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Confined active matter in external fields†

Vaseem A. Shaik,a Zhiwei Peng,b John F. Brady,b and Gwynn J. Elfring∗a

We analyze a dilute suspension of active particles confined between walls and subjected to fields that
can modulate particle speed as well as orientation. Generally, the particle distribution is different in
the bulk compared to near the walls. In the bulk, particles tend to accumulate in the regions of low
speed, but in the presence of an orienting field normal to the walls, particles rotate to align with the
field and accumulate in the field direction. At the walls, particles tend to accumulate pointing into
the walls and thereby exert pressure on walls. But the presence of strong orienting fields can cause
the particles to reorient away from the walls, and hence shows a possible mechanism for preventing
contamination of surfaces. The pressure at the walls depends on the wall separation and the field
strengths. This work demonstrates how multiple fields with different functionalities can be used to
control active matter under confinement.

1 Introduction

Active matter refers to a suspension of active particles that con-
vert stored energy to directed motion1–5. Examples include a
school of fish, a flock of birds and a suspension of microorgan-
isms. Our focus here is on active matter systems where the active
particles are micron sized and hence the inertia of the particles
and the induced flow is negligible. Such active matter systems
exhibit rich phenomena due to the self-propelling constituents,
including collective motion6, active turbulence7 and motility-
induced phase separation8.

The dynamics of active particles depend on characteristics such
as their speed9–13, orientation14 and diffusivity15, and thus a de-
gree of control over active matter can be exerted through modula-
tion of these properties. By subjecting active particles to external
fields like magnetic fields or gravitational fields or even gradients
in heat, light or fluid viscosity, active particles have been shown to
perform taxis either by rotating to align with the external field or
speeding up (or slowing down) in the field, or both. An example
is Chlamydomonas nivalis which reorients to preferentially swim
against gravity due to bottomheaviness16. More impressively, one
can ‘paint’ with the bacterium E. coli by exposing the bacterial
suspension to the light gradients17 as the bacterium changes its
speed in response to light. More sophisticated control of synthetic
active matter has recently been demonstrated by employing exter-
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nal magnetic fields and discrete-time feedback loops to tune the
rotational diffusivity of active colloids15. It is in this vein, namely
controlling the dynamics of active matter, that we develop theory
for confined active particles subject to fields that can modulate
particle speed as well as orientation.

Several researchers have analyzed the dynamics of active par-
ticles with spatially varying speeds8,18–22. When the spatial
variation is slow and restricted to 1D, the number density n
and the swim speed U are shown to be inversely proportional,
nU = constant 18. This relation means that particles accumulate
in the regions of low speed and has been shown to apply to ac-
tive matter under abrupt speed changes provided that (thermal
or biological) fluctuations are relatively weak22.

Active particles also tend to accumulate at confining bound-
aries due to their directional persistence23,24, they tend to point
into the walls and exert a force (or pressure) on these confining
boundaries. This pressure usually depends on the precise micro-
scopic and hydrodynamic interactions between the particles and
the boundary25,26. In the absence of any external field, it is a sum
of the bulk osmotic pressure and the swim pressure27, which is
the unique pressure required to confine particles28. If an orient-
ing field is also present then the particles rotate to align with the
field, nonzero net polar order develops in the entire domain and
boundary accumulation is modified24. Net polar order gives rise
to a net average swim force and the wall pressure in this case is a
sum of the swim pressure and the effective body force due to re-
orientation that acts on particles24. It has also been shown that in
a bipolar orienting field, particles rotate to align along as well as
against the field. This results in zero polar order but net nematic
order. In such fields, the swim stress was shown to be tensorial
and hence, the wall pressure is the wall normal component of
the swim stress29. Computational simulations of active particles
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in the presence of orienting fields have also revealed how such
fields can drive steady unidirectional internal flows30.

Spatial variation of the speed of active particles as well as an in-
duced reorientation can also be caused by subjecting the particles
to external flows. Indeed, the dynamics of confined active parti-
cles in the presence of external flows is relatively well explored.
Diverse phenomena such as upstream swimming31–35, shear trap-
ping and center line depletion23,36, and a non-monotonic varia-
tion of longitudinal dispersivity with the flow rate35,37 have all
been observed and described. Theoretical approaches for deriving
macroscale transport properties include generalized Taylor dis-
persion theory38 and recently a local approximation model for
macroscale transport39. The complications associated with an
additional orienting field, such as gravity acting on bottom-heavy
particles16,40, or the chemical gradients acting on chemotactic
particles41, have also been analyzed. If the external field is pre-
scribed and particles do not disturb the background flow, these
systems have a similar mathematical structure to the system we
consider here. But there are several differences. First, the moti-
vation in our case is in exerting simple control of active particles
to achieve rectified dynamics through the use of external fields.
Particle dynamics in external flows is usually quite different, for
instance a particle in shear or Poiseuille flow will rotate continu-
ously exhibiting periodic dynamics between walls35,42. Also, we
conduct a full boundary-layer analysis of the number density and
polar order fields of active particles (under forcing) near walls at
the high Péclet numbers that are often most relevant.

While particle speed and orientation can both be controlled by
external fields28, theory has not yet been developed for confined
active matter subjected to external fields that modulate both.
Specifically, the scaling law satisfied by the number density is
not known, and thus previous experimental work compared re-
sults with the nU = constant scaling law43. Also, the only the-
ory developed in previous work for the confined active matter in
the presence of a orienting field was valid for wall separations
much larger than the run length, which is the distance an ac-
tive particle travels before reorienting due to the rotary Brown-
ian motion24. Here we derive theory for active matter subjected
to the two aforementioned fields, valid in the relevant limit of
weak translational Brownian motion (or high activity44) and for
all wall separations relative to the run length. We solve for the
number density and wall pressure, as well as probe the theory
and underlying physics that impact wall accumulation.

2 Confined active particles

2.1 Active Brownian particles

We consider a dilute suspension of active particles confined be-
tween two infinite plane walls that are separated by a distance
L. See Fig. 1 for the schematic. The particles are subjected
to an external field that modulates the particles’ speed spatially
U = U (x)q, where the unit vector q is the particle orientation.
This can be achieved by imposing light on photo-sensitive bacte-
ria or synthetic robots or even by spatially varying the ‘fuel’ that
bacteria consume. The particles are also subject to an external
field that leads to reorientation to align with the field direction

Speed modulating field + Orienting field

Fig. 1 A dilute suspension of spherical active particles of radius a confined
between two walls that are separated by a distance L. The particles are
subjected to a field that modulates their speed spatially U =U (x)q and
also to a field that rotates them at a rate |Ωc|. Additionally, particles
undergo rotational diffusion with a time scale τR = 1/DR.

Ĥ. This reorientation can be caused by imposing magnetic or
gravitational fields on the magnetotactic or bottom heavy bac-
teria, respectively, or even by spatially varying the background
fluid viscosity45,46. The rate of reorientation is quantified by a
characteristic angular velocity ΩΩΩ = Ωc(q× Ĥ), that is determined
from the balance between torque caused by the field (which may
be hydrodynamic or external depending on the particular mech-
anism driving reorientation) and rotational drag. For simplicity
and with no lack of generality we assume the characteristic rate
Ωc > 0.

The particles are subject to fluctuations that lead to transla-
tional and rotational diffusion with diffusivities, DT and DR, re-
spectively. The fluctuations may be thermal or biological in ori-
gin but regardless of the origin we consider the diffusivities to
be constant and independent of the imposed background fields.
Importantly, the particles in our model do not interact with one
another, hydrodynamically or otherwise. This simple model of ac-
tive particles is called the active Brownian particle (ABP) model
and it has been used widely to understand various phenomena
without any hydrodynamic interactions3.

2.2 Smoluchowski analysis
The probability of finding a particle in the vicinity of position
x, and orientation q at time t, P(x,q, t)dxdq, is governed by the
Smoluchowski equation

∂P
∂ t

+∇ · jT +∇R · jR = 0, (1)

where ∇R = q× ∂/∂q and the translational and rotational fluxes
are jT = UP−DT ∇P and jR = ΩΩΩP−DR∇RP, respectively47. The
particles are prevented from entering the walls by enforcing zero
translational flux normal to the walls n · jT |wall = 0, where n is the
unit vector normal to the wall. The total number of particles is
conserved by requiring that

∫ ∫
Pdqdx = 1.

To capture the essential physics, we focus on the orientational
moments of the probability density P(x,q, t). The first few mo-
ments are the number density n =

∫
Pdq, the polar order m =∫

Pqdq, and the nematic order Q=
∫

P
(

qq− I
d

)
dq, where d is the

dimensionality of the problem. These moments emerge naturally
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expanding the probability density in terms of the irreducible ten-
sors of the orientation q, P(x,q, t) = n+m ·q+Q : qq+O

(
qqq

)
.

The overbracket denotes the irreducible part of a tensor48, for
example qq = qq− I/d. Equations governing these moments can
be derived by projecting (1) onto the basis of these irreducible
tensors. Hence, n and m satisfy

∂n
∂ t

+∇ · jn = 0, (2)

∂m
∂ t

+∇ · jm +ΩcĤ ·Q−ΩcnĤ
(

1− 1
d

)
+DR (d−1)m = 0, (3)

where,

jn =
∫

jT dq =U (x)m−DT ∇n, (4)

jm =
∫

jT qdq =U (x)Q+
nU (x)

d
I−DT ∇m. (5)

Additionally, moments of the no-flux condition at the walls
n · jT |wall = 0 yield n · jn|wall = 0 and n · jm|wall = 0, for the first two
moments. Finally, the integral constraint

∫ ∫
Pdqdx = 1 implies∫

ndx = 1. A closure problem immediately arises due to fluxes of
a particular moment depending the next (higher) moment. The
approximation used here to close these equations and its validity
are discussed in the next section.

We note that the choice of boundary condition that enforces
particle number conservation is not unique. A weaker boundary
condition imposing no-flux only on the number density can be
used41 and the choice of boundary conditions affects the num-
ber density distribution and other derived macrotransport prop-
erties49. Our point of view is that the boundary conditions of the
Smoluchowski equation should be based on the micromechanics
of the particle-wall interaction, in order to accurately capture the
intended physical picture. In particular, in the absence of hy-
drodynamic interactions as we consider here, this particle-wall
interaction is the steric interaction between a hard particle and a
hard wall and the no-flux condition originates from the contact
dynamics between a particle and the wall. When the sphere is in
contact with a planar wall, the wall exerts a force that is normal
to the spherical surface at the single point of contact. When the
sphere is not in contact with the wall, the force vanishes. For an
active sphere, regardless of the orientation that it comes into con-
tact with the wall, the direction of the force always points toward
the center of the sphere. This ultimately leads to a no-flux condi-
tion must be satisfied for all orientations. One can derive this by
considering a repulsive potential and then performing a matched-
asymptotic analysis in the limit that the potential approaches that
of a hard wall (Peng & Brady, unpublished).

2.3 Analysis

We begin first by examining the relevant physical scales in the
problem. There are two time scales: the reorientation time,
τR = 1/DR, due to rotary Brownian motion or some internal bi-
ological mechanism, and the time that the field takes to reorient
the particle 1/Ωc. There are also three length scales: the micro-

scopic length δ =
√

DT τR, the run length `=U0τR, and the chan-
nel width L, where U0 is the self-propulsion speed in the absence
of fields. The governing equations are ultimately characterized
by four dimensionless numbers: the channel gap relative to run
length L/`, the Péclet number Pe =U0`/DT measuring the ratio of
the self-advective (i.e., swimming) to the diffusive transport rate
of particles, and two dimensionless groups which give the rela-
tive magnitude of the effects of the external fields: the relative
importance of variations in speed αL = ∆U/U0, where ∆U is the
characteristic change in speed, and the relative importance of the
orienting field χR = ΩcτR.

We simplify the analysis by focusing only on the steady state
solutions and consider fields that are either normal or paral-
lel to the walls. We only consider linear speed variations nor-
mal to wall; hence, for a wall normal and parallel directions
ex and ey, the speed varies only along x, U = U (x)q, where
U (x) = U0

{
1−αL

( x
L −

1
2
)}

, αL ≥ 0, and the particle rotates to
align with Ĥ = ex or ey. In such fields, there is no physical mech-
anism to cause any variation along the wall, hence n = n(x),
m=m(x), and Q=Q(x). Also, in wall normal fields, there cannot
be any polar order along the walls m = mx (x)ex and the nematic
order is diagonal Q = Qxx (x)exex− Qxx(x)

(d−1) (I− exex). Nematic order
must be non-zero along the walls as Q is trace-free.

In general, in this problem nematic order is small (� n) ev-
erywhere except possibly at the walls and there it remains small
provided that Péclet numbers are modest Pe < 103 and the effects
of the external fields are not dominant αL < 1,χR < 1. See Fig. S2
in the ESI† where we plot the nematic order as a function of po-
sition for various values of Pe, αL, and χR, obtained from the full
numerical solution of the Smoluchowski equation. Focusing (un-
less otherwise specified) on this range of parameter values, we
neglect the nematic order, assuming Q = 0, to develop an analyt-
ical theory.

Active matter systems tend to have reasonably high Péclet num-
bers44, in which case the dominant transport process depends on
the vicinity from the walls. In the bulk, away from the walls,
advection is dominant, but near the walls, both advection and
diffusion are equally important. To capture this, we perform a
singular perturbation in Pe−1 and solve (2), and (3) separately in
the bulk and in the near wall boundary layer (BL) regions, with an
appropriate matching of the resulting solutions. This perturbative
analysis is valid provided the BL thickness λ−1 is small relative to
the channel width L, λ−1� L, in other words PeL/`� 1 because
λ ∼ Pe/`.

3 Fields normal to walls
Regardless of Pe, there cannot be any particle flux normal to the
walls, not just at the walls but anywhere in the domain, n · jn =

jn,x = 0 ∀x. To derive this, integrate (2), ∇ · jn = d
dx jn,x = 0 using

the constraint n · jn|wall = jn,x|wall = 0.
In the bulk, neglecting translational diffusion in the flux jn =

jn,xex = 0, we get U (x)mx = 0. Assuming the self-propulsion speed
is never zero, we find that there is no polar order in the bulk, mx =

0. This is unlike the situation in the absence of walls, where net
polar order exists in the presence of an orienting field14, causing
a finite particle flux. As there cannot be any particle flux in the

Journal Name, [year], [vol.],1–9 | 3

Page 3 of 9 Soft Matter



presence of walls at steady state, there cannot be any polar order
in the bulk either. Similarly, neglecting polar order and diffusion
in the bulk in (3) we obtain

d
dx

(nU (x))−Ωcn(d−1) = 0. (6)

The solution of this equation furnishes the number density in the
bulk.

Unlike in the bulk, there tends to be polar order at the walls.
Particles accumulate at the walls due to their persistent motion
and on average, they are aligned into the walls simply because
those aligned out of the walls swim away. However, the addi-
tion of strong enough orienting field can be used to rotate the
particles away from the walls, ultimately preventing any wall ac-
cumulation. This points to a possible mechanism to prevent the
contamination of surfaces. For instance, one could prevent the
accumulation of magnetotactic bacteria Magnetococcus marinus
through the application of strong magnetic field normal to the
surface.

To examine the boundary layer at the left wall, we rescale the
position with the BL thickness, x̄ = λl`x. We eliminate mx from
jn = 0 and (3), and evaluate the speed at the left wall Ul to obtain(

Ul

U2
0 d

+
(d−1)
PeUl

)
1
`2

dn
dx̄
−

λ 2
l `

2

Pe2Ul

d3n
dx̄3 −

χR

λl`U0

n
`3

(
1− 1

d

)
= 0

(7)
Balancing advection with diffusion in this equation gives the

BL thickness at the left wall λ 2
l `

2 ∼ Pe2
(

U2
l

U2
0 d +

(d−1)
Pe

)
. The BL

thickness is the same at both walls in the absence of the fields,
λ−1 = λ

−1
l = λ−1

r . On the other hand, balancing the reorienta-
tion with the diffusion gives the strength of the orienting field
that is required to prevent any accumulation at the left wall,

χR ∼
λ 3

l `
3U0

Pe2Ul
∼ Pe. Similar analysis can also be carried out in the

BL at the right wall.

We solve the equations in the bulk and those in the BLs and
form a composite expansion. We do this calculation in a num-
ber of limits, namely: no external fields (U =U0,χR = 0), a weak
speed modulating field (χR = 0,αL� 1), and also a moderate ori-
enting field (U =U0, χR < 1). This theory is not valid for strong
orienting fields (U =U0, χR� 1) as nematic order becomes large
and cannot be neglected; thus, we develop an alternative theory
for strong orienting fields. We validate these theories by com-
paring them with 2D Brownian Dynamics (BD) simulations. See
Secs. I, II in ESI†, respectively, for the exact theoretical expres-
sions and the BD simulation procedure.

3.1 No external fields

In the absence of any external field, the self-propulsion speed
U = U0 and the reorientation parameter χR = 0. Then in the
bulk, while the polar order is zero, the number density satisfies
nU = constant or simply n = constant from (6) (see also Fig. 2).
On the other hand, at the walls, the particles accumulate and
align into the walls, hence, mx < 0 at the left wall and mx > 0
at the right wall. Both the number density and polar order at the
walls increase while the thickness of the boundary layer decreases

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5(a)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1(b)

Fig. 2 In the absence of any field, the number density (a) and the polar
order (b) associated with the active matter system. Here, the symbols
denote the BD simulation results while the lines represent the theory (see
(5), (6) in ESI†). Also, the confinement region L is 10 times larger than
the microscopic length δ =

√
DT τR.

with increasing Pe,
(
λ−1 ∼ `/Pe

)
, while the bulk concentration

decreases to conserve the total number density. In this limit, the
theory developed here is consistent with previous works22,27. It
is also in agreement with Brownian dynamics simulations at mod-
erate Pe; at very high Pe the theory breaks down due to the failure
of the zero nematic order closure used.

When active particles collide with walls they exert a force or
pressure (∼ force/area) on them. In the absence of external
fields, the pressures exerted on the left wall and the right wall
are the same, ΠLW = nLW kBT = ΠRW = nRW kBT , where nLW , nRW

are the number densities at the left and right walls, respectively.
This wall pressure is the sum of the osmotic pressure in the bulk
and the swim pressure

Π
W = Π

LW = Π
RW = nbulk

(
kBT + ksT 0

s

)
. (8)

This formula simplifies in the high activity limit (Pe� 1) after
relating the bulk concentration nbulk to the average concentration
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〈n〉= 1
L
∫ L

0 ndx as27

Π
W =

〈n〉
(
kBT + ksT 0

s
)

1+ 2`
L
√

d(d−1)

. (9)

Here, the particle activity is defined as ksT 0
s = PekBT/d (d−1) =

ζU2
0 τR/d (d−1), where ζ is the drag coefficient, kB is the Boltz-

mann constant and T is the absolute temperature.

3.2 Spatially varying speed

In the presence of a field that modulates the speed spatially, say
U = U0

{
1−αL

( x
L −

1
2
)}

but with χR = 0, the bulk polar order is
still zero while the number density follows nU = constant scaling
from (6). This means that the particles in the bulk accumulate in
the regions of low speed (see Fig. 3a). Additionally, the particles
also accumulate at the walls. However, unlike in the bulk where
the concentration decreases with increasing speed, the number
density at the walls increases with higher particle speeds. Essen-
tially this is because faster particles travel more quickly to the
walls in comparison to slower ones.

The speed and hence, the accumulation at the left wall in-
creases (and those at the right wall decrease) with an increase
in the field strength αL. These accumulated particles exert a pres-
sure on the walls, and hence the pressure on the left and right
walls correspondingly increase and decrease with increasing field
strength (see Fig. 3c). In weak fields (αL� 1), the wall pressure
is again the sum of the bulk osmotic pressure and the swim pres-
sure, but evaluated at the wall

Π
LW = nbulk,LW

(
kBT + ksT LW

s

)
,

Π
RW = nbulk,RW

(
kBT + ksT RW

s

)
,

(10)

and it simplifies at high activities (Pe� 1) to

ΠLW

Ul/U0
=

ΠRW

Ur/U0
=

〈n〉
(
kBT + ksT 0

s
)

1
αL

ln
(

Ul
Ur

)
+ 2`

L
√

d(d−1)

. (11)

Here, the activity ksTs is defined locally as ksTs =

ζU(x)2
τR/d (d−1) and it simplifies in the absence of field

to ksT 0
s = ζU2

0 τR/d (d−1). The pressure imbalance
(
ΠLW 6= ΠRW )

and the resultant net force from the walls is balanced by the net
swim force (that acts as a body force24), which can arise due to
spatial variations in speed50, or orientation bias24 as discussed
below.

3.3 Particles in orienting fields

In an orienting field (U =U0,χR 6= 0), the particles rotate to align
with the field for χR > 0. Then, while the bulk polar order has
to be zero to enforce the zero particle flux at steady state, the
number density follows the exponential distribution from (6),
n = constant · e(d−1)χRx/`. This means the particles in bulk accu-
mulate in the field direction or at right for χR > 0 (See Fig. 4a).
When χR = 0 particles accumulate equally at both walls, but as
χR increases, the accumulation at the right wall is increased while

that at the left wall is diminished as particles are driven from left
to right, the concentration and polar order thus become increas-
ingly asymmetric as χR increases (see Fig. 4a and Fig. 4b).

The pressure exerted by the particles on the walls follows the
same trend as the accumulation i.e., the pressure on the left and
right walls, respectively, decrease and increase with increasing
field strength χR (see Fig. 4c). Again, a simple expression for the
wall pressure can be found in the limit of high activity (Pe� 1)
and weak field (χR� 1)

ΠLW

e−κ
=

ΠRW

eκ
=

〈n〉
(
kBT + ksT 0

s
)

sinhκ

κ
+ 2`

L
√

d(d−1)
coshκ

, (12)

where κ = χR (d−1)L/2`.

3.4 Strong orienting fields

In strong orienting fields (χR� 1), the nematic order at the right
wall becomes important and hence cannot be neglected. See
Fig. S2c in ESI†. As the theory developed here relies on the zero
nematic order closure, it is not valid in this situation. However,
some physical insights can still be drawn by applying the current
theory in the strong field limit. In strong fields, for χR > 0, we ex-
pect all the particles to align with the field, leave the left wall, and
accumulate at the right wall. Hence, the left wall should be free
of any particles while the accumulation at the right wall should
asymptote to a value determined from the balance between the
particle advection and diffusion there

(
nU0 ∼ DT

dn
dx

)
. Similarly,

the pressure acting on the left wall should be zero and that acting
on the right wall should asymptote to a value that depends on the
particle accumulation there. We next confirm these predictions by
developing an alternative theory modeling the strong field limit.

Most particles in strong orienting fields (χR� 1) are aligned
along the field. Hence, we approximate the probability density
in this case as P(x,q) = n(x)δ

(
q− Ĥ

)
, where δ is the Dirac delta

function51,52. This reduces the polar and nematic order to mx =

n, Qxx = n
(
1− 1

d
)
. Using these, we solve (2) by enforcing the

constraints n · jn|wall = 0 and 1
L
∫

ndx = 〈n〉, to ultimately find the
number density that is correct at any Pe≤ O(χR)

n
〈n〉

=
PeL/`(

ePeL/`−1
)ePex/`. (13)

However, in the limit where the earlier singular perturbation anal-
ysis is valid, PeL/`� 1, the number density simplifies to

n
〈n〉

= PeL/`e−Pe(L−x)/`. (14)

This equation predicts the particles are confined in a BL of thick-
ness `/Pe at the right wall (see Fig. 4a). There are no particles
left in the bulk or at the left wall, hence the pressure acting on
the left wall is zero. On the other hand, the pressure exerted on
the right wall can be found from (14) as

Π
LW = 0, Π

RW = Pe
L
`
〈n〉kBT = d (d−1)

L
`
〈n〉ksT 0

s . (15)
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Fig. 3 The number density (a), the polar order (b), and the wall pressure (c) associated with the active matter subjected to the speed modulating
field normal to the walls. The symbols denote the BD simulation results while the lines represent the theory. The confinement region L is 10 times
larger than the microscopic length δ =

√
DT τR.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

0

0.1

1

10

(a)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0

0.1

1

10

(b)

10
-2

10
0

10
2

0

2

4

6(c)

Fig. 4 The number density (a), the polar order (b), and the wall pressure (c) associated with the active matter subjected to the orienting field normal
to the walls. The symbols denote the BD simulation results while the lines represent the theory. The confinement region L is 10 times larger than the
microscopic length δ =

√
DT τR.
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Fig. 5 The number density (a) and the polar order (b) associated with the active matter subjected to non-uniform orienting field normal to the walls,
H =−(2x/L−1)3 Ĥ. The symbols denote the BD simulation results while the lines represent the theory. The confinement region L is 10 times larger
than the microscopic length δ =

√
DT τR.

3.5 Non-uniform orienting fields

In the uniform orienting fields H = Ĥ, we discussed how the par-
ticles rotate to align with the field, ultimately leaving one wall
and accumulating at the other wall in strong fields. This sug-
gested the potential use of orienting fields in preventing accu-

mulation at one of the walls. We can also prevent accumulation
at both walls by using a non-uniform orienting field H = H (x)Ĥ,
where H (x) is an odd function relative to the centerline x = L/2
i.e., H

( L
2 − x

)
= −H

(
x− L

2
)
. For H (0) > 0, this field points away

from both walls, towards the center. In such fields, the particles
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rotate with velocity ΩΩΩ = ΩcH (x)
(
q× Ĥ

)
to align with the field,

ultimately leaving both walls and accumulating at the center if
the field is strong enough. We demonstrate this behavior for a cu-
bic function H (x) =−(2x/L−1)3 in Fig. 5, where we see that the
particles indeed move from the walls towards the center as the
field strength χR increases. A moderate field theory (χR� Pe)
for non-uniform fields can also be developed by simply replac-
ing the constant angular velocity Ωc or χR in the formulae for
uniform field ((3), (6), (7)) with ΩcH (x) or χRH (x). This still
yields zero polar order in the bulk but a different number density
n = constant · eχR(d−1)

∫
H(x)dx/`.

3.6 Combined effects
With both speed modulating and uniform orienting fields, the
physics is a combination (not necessarily a linear combination)
of that for the individual fields. To illustrate this, we consider
the behavior in the bulk. Here, with the speed modulating field,
we know the particles accumulate in the regions of low speed.
Hence, for a speed decreasing from left to right, the particles ac-
cumulate at right. On the other hand, in the orienting field, for
χR < 0, the particles rotate to align against the field and accumu-
late in the upstream of the field (left). Then in both fields, the
particles either accumulate in the regions of low speed (right) or
in the upstream of the orienting field (left) depending on the rel-
ative magnitude of the field strengths (χR/αL). Also, there can be
no accumulation at all (n = constant) if the opposing effects of the
fields cancel each other. This discussion is indeed consistent with
the exact expression for number density found from (6)

n =
constant

U1+(d−1)χRL/`αL
, (16)

where χR/αL has to be −`/(d−1)L in order for the fields to can-
cel each other. Also, as expected, this number density simplifies
to n = constant in the absence of both fields (χR,αL)→ (0,0) and
to nU = constant or n = constant ·e(d−1)χRx/` in the presence of the
speed modulating field χR → 0 or the orienting field αL → 0, re-
spectively.

This discussion is relevant to recent experiments with Chlamy-
domonas reinhardtii in viscosity gradients43,53. Spatial variations
of viscosity lead to both a modulation of speed and reorientation:
microorganisms tend to slow down in regions of high viscosity
(viscous slowdown) but also rotate to swim down the gradients
(viscophobic turning). Competition between these effects then
dictates particle accumulation. For instance, in weak gradients,
viscophobic turning is negligible, hence the particles accumulate
in the regions of high viscosity due to their low speed. But in
strong gradients, viscophobic turning dominates, hence the par-
ticles rotate to swim towards low viscosity regions45,46 and ac-
cumulate there. Abstracting the mechanism causing the speed
changes and reorientation, these dynamics are nicely captured by
our simple model.

4 Fields parallel to walls
In order to give a more complete picture, in this section we discuss
the effects of an orienting field aligned parallel to the walls. In
this case particles rotate to align with the field and walls and

then while the particle flux normal to walls is still zero jn,x = 0,
that along the walls is finite jn,y 6= 0 due to net polar order in this
direction. This finite particle flux can drive the underlying fluid
inducing directed flows in a microfluidic device, for example30.

The spatial distribution of particles and their polar order de-
pends on the orienting field strength. In moderate fields (χR < 1),
the particle concentration n and the polar order normal to wall
mx are unaffected (or weakly affected) by the field, see Figs. 6a,
6b, and also note that the equations governing these variables
((2) and (3) along ex) are independent of the field. Hence, as
per the no-field analysis of section 3.1, the number density in the
bulk is constant and the polar order mx is zero while there is par-
ticle accumulation at the walls. The polar order along the walls
my, however, increases with the field strength as more and more
particles turn to align with the wall, see Fig. 6c. The polar order
in moderate fields can be found by solving (3) along ey with the
known no-field number density. The solution reveals that the po-
lar order spatial distribution is similar to that of number density
– constant in the bulk where it satisfies my = χRn/d while taking
larger values at the walls due to large number of particles there.
When the field exceeds moderate values (χR > 1), wall accumu-
lation decreases and the bulk concentration increases, because
polar order normal to the walls decreases as polar order parallel
to the walls increases and hence particles are more likely to leave
the walls by rotary diffusion. In strong fields (χR� 1), all parti-
cles are aligned with the walls and there is no wall accumulation,
n = 〈n〉, mx = 0, my = 〈n〉.

In order to capture the dependence of number density n and
polar order mx on the orienting field analytically, we must con-
sider nematic order, which by way of (1) satisfies

∂Q
∂ t

+∇ · jQ +2dDRQ−Ωc
(
Ĥm+mĤ

)
+2ΩcĤ ·B+

2
d +2

ΩcĤ ·ααα ·m = 0, (17)

where

jQ =
∫

jT qqdq =U (x)B+
U (x)
d +2

ααα ·m− U (x)
d

mI−DT ∇Q, (18)

B =
∫

Pqqqdq, and αi jkl = δi jδkl + δikδ jl + δilδ jk. We then close
equations by neglecting the next higher order moment, B = 0.
As usual, we neglect diffusion and set mx to zero in the bulk.
We eliminate nematic order from (2), (3), and (17) to derive a
relationship between the number density and the polar order

n− 3χR

2(d +2)
my = constant. (19)

As the relative field increases thereby increasing polar order my

in the bulk, (19) tells us that the concentration in the bulk must
also increase, and in order to conserve particle number wall accu-
mulation must then proportionally decrease as shown in Figs. 6a,
6b, 6c.
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Fig. 6 The number density (a), and the polar order (b), (c) associated with the active matter subjected to an orienting field parallel to the walls.
The symbols denote the BD simulation results while the lines represent the theory. The confinement region L is 10 times larger than the microscopic
length δ =

√
DT τR.

5 Conclusions
In summary, we analyzed confined active matter subjected to
speed modulating and orienting fields. We showed that bulk po-
lar order in the wall normal direction is always zero while the
number density satisfied the usual nU = constant scaling in the
speed modulating fields but a different exponential distribution
in orienting fields. The particles usually accumulate at the walls,
but the orienting fields can be used to turn the particles away
from the wall, ultimately preventing the accumulation at a wall.
We also discussed the force exerted by the active matter on the
confining walls and provided a concise expressions for the wall
pressure.

Here we have neglected hydrodynamic interactions between
the active particles and a natural next step is to include them.
Hydrodynamic interaction between active particles are generally
dipolar to leading order (in a dilute system) and hence mediated
by the Q tensor field47, which therefore cannot be neglected and
more sophisticated closures (besides simple truncation) are gen-
erally used to ameliorate the hierarchy problem associated with
projection of the Smoluchoswki equation onto moments52,54. Hy-
drodynamic interactions will also modify the resistance as well as
the diffusivity (for Brownian particles)26, but many-body hydro-
dynamic interactions can be computed numerically55.
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