ ¤W0. In
this case, Eq. (9) takes the form

Dv =
Me

2`
. (10)

The constitutive modeling approach described above accounts
for viscoelastic behavior, strain-stiffening, non-Newtonian rhe-
ological behavior, and compressibility and involves the follow-
ing six material parameters: the equilibrium shear modulus �,
the strain-stiffening parameter U, the bulk modulus  , the non-
equilibrium shear modulus �1, the strain-rate sensitivity expo-
nent <, and the reference strain rate ¤W0. We note that in the limit
that the non-equilibrium shear modulus is much greater than the
equilibrium shear modulus, i.e., �1/�→∞, the distortional part
of the non-equilibrium elastic response becomes nearly rigid, i.e.,
Fe→ �e1, and an SNS-type model effectively reduces to a KV-type
model. As pointed out in the preceding section, utilizing power-
law rheological behavior in a KV-type model can be problematic,
due to the diverging viscosity as the strain-rate approaches zero.
Thus, taking �1 � � but finite in an SNS-type model may be
used to attain a KV-like model with non-Newtonian rheological
behavior. When the strain rate is finite, the stiff non-equilibrium
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response does not affect the total response of the material, but
as the strain rate approaches zero (e.g., far from the bubble as
A → ∞), the stiff non-equilibrium response serves to regularize
the diverging viscosity. Based on our tests, taking �1 = 1000�
is sufficiently high to yield predictions of bubble dynamics that
are independent of �1, and when this idealization is made, the
aforementioned six parameters reduces to a set of five parame-
ters, {�,U, ,<, ¤W0}. We refer to this model as the non-Newtonian
qKV model.

2.3 Balance of linear momentum

The balance of linear momentum in the absence of external body
forces requires that div2 = da, where div (•) is the spatial diver-
gence operator, d = �−1d0 is the spatial mass density, and a is the
spatial description of the acceleration vector. Due to the idealiza-
tion of spherical symmetry and the isotropy of the surrounding
material, the only non-trivial component of the linear momentum
balance equations is the radial component:

mfAA

mA
+ 2
A
(fAA −f\ \ ) = d0A , (11)

where we have recognized that f\ \ = fqq due to spherical sym-
metry.

At this stage, we note that the pressure associated with the
Cauchy stress, ? = −(1/3)tr2, represents the “gauge” pressure–
that is, the difference between the absolute pressure and the am-
bient atmospheric pressure ?∞. Then, the traction boundary con-
ditions may be expressed in terms of the gauge pressures inside
the bubble and in the far-field. The radial component of the trac-
tion boundary condition at the bubble wall (A = ') is

fAA |A=' = −(?b (C) − ?∞) +
2W
'
, (12)

where ?b (C) is the absolute pressure inside the bubble, (?b (C) −
?∞) is the gauge pressure inside the bubble, and W is the sur-
face tension of the bubble interface. The evolution of the time-
dependent absolute pressure inside the bubble ?b (C) is governed
by the physics of the bubble contents, which we assume to
be a homobaric mixture of water vapor and non-condensible
gas21,41–43. The mathematical description of bubble contents
and resulting evolution equation for ?b (C) are described in detail
in Estrada et al. 21 and briefly summarized in Appendix A.

In the far-field, the stress approaches a state of hydrostatic pres-
sure: 2 |A→∞ = −?f (C)1, where ?f (C) is the time-dependent, far-
field gauge pressure, which is prescribed for a given problem. For
example, as discussed in Section 3.3, in laser-induced cavitation,
the far-field absolute pressure simply remains the ambient atmo-
spheric pressure, so that the far-field gauge pressure is zero. In
ultrasound-induced cavitation, ?f (C) is a time-varying, acoustic
forcing23,28,29. Therefore, the far-field boundary condition for
the radial stress component is

fAA |A→∞ = −?f (C). (13)

3 Modeling of bubble dynamics
In this section, we describe two approaches for modeling the dy-
namics of spherical bubbles in soft viscoelastic media. The first is
based on the Keller-Miksis (KM) equation36, which reduces the
balance of linear momentum partial differential equation (PDE)
(11) to an ordinary differential equation (ODE) and enables an
efficient computation of the bubble dynamics under the idealiza-
tion of slight compressibility and for relatively simple constitutive
descriptions of the surrounding material. In the second approach,
the governing differential equation (11) is solved in the surround-
ing material using the finite-element method, which does not re-
strict the constitutive description of the surrounding material and
allows for a higher fidelity description of the physics but is more
computationally costly.

3.1 Keller-Miksis equation

The balance of linear momentum is reduced to an ODE by first
assuming ideal incompressibility in the surrounding material (� =
1) and then integrating Eq. (11) over A from A = ' to A →∞ and
applying the traction boundary conditions, Eqs. (12) and (13).
The result is the Rayleigh-Plesset (RP) equation34,35 governing
the evolution of the bubble radius '(C):

' ¥' + 3
2
¤'2 =

1
d

(
?b − ?∞ − ?f −

2W
'
+ (

)
, (14)

where the stress integral ( is given by

( =

∫ ∞

'

2
A
(fAA −f\ \ ) 3A. (15)

We note that, in Eq. (14), because ideal incompressibility has
been assumed, the spatial mass density d is constant and equal
to the referential mass density d0.

However, the assumption of ideal incompressibility fails to ac-
count for energy transfer through radial acoustic emission from
the bubble to the far field, which has a significant impact on the
bubble dynamics. Keller and Miksis 36 extended the RP approach
to account for slight compressibility of the surrounding material
by incorporating the material’s finite longitudinal wave speed 2

into the description of the far-field, resulting in the following
modified evolution equation for the bubble radius '(C):

(
1−
¤'
2

)
' ¥' + 3

2

(
1−
¤'

32

)
¤'2

=
1
d

(
1+
¤'
2

) (
?b − ?∞ − ?f −

2W
'
+ (

)
+ 1
d

'

2

¤(
?b − ?f −

2W
'
+ (

)
,

(16)

where the definition of the stress integral ( given in Eq. (15)
remains unchanged. The KM equation is accurate to first order
in the ratio of the bubble wall velocity to the longitudinal wave
speed in the surrounding material ¤'/2 44, i.e., the Mach number
at the bubble wall. Note that in the limit of ideal incompressibil-
ity, ¤'/2→ 0, and the KM equation (16) reduces to the RP equation
(14).

Journal Name, [year], [vol.],1–15 | 5

Page 5 of 15 Soft Matter



The constitutive behavior of the surrounding material en-
ters both the RP and KM equations through the stress integral,
Eq. (15). For certain constitutive models, the stress integral may
be straightforwardly calculated analytically. For example, for the
qKV model, in which the Cauchy stress is given by Eq. (6), un-
der the assumption of ideal incompressibility (� = 1), the stress
integral is22

( =
(3U−1)�

2

[
5−

(
'0
'

)4
− 4'0

'

]
− 4` ¤'

'

+2U�

[
27
40
+ 1

8

(
'0
'

)8
+ 1

5

(
'0
'

)5
+

(
'0
'

)2
− 2'
'0

]
. (17)

Note that when strain-stiffening is neglected (U = 0), the stress
integral reduces to that for the NH-KV model30. However, for
more rheologically complex constitutive models, such as the SNS-
type models of Section 2.2.2, closed-form, analytical expressions
for the stress integral may not be obtainable, complicating the
application of the KM equation.

In subsequent sections, to obtain numerical solutions for bub-
ble dynamics using the KM equation when the surrounding mate-
rial is described by a constitutive model possessing a closed-form
stress integral, Eq. (16) is evolved forward in time in conjunc-
tion with the governing equations for the bubble contents (Ap-
pendix A) using a variable-step, variable-order solver (MATLAB
ode15s).

3.2 Full-field solution using finite elements

The KM equation (16) is widely used to describe spherical bubble
dynamics arising during inertial cavitation; however, as pointed
out in Section 3.1, there are several limitations. First, it cannot
account for moderate compressibility that can arise during more
violent bubble collapse22. Second, calculation of the stress inte-
gral, Eq. (15), can be intractable for complex constitutive models.
Therefore, while the KM equation provides an efficient route for
predicting bubble dynamics in certain scenarios, these limitations
motivate the need for a full-field description of the surrounding
material, in which the dependence on the radial coordinate A is
retained and not integrated out.

We maintain the assumption of spherical symmetry, and thus,
the only differential equation under consideration is the radial
component of the balance of linear momentum, Eq. (11), which
we solve using the finite-element (FE) method. There are several
practical matters that must be addressed to obtain FE solutions.
First, in full-field calculations, the far-field must be truncated at a
finite value of the radial coordinate. We denote the undeformed
radius of the outer boundary after truncation as '0,∞ and its de-
formed counterpart as '∞. Throughout, we take '0,∞ = 200'0,
which we have verified to be sufficiently large so as to accurately
approximate an infinite domain. Second, in full-field simulations,
radial acoustic waves emitted from the bubble to the far field will
reflect off of the outer boundary and refocus on the bubble, lead-
ing to incorrect numerical predictions. To mitigate this effect,
a “quiet” boundary is implemented at the outer boundary45, in

which a normal traction of fAA |A='∞ = −d02EA |A='∞ is applied at
A = '∞. As a final point, in ultrasound-induced cavitation, it is im-
practical to apply the acoustic forcing ?f (C) at the outer boundary
due to the presence of the quiet boundary. Moreover, such an ap-
proach would require simulating the additional time that it takes
for the acoustic pulse to travel inward from the outer boundary
to the bubble. Instead, in FE simulations of ultrasound-induced
cavitation, the acoustic forcing is applied directly at the bubble
wall, which makes direct comparisons of FE and KM simulations
straightforward. As a result of these three adjustments to the
problem definition, for FE simulations, the boundary conditions,
Eqs. (12) and (13), are modified as follows:

fAA |A=' = −(?b (C) − ?∞ − ?f (C)) +
2W
'
,

fAA |A='∞ = −d02EA |A='∞ .
(18)

Equations (11) and (18) represent the strong form of the bal-
ance of linear momentum. In order to recast the balance of linear
momentum in a variational formulation, we introduce a scalar
test field [(A). The weak form is obtained by multiplying Eq. (11)
by the test field, integrating over the domain, applying the diver-
gence theorem, and using the boundary conditions, Eq. (18). The
result is

−
∫ '∞

'

(
fAA

3[

3A
+2

f\ \

A
[

)
(4cA2 3A) − d02(EA[) |A='∞ (4c'

2
∞)

+
(
?b − ?∞ − ?f −

2W
'

)
[ |A=' (4c'2) =

∫ '∞

'
d0A[(4cA23A). (19)

Equation 19 is then used as the basis for a conventional explicit
dynamic finite-element formulation. Briefly, the undeformed do-
main is spatially discretized using =Elem equally-sized finite ele-
ments, which are each ('0,∞ − '0)/=Elem in length. In this study,
we use =Elem = 1000. We utilize one-dimensional, linear, two-
noded finite elements, in which the radial displacement field DA

is interpolated inside each element using linear shape functions.
A standard Galerkin approach is employed in that the test field
is interpolated by the same shape functions. The resulting finite-
element equations of motion are explicitly integrated in time us-
ing the explicit central difference scheme with a lumped mass
matrix computed via the row-sum method. An adaptive time in-
crement is employed, in which the time increment is chosen to
be one third of the stable time increment calculated based on the
smallest deformed element length, and the bubble pressure ?b
is explicitly updated within each finite-element time increment
by solving the governing equations for the physics of the bubble
contents (Appendix A). We close this section by reiterating that
the FE-based approach does not place restrictions on the consti-
tutive model used to describe the surrounding material, and that
we may straightforwardly incorporate any complex constitutive
model for the surrounding material, including the SNS-type mod-
els of Section 2.2.2, into the cavitation modeling framework.
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3.3 Initial conditions in laser-induced and ultrasound-
induced cavitation bubbles

In this work, we consider both laser-induced cavitation (LIC) and
ultrasound-induced cavitation (UIC). When simulating LIC, we
initialize numerical simulations starting at the time that the bub-
ble is at its maximum radius (' = 'max). This is done because the
initial growth phase of the bubble involves laser breakdown of the
liquid and associated plasma physics, which is not accounted for
in the cavitation modeling framework. When the bubble is at its
maximum radius, we idealize the system as being in thermody-
namic equilibrium with the surroundings, though not in mechan-
ical equilibrium. The driving force for the subsequent cavitation
dynamics is the gauge pressure inside the bubble modified by the
Laplace pressure (?b− ?∞−2W/'), and in LIC, the far-field gauge
pressure remains zero (?f = 0). For KM-based numerical solutions,
the bubble radius and velocity are initialized as '(C = 0) = 'max
and ¤'(C = 0) = 0, respectively. For FE-based numerical simulations,
the initial displacement field is prescribed based on the incom-
pressible solution, i.e., DA (A0, C = 0) = (A3

0 −'
3
0 +'

3
max)1/3− A0,† and

the initial velocity field is zero everywhere, i.e., ¤DA (A0, C = 0) = 0.
For both approaches, the bubble contents are initialized as dis-
cussed in Appendix A.

Next, for UIC, we simulate the bubble dynamics from the initial
growth phase through the first collapse and subsequent rebound
cycles as the bubble approaches its undeformed radius. The bub-
ble is initially in mechanical equilibrium with the surroundings.
Therefore, for KM-based simulations, the initial conditions are
'(C = 0) = '0 and ¤'(C = 0) = 0, and for FE-based simulations, the
initial conditions are DA (A0, C = 0) = ¤DA (A0, C = 0) = 0. The initial con-
ditions for the bubble contents for both approaches are given in
Appendix A. For UIC, the driving force for the bubble dynamics is
the time-dependent far-field gauge pressure ?f (C), which we take
to be given in the following form:

?f (C) =


?A

(
1+ cos[l(C − X)]

2

)=
if |C − X | ≤ c

l
,

0 if |C − X | > c

l
.

(20)

This half-cycle waveform for the far-field gauge pressure is based
on representative experimental acoustic pulses and has been ex-
tensively used in prior studies of UIC5–7,23,28,29,46. In this study,
motivated by the experiments of Wilson et al. 28 , the frequency
5 = l/2c of the half-cycle pulse is taken to be 1 MHz. The time
delay X is simply X = c/l, so that the waveform begins at C = 0,
and the dimensionless shape parameter = is chosen to be = = 3.7
as in prior studies to best represent experimental acoustic pulses.
Finally, the peak tensile pressure ?A < 0 is varied in the simula-
tions of the subsequent section in order to consider a range of
consequent bubble amplitudes.

† Based on our tests, for the values of 'max and '0 and the material parameters con-
sidered in this work, FE simulations using an initial condition based on the incom-
pressible solution and an initial condition based on the compressible, equilibrium
displacement field yield indistinguishable results for the bubble dynamics, so the
incompressible displacement field is used for the initial condition for expedience.

Table 1 Parameters used in the studies of Sections 4 and 5

Parameter Value Parameter Value
d0 1060 kg/m3 2 1430 m/s
?∞ 101.3 kPa W 5.6×10−2 N/m

4 Effect of material compressibility on bubble dy-
namics

In this section, we compare FE-based and KM-based simulations
of bubble dynamics for both LIC and UIC. The purpose of this ex-
ercise is twofold: (1) to verify our FE-based simulation approach
and (2) to establish a threshold for when the bubble dynamics
involves material compressibility beyond that accounted for in
the KM-based approach. Recall that the KM-based approach ac-
counts only for slight far-field compressibility, while the FE-based
approach accounts for compressibility in the full field, using an
equation of state stemming from the term involving � in the free-
energy density function, Eq. (3). In this section, we utilize the
NH-KV model, so that solutions may be obtained using both ap-
proaches, and the quantitative values used for d0, 2, ?∞, and W

are summarized in Table 1.
To probe the role of material compressibility in bubble dynam-

ics, we begin by considering LIC for several different values of
'max/'0, while keeping the material parameters of the NH-KV
model, � and `, fixed and equal to � = 10 kPa and ` = 0.03 Pa·s.
Figure 3(a) shows radius versus time curves in the case of LIC
for 'max/'0 = 2, 4, and 7, where '0 = 22.5 μm. For LIC, the
normalized radius is '∗ = '/'max, and the normalized time is
C∗ = (C/'max)

√
?∞/d0. The FE-based calculations are presented

as solid lines, and the KM-based calculations are presented as
dashed lines. For each case, we define the maximum Mach num-
ber as maxC ( ¤'(C))/2, where 2 is the longitudinal wave speed in the
surrounding material. We can see that for the case of 'max/'0 = 2,
for which the maximum Mach number is on the order of 0.01
and bubble collapse is the least violent, the two approaches yield
nearly identical results, verifying the FE-based simulation ap-
proach. As 'max/'0 increases, bubble collapse becomes more vi-
olent with an increasing maximum Mach number, and the two
approaches begin to give rise to increasingly different results, in-
dicating that material compressibility not accounted for in the
KM-approach becomes more important for more violent bubble
collapse.

As an alternate approach to probing the role of material com-
pressibility, we consider LIC for three different values of the vis-
cosity, ` = 0.003,0.032, and 0.1 Pa·s, for a fixed radius ratio of
'max/'0 = 4, while maintaining � = 10 kPa and '0 = 22.5 μm.
Figure 3(b) shows the corresponding radius versus time curves,
calculated using both FE-based and KM-based simulations. For
the highest value of the viscosity, the bubble dynamics are more
damped and less violent with a maximum Mach number of ap-
proximately 0.03. Consequently, the two approaches give similar
results. As the viscosity is decreased, the maximum Mach number
increases, bubble collapse becomes more violent, and the discrep-
ancy between the two approaches grows. In general, for violent
collapse, the compressibility of the surrounding material is more
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Fig. 3 Effect of (a) the radius ratio 'max/'0 and (b) the viscosity of the sur-
rounding material ` on normalized radius versus time curves for LIC. FE-based
simulations are shown as solid lines, and KM-based simulations are shown as
dashed lines. The open circle in (a) illustrates the time Cc used in Eq. (21) to
calculate Δ'RMS.

important, giving rise to the discrepancy between the two ap-
proaches.

Similar observations are made for the case of UIC. Figure 4(a)
shows normalized radius versus time curves for UIC for peak
tensile pressures of |?A |/?∞ = 10,20, and 50, where � = 10 kPa,
` = 0.03 Pa·s, and '0 = 10μm. For UIC, the normalized radius is
'∗ = '/'0, and the normalized time is C∗ = (C/'0)

√
?∞/d0. As

the peak tensile pressure increases, the cavitation amplitude in-
creases, larger radius ratios ('max/'0) are attained, and the con-
sequent collapse is more violent with a greater maximum Mach
number. As for LIC, as the radius ratio increases, the discrep-
ancy between the FE-based and KM-based simulations grows. Fig-
ure 4(b) shows normalized radius versus time curves for three
different values of the viscosity, ` = 0.003,0.032, and 0.1 Pa·s, for
a fixed peak tensile pressure of |?A |/?∞ = 50, while maintain-
ing � = 10 kPa and '0 = 10 μm. Again, as the viscosity decreases,
larger radius ratios are attained, the bubble collapse becomes
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Fig. 4 Effect of (a) the peak tensile pressure |?A |/?∞ and (b) the viscosity of
the surrounding material ` on normalized radius versus time curves for UIC. FE-
based simulations are shown as solid lines, and KM-based simulations are shown
as dashed lines. The open circle in (a) illustrates the time Cc used in Eq. (21) to
calculate Δ'RMS.

more violent, and there is an increase in the discrepancy between
the two simulation approaches.

To quantify the discrepancy between FE-based and KM-based
simulations and how it depends on the maximum Mach num-
ber, we utilize the root-mean-square of the difference between
the normalized radius history calculated using FE-based and KM-
based approaches:

Δ'RMS =

√
1
Cc

∫ C2

0

(
'∗FE (C∗) −'

∗
KM (C∗)

)2
3C∗, (21)

where '∗FE (C
∗) and '∗KM (C

∗) are the FE-calculated and KM-
calculated normalized radius histories, and Cc is a characteristic
normalized time for each case that corresponds to the second re-
bound time in LIC and the second collapse time in UIC (illus-
trated with open circle markers in Figs. 3(a) and 4(a), respec-
tively). Further, for each case, we calculate the maximum Mach
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Fig. 5 Plots ofΔ'RMS versus the maximumMach number for (a) LIC and (b) UIC.
We observe that the discrepancy between the FE-based and KM-based simula-
tions increases as the maximum Mach number increases across all cases con-
sidered.

number, maxC ( ¤'(C))/2. Figures 5(a) and (b) then show plots of
Δ'RMS versus the maximum Mach number for LIC and UIC, re-
spectively. In Fig. 5(a), nine different combinations of radius ratio
'max/'0 and viscosity ` are included for LIC, each represented
by a symbol, where the viscosity is denoted by the symbol type,
and the radius ratio is denoted by the shading of the connecting
lines. As observed in Fig. 3, as the radius ratio 'max/'0 increases
or as the viscosity ` decreases, the maximum Mach number in-
creases, indicating that bubble collapse becomes more violent. As
a result, the discrepancy between FE-based and KM-based calcu-
lations, quantified by Δ'RMS, increases by nearly two orders of
magnitude over the range of maximum Mach numbers consid-
ered here. Similarly, in Fig. 5(b), nine different combinations of
peak tensile pressure |?A |/?∞ and viscosity ` are included for
UIC and denoted in the same manner as in Fig. 5(a). Again, we
observe that as the peak tensile pressure |?A |/?∞ increases or
as the viscosity ` decreases, bubble collapse becomes more vio-
lent, and the maximum Mach number and Δ'RMS both increase.
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Fig. 6 Plots of Δmax versus the maximum Mach number for (a) LIC and (b) UIC.
The viscosity is denoted by the symbol type shown in the legend of Fig. 5(a).
We observe that the maximum volumetric strain magnitude Δmax increases as
the maximum Mach number increases across all cases considered. In both LIC
and UIC, for maximum Mach numbers less than about 0.08 (vertical dashed gray
lines), Δmax remains below 0.01.

For both LIC and UIC, a rough collapse in Δ'RMS versus maxi-
mum Mach number is observed across the cases considered. We
have confirmed that both FE-based and KM-based simulations are
sufficiently refined both temporally and spatially, so that the dis-
crepancy Δ'RMS is attributable to the different approaches used
to account for material compressibility in the two methods.

The results of Fig. 5 suggest that the increasing maximum
Mach number associated with violent bubble collapse is accom-
panied by increased compressibility in the surrounding material.
To make this connection more concrete, we consider the volu-
metric strain field Δ = ln �, calculated using the FE approach. The
maximum volumetric strain magnitude in the surroundings oc-
curs at the bubble wall A = ' at first collapse in all cases of both
LIC and UIC considered in this section. We define the maximum
volumetric strain magnitude as Δmax =maxC ( |Δ(A = ', C) |). Figures
6(a) and (b) then show plots of Δmax versus the maximum Mach
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number for LIC and UIC, respectively, calculated using the FE ap-
proach. As in Fig. 5, the viscosity for each case is denoted by the
symbol type, and the radius ratio in Fig. 6(a) and the peak tensile
pressure in Fig. 6(b) are denoted by the shading of the connect-
ing lines. For both LIC and UIC, a collapse is observed across the
cases considered with maximum volumetric strain increasing as
bubble collapse becomes more violent. Compressibility may be
regarded as slight when the maximum volumetric strain remains
on the order of 0.01 or less. Based on Fig. 6, for maximum Mach
numbers less than about 0.08 (denoted by the vertical dashed
gray lines), Δmax remains below 0.01, and material compressibil-
ity is slight. Correspondingly, the discrepancy between FE-based
and KM-based simulations is minimal. But for maximum Mach
numbers greater than about 0.08, Δmax is greater than 0.01, and
material compressibility plays an increasingly significant role in
the bubble dynamics. Consequently, Δ'RMS grows, and FE-based
simulations become more accurate, due to a higher fidelity de-
scription of the physics of material compressibility. These obser-
vations suggest a maximum Mach number of 0.08 may be used
as a threshold for when bubble dynamics involves material com-
pressibility beyond that accounted for in the KM-based approach.
We note that this threshold complements the experimental ob-
servations of Yang et al. 22 for polyacrylamide gel, who reported
a transition from viscoelastic material behavior to more complex
behavior at a maximum Mach number of 0.08, based on mea-
surements of the radial positions of tracked material points in the
surrounding material.

5 Characterizing the high-strain-rate behavior of
polyacrylamide gels

Next, we utilize FE-based simulations in Inertial Microcavitation
Rheometry (IMR) to obtain improved high-strain-rate properties
for soft materials–a process that we refer to as FE-IMR. First, in
Section 5.1, we revisit the experimental LIC data of Yang et al. 22

for violent bubble collapse in a stiff polyacrylamide gel and apply
FE-IMR that accounts for material compressibility to obtain higher
fidelity properties. Then, in Section 5.2, we consider the experi-
mental data of Buyukozturk et al. 27 for particle-assisted LIC in a
soft polyacrylamide gel over a range of cavitation amplitudes and
use FE-IMR to characterize the high-strain-rate behavior, includ-
ing non-Newtonian rheological behavior.

5.1 Stiff polyacrylamide gel

First, we consider the LIC experiments of Yang et al. 22 on poly-
acrylamide (PA) gels and focus on their “stiff” PA gel with a
ground-state shear modulus of � = 2.77 kPa, determined through
quasi-static testing. Ten LIC experiments were carried out on the
stiff PA gel, yielding mean maximum and equilibrium radii of
330.26± 30.36 μm and 46.52± 4.28 μm, respectively, correspond-
ing to a radius ratio of 'max/'0 = 7.1. The normalized radius
'∗ = '/'max versus normalized time C∗ = (C/'max)

√
?∞/d0 his-

tory for a representative LIC experiment in stiff PA gel from Yang
et al. 22 is shown in Fig. 7 as square symbols. Throughout Sec-
tion 5, following Estrada et al. 21 , we use the values of d0, 2, ?∞,
and W summarized in Table 1.
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Fig. 7 Comparison of experimental data (symbols), numerical KM-IMR results
(dashed line), and numerical FE-IMR results (solid line) for the normalized radius
versus time history for stiff PA gel. For KM-IMR, only the first collapse was used to
obtain best-fit material parameters, while FE-IMR utilizes the bubble radius history
through the third collapse (0 < C∗ . 2) . Both approaches use the qKV model, and
FE-IMR gives U = 0.48 and ` = 0.158 Pa·s as the best-fit material parameters,
while KM-IMR gives U = 0.48 and ` = 0.186 Pa·s.

In applying KM-based IMR (KM-IMR) to LIC data for stiff PA,
Yang et al. 22 made two key observations. First, Yang et al. 22

showed that KM-IMR cannot provide an adequate description of
the physics beyond the first collapse for violently collapsing bub-
bles, which are marked by a maximum Mach number of greater
than 0.08. This was experimentally observed in their work based
on measurements of the kinematics of tracked material points in
the surrounding material, and the results of Section 3.1 in the
present work establish that compressibility begins to matter be-
yond this point, and that KM-IMR does not adequately account for
compressibility beyond a maximum Mach number of 0.08. Thus,
only the first collapse in the normalized radius versus time history
was utilized in Yang et al. 22 to obtain best-fit material parameters
for PA gels. Second, Yang et al. 22 concluded that for sufficiently
large radius ratios, accounting for strain stiffening effects is cru-
cial to improve the quality of the fitted material parameters for PA
gels. Therefore, the quadratic Kelvin-Voigt (qKV) model, which
accounts for strain stiffening, was utilized, and a strain-stiffening
parameter of U = 0.48 and a viscosity of ` = 0.186 Pa·s were ob-
tained based on least-squares data fitting, while maintaining the
ground-state shear modulus to be equal to the quasi-static value
of � = 2.77 kPa. The corresponding normalized radius versus time
curve, fitted to the first collapse, is included in Fig. 7 as a dashed
line.

Since FE-IMR accounts for material compressibility, this ap-
proach may be utilized to obtain higher fidelity estimates of
high-strain-rate material properties from normalized radius ver-
sus time data for violently-collapsing LIC bubbles beyond first
collapse. Here, we revisit the LIC experiments of Yang et al. 22 on
stiff PA gel and apply FE-IMR. We broaden the portion of the nor-
malized radius versus time history used for fitting beyond the first
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collapse to include the history through the third collapse (C∗ . 2
in Fig. 7). Moreover, we consider a more general constitutive
model and utilize the non-Newtonian qKV model. As discussed
in Section 2.2.2, the non-Newtonian qKV model is obtained from
an SNS-type constitutive modeling approach, in which the non-
equilibrium shear modulus �1 is taken to be much greater than
the ground-state shear modulus �. Here we take �1 = 1000�.
As in Yang et al. 22 , we take the equilibrium shear modulus to
be its quasi-static value � = 2.77 kPa, and the bulk modulus is
given through the longitudinal wave speed by  = d02

2 − (4/3)�,
leaving three adjustable material parameters: the strain-stiffening
parameter U, the strain-rate sensitivity exponent <, and the refer-
ence strain rate ¤W0. We then perform least-squares fitting between
experimental radius versus time curves for stiff PA gel and curves
computationally obtained using FE-IMR with the adjustable pa-
rameters {U,<, ¤W0}. As a result of this procedure, we find that the
best-fit value of the rate-sensitivity exponent < is one, meaning
that the rheological behavior of the stiff PA gel is Newtonian. Re-
calling that for the Newtonian case, the constant shear viscosity
is ` = �/ ¤W0, the best-fit parameters determined using FE-IMR are
U = 0.48 and ` = 0.158 Pa·s. The corresponding normalized radius
versus time curve is included in Fig. 7 as a solid line.

Comparing the fitted bubble radius histories for FE-IMR and
KM-IMR in Fig. 7, we observe that both FE-IMR and KM-IMR cap-
ture the first collapse very well. However, beyond the first col-
lapse, KM-IMR underestimates the height of the second rebound,
while FE-IMR manages to capture it well. Although there is some
time delay in the second collapse predicted by FE-IMR, overall,
it captures the bubbles dynamics in stiff PA gel well, yielding a
more precise estimation of the material parameters. Comparing
the material parameters determined using FE-IMR and KM-IMR,
we note that the value of the fitted strain-stiffening parameter U
does not change, while the value of the fitted viscosity decreases
from 0.186 Pa·s to 0.158 Pa·s. This may be understood as follows.
As observed in Fig. 3(a), KM-based simulations predict that first
collapse occurs slightly faster than corresponding FE-based sim-
ulations, due to the differences in how the two methods account
for material compressibility. To compensate for this, when fitting
the experimental bubble dynamics during first collapse, KM-IMR
overestimates the viscosity, slowing down the predicted collapse
dynamics to be in line with the experimental data but leading
to the subsequent rebounds being overdamped. The ability of FE-
IMR to more precisely capture the second rebound stems from the
fact that FE-IMR accounts for the compressibility of the surround-
ing material, which slightly delays the collapse time as shown in
Section 4. Thus, we conclude that accounting for material com-
pressibility is important when dealing with violently collapsing
bubbles, and doing so leads to higher fidelity estimates of mate-
rial properties–in particular, the viscosity–of soft materials when
applying IMR to experimental data.

5.2 Soft polyacrylamide gel

Next, we consider the LIC experiments of Buyukozturk et al. 27

for a “soft” PA gel with a ground-state shear modulus of � =

461± 4 Pa.‡ In Buyukozturk et al. 27 , three types of micron-sized
nucleation seed particles (glass, stainless steel, and paramagnetic-
coated polyethylene beads) were dilutely dispersed in the soft PA
gel. Scanning Electron Microscope (SEM) images of glass and
paramagnetic-coated polyethylene seed particles are reproduced
from Buyukozturk et al. 27 in Fig. 8(a). In each LIC experiment,
the laser pulse was focused on a single seed particle, and vary-
ing laser energies were utilized across different experiments to
achieve a range of radius ratios (4 . 'max/'0 . 9). LIC experi-
ments without seed particles were also carried out. Schematics
of the cavitation focal point in the gel specimen both without and
with seed particles are included in Fig. 8(a). The normalized ra-
dius '∗ = '/'max versus normalized time C∗ = (C/'max)

√
?∞/d0

histories for representative LIC experiments from Buyukozturk
et al. 27 in soft PA gel using paramagnetic-coated polyethylene
seed particles, glass seed particles, and no seed particles are
shown in Figs. 8(b), (c), and (d), respectively, as square symbols.
All three of the representative cases correspond to a nominal laser
energy of 117.8 μJ. The resultant maximum bubble radii for the
representative cases were 'max = 271.63, 239.14, and 199.21 μm
for paramagnetic-coated polyethylene seed particles, glass seed
particles, and no seed particles, respectively, and the correspond-
ing equilibrium radii were '0 = 56.28, 41.19, and 23.26 μm, cor-
responding to radius ratios of 'max/'0 = 4.8, 5.8, and 8.6. Thus,
through the use of seed particles, different deformation ampli-
tudes and rates were achieved in the same material, and the aim
of this section is to apply FE-IMR to collectively fit the experimen-
tal data of Fig. 8 and extract a set of material parameters for soft
PA gel at high strain rates.

To apply FE-IMR, we begin with the Newtonian version of the
qKV model discussed in Section 2.2.2 and used for the stiff PA gel
in Section 5.1. We take the equilibrium shear modulus to be the
quasi-static value of � = 461 Pa, leaving two adjustable parame-
ters: the strain-stiffening parameter U and the shear viscosity `.
For fitting, we utilize the three normalized radius versus time his-
tories in Fig. 8, each through their respective third collapse point:
C∗ . 3.0 in Fig. 8(b), C∗ . 2.7 in Fig. 8(c), and C∗ . 2.1 in Fig. 8(d).
Then, we perform least-squares fitting between the three experi-
mental histories and the corresponding histories calculated using
FE-IMR with one set of adjustable parameters {U, `}. We find
that the best-fit parameters for the qKV model determined using
FE-IMR are U = 0.75 and ` = 0.0646 Pa·s. We note that these val-
ues are comparable to the best-fit values determined in Buyukoz-
turk et al. 27 using KM-IMR with the qKV model (see Fig. 6(c) of
Buyukozturk et al. 27). The best-fit normalized radius versus time
curves for the qKV model are included in Figs. 8(b)-(d) as dashed
lines. Overall, the fit is reasonable, especially for first collapse in
all cases and across the full history for the case of paramagnetic-
coated polyethylene seed particles in Fig. 8(b), for which the ra-
dius ratio 'max/' = 4.8 is the smallest of the cases considered. For
the largest radius ratio of 'max/' = 8.6 corresponding to the case
of no seed particles in Fig. 8(d), the best-fit predictions of the qKV

‡ We note that this is a slightly different PA gel than the soft PA gel considered in Yang
et al. 22 , which had a ground-state shear modulus of � = 570 Pa.
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Fig. 8 Application of FE-IMR to soft PA gel. (a) SEM images of glass and paramagnetic-coated polyethylene seed particles from Buyukozturk et al. 27 and schematics
of the cavitation focal point both without and with seed particles. (b-d) Comparison of experimental data (symbols), numerical FE-IMR results using the Newtonian qKV
model (dashed lines), and numerical FE-IMR results using the non-Newtonian model (solid lines) for normalized radius versus time histories for soft PA gel. Different
radius ratios were achieved in Buyukozturk et al. 27 using (b) paramagnetic-coated polyethylene seed particles ('max/'0 = 4.8), (c) glass seed particles ('max/'0 = 5.8),
and (d) no seed particles ('max/'0 = 8.6). The best-fit material parameters for the Newtonian qKV model were U = 0.75 and ` = 0.0646Pa·s, and the best-fit material
parameters for the non-Newtonian qKV model were U = 0.75, ¤W0 = 6046 s−1 and < = 0.9.

model are overdamped for the second and third collapses.

Next, to obtain refined high-strain-rate properties for the soft
PA gel, we apply FE-IMR using the non-Newtonian qKV model
and follow a similar fitting procedure as described in the preced-
ing paragraph. Recall that the non-Newtonian qKV model stems
from an SNS-type constitutive modeling approach, and as in Sec-
tion 5.1, we continue to take the non-equilibrium shear modulus
to be �1 = 1000�. Then, we take the equilibrium shear modu-
lus to be the quasi-static value of � = 461 Pa, leaving three ad-
justable parameters: {U,<, ¤W0}. Again, we perform collective
least-squares fitting of FE calculations to the experimental histo-
ries of Figs. 8(b)-(d) through the third collapse. The resulting best
estimates of the material parameters of the non-Newtonian qKV
model are U = 0.75, ¤W0 = 6046 s−1 and < = 0.9, and the correspond-
ing best-fit normalized radius versus time curves are included as

solid lines in Figs. 8(b)-(d). The value of the stiffening parame-
ter U is the same as the value determined for the Newtonian qKV
model, while a best-fit value of the rate-sensitivity exponent of
< = 0.9 is determined. Therefore, the primary difference between
predictions of the Newtonian and non-Newtonian versions of the
qKV model is the shear-thinning rheological behavior accounted
for in the non-Newtonian version. We observe that the overall
quality of the fitting is improved in Fig. 8. The first collapse as
well as the following rebound and second collapse are captured
across all three radius ratios. Therefore, by incorporating non-
Newtonian, shear-thinning rheological behavior in the constitu-
tive description of the surrounding material, an improved set of
high-strain-rate material parameters may be determined.
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6 Concluding remarks
In this work, we have developed a finite-element-based approach
for modeling the cavitation dynamics of spherical bubbles in soft
viscoelastic media, which may be applied to both laser-induced
and ultrasound-induced cavitation. Compared to the standard
approach that utilizes the Keller-Miksis equation21–23,25, the FE-
based approach can account for more complex constitutive behav-
ior of the surrounding material. In this work, we focused on two
aspects of the behavior of the surrounding material: compress-
ibility and non-Newtonian rheological behavior. Regarding mate-
rial compressibility, we observed that for both LIC and UIC, the
discrepancy between FE-based and KM-based simulations grows
with the maximum Mach number, and that for maximum Mach
numbers greater than about 0.08, the bubble dynamics involves
material compressibility beyond that accounted for in the KM-
based approach. Therefore, under this condition, FE-IMR may
be used to obtain higher fidelity estimates of material properties.
This was demonstrated by revisiting the LIC data of Yang et al. 22

for a stiff PA gel and applying FE-IMR to the normalized radius
versus time history beyond first collapse to obtain a refined es-
timate of the material parameters of the qKV model. Regarding
rheological behavior, we incorporated a non-Newtonian, power-
law version of the qKV model into the FE-IMR framework and
applied the model to the particle-assisted LIC data of Buyukoz-
turk et al. 27 for a soft PA gel over a range of cavitation ampli-
tudes to obtain a set of material parameters for soft PA gel at
high strain rates. The trade-off of the FE-based approach com-
pared to the KM-based approach is the additional computational
expense required to solve the balance of linear momentum differ-
ential equation in the surrounding material. Therefore, FE-IMR
is complementary to KM-IMR, since KM-IMR may be used to ef-
ficiently estimate material properties using simple models, which
may be further refined using FE-IMR. The FE-based and KM-based
codes used in this work have been made available to the commu-
nity via GitHub (https://github.com/HenannResearchGroup).

Our modeling framework accounts for the dynamics of a sin-
gle spherical bubble, which places limitations on when FE-IMR
and KM-IMR may be applied. First, dynamic cavitation in soft vis-
coelastic materials can lead to complex, non-spherical instability
patterns, including bubble surface wrinkles and creases as shown
by Yang et al. 25,47 . Second, cavitation in anisotropic soft materi-
als is expected to lead to non-spherical bubble shapes. Account-
ing for the effects of non-spherical bubble dynamics is beyond the
capacity of spherical bubble modeling and requires full, three-
dimensional modeling of the bubble dynamics, which is an im-
portant avenue for future work. Therefore, both FE-IMR and KM-
IMR may only be applied to experimental '(C) data in isotropic
materials under situations in which the bubble remains spheri-
cally symmetric during the cavitation event in order to accurately
estimate material parameters.

Beyond developing a three-dimensional framework for model-
ing non-spherical bubble dynamics, there remain several direc-
tions for future research work within the realm of spherical bub-
ble modeling. First, we expect that FE-IMR may be used to study
a broad selection of soft materials beyond PA gel, such as agarose

and gelatin gels as well as biological tissues, and it remains to
apply FE-IMR to these materials to extract high-strain-rate ma-
terial properties. Second, since the FE-based approach does not
place restrictions on the constitutive model used to described the
surrounding material, additional material physics, such as dam-
age and plasticity, may be considered. For example, past studies
that incorporate damage models into a RP-based framework32,48

have only considered simple damage models, due to the math-
ematical restrictions involved in evaluating the stress integral,
Eq. (15). Thus, future work that implements continuum damage
mechanics models into FE-IMR may be used to more accurately
model the evolution of damage during inertial microcavitation.
Finally, the current cavitation modeling framework employs the
“cold medium” assumption, which idealizes the surrounding ma-
terial as isothermal. Several previous works account for temper-
ature evolution in the surroundings29,43,49, and FE-IMR may be
straightforwardly extended to solve the balance of energy equa-
tion for the evolution of the temperature field in the surroundings
and potentially further refine the estimation of material parame-
ters.
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A Bubble contents

In this appendix, we summarize the equations governing the
physics of the bubble contents. The modeling approach follows
the literature on the physics of laser-induced cavitation bub-
bles21,41–43, and a more detailed discussion may be found in
Estrada et al. 21 . We idealize the bubble contents as a homobaric,
two-phase mixture consisting of water vapor and non-condensible
gas, which are both modeled as ideal gases. The (dimensionless)
vapor mass fraction field : (A, C) and the temperature field ) (A, C)
inside the bubble (0 ≤ A ≤ ') evolve according to

m:

mC
+ Em
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mA
=

1
dmA2
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mA

(
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2�
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respectively, where

Em (A, C) =
1
^?b
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(^−1) m)
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− 1

3
A ¤?b

]
+
Rv −Rg
R �

m:

mA
(24)
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Table 2 Parameters describing the physics of the bubble contents

Parameter Value Parameter Value
� 24.2×10−6 m2/s ^ 1.4
Rv 0.462 kJ/kg·K Rg 0.287 kJ/kg·K
� 5.3×10−5 W/m·K2 � 1.17×10−2 W/m·K
?ref 1.17×108 kPa )ref 5200 K
)∞ 298.15 K

is the mixture velocity field, dm = ?b/R) is the mixture density
field, R = :Rv + (1− :)Rg is the mixture gas constant field, and
 ()) = �) +� is the temperature-dependent thermal conductivity
of the mixture50. Finally, the ODE governing the evolution of the
absolute pressure inside the bubble ?b (C) is

¤?b =
3
'

[
−^?b ¤' + (^−1) () |A=')

m)

mA

����
A='

+^?b
Rv

R(: |A=')
�

1− : |A='
m:

mA

����
A='

]
. (25)

The constant parameters associated with the bubble contents
are the binary diffusion coefficient �, the specific heats ratio of
the mixture ^, the gas constants of the water vapor and non-
condensible gas, Rv and Rg, and the empirical constants describ-
ing the temperature-dependence of the thermal conductivity of
the mixture, � and �, which are summarized in Table 2.

The boundary conditions for the PDEs governing the tempera-
ture field, Eq. (23), and the vapor mass fraction field, Eq. (22),
at the bubble center (A = 0) are m)/mA |A=0 = m:/mA |A=0 = 0. It is
assumed that the surrounding material remains isothermal at an
ambient temperature of )∞ (i.e., the “cold medium” assumption),
so that the temperature boundary condition at the bubble wall is
) |A=' =)∞. Further, at the bubble wall, the partial pressure of the
water vapor is taken to be equal to its saturation pressure, leading
to the following boundary condition for the vapor mass fraction:

: |A=' =
[
1+ Rv
Rg

(
?b

?v,sat ()∞)
−1

)]−1
, (26)

where ?v,sat ()) = ?ref exp(−)ref/)) is the temperature-dependent
saturation pressure of the water vapor with empirical constants
?ref and )ref

43. Quantitative values for ?ref , )ref , and )∞ used in
this study are included in Table 2.

Regarding the initial conditions for the bubble contents, for
both LIC and UIC, we assume that the bubble contents are in ther-
mal equilibrium at C = 0. Accordingly, the initial temperature field
is spatially constant and given by ) (A, C = 0) = )∞. Likewise, the
water vapor partial pressure field is taken to be spatially constant
and given through its saturation pressure at the ambient temper-
ature, so that the initial vapor mass fraction field : (A, C = 0) is also
spatially constant and given by Eq. (26). Finally, following the
arguments in Estrada et al. 21 , for LIC, the initial bubble pressure
is

?b (C = 0) = ?v,sat ()∞) +
(
?∞ +

2W
'0
− ?v,sat ()∞)

) (
'0
'max

)3
. (27)

For UIC, the initial bubble pressure is ?b (C = 0) = ?∞ +2W/'0.

Prior to obtaining numerical solutions, the governing equations
for the bubble contents are non-dimensionalized as discussed in
Estrada et al. 21 , which for brevity, are not recapitulated here.
Then, regarding the spatial discretization of the PDEs (22) and
(23), the spatial derivatives are calculated using second-order
central differences on a grid of # + 1 equidistant points inside
the bubble50. In this study, we use # = 500. The method of
time evolution for the governing equations for the bubble con-
tents differs between the KM-based approach and the FE-based
approach. For KM-based numerical solutions, the discretized gov-
erning equations for the bubble contents are evolved forward in
time in conjunction with the KM equation (16) using a variable-
step, variable-order solver (MATLAB ode15s). For FE-based nu-
merical solutions, within a FE time increment, the displacement
field in the surroundings, and hence the bubble radius, is up-
dated explicitly using the explicit central difference scheme, and
then, the discretized governing equations for the bubble contents
are evolved forward in time using the fourth-order Runge-Kutta
method. When the governing equations for the bubble contents
require a stable time step that is smaller than the stable time in-
crement required for the FE update, the discretized governing
equations for the bubble contents are evolved forward in time
using a number of substeps, in which the bubble radius is linearly
interpolated over the course of the FE time increment.
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