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Observe without disturbing: Tracer particles sense local
stresses in cell collectives without affecting the cancer
cell dynamics

Sumit Sinha,†aHimadri Samanta,†b and D. Thirumalai∗a,b

Measurements of local stresses on the cancer cells (CCs), inferred by embedding inert compressible
tracer particles (TPs) in a growing multicellular spheroid (MCS), show that pressure decreases mono-
tonically as the distance from the core of the MCS increases. How faithfully do the TPs report the
local stresses in the CCs is an important question because pressure buildup in the MCS is dynamically
generated due to CC division, which implies that the CC dynamics should be minimally altered by
the TPs. Here using theory and simulations, we show that although the TP dynamics is unusual, ex-
hibiting sub-diffusive behavior on times less than the CC division times and hyper-diffusive dynamics
in the long-time limit, they do not affect the long-time CC dynamics. The CC pressure profile within
the MCS, which decays from a high value at the core to the periphery, is almost identical with and
without the TPs. That the TPs have a small effect on the local stresses in the MCS implies that
they are reasonale reporters of the CC microenvironment.

The interplay between short-range forces and non-equilibrium
processes arising from cell division and apoptosis gives rise to un-
expected dynamics in the collective migration of cancer cells1–9.
An example is the dynamics of cancer cells (CCs) in a growing
multicellular spheroid (MCS), which is relevant in cancer metas-
tasis7,8. Imaging experiments show that collective migration of
a group of cells that maintain contact for a long period of time
exhibits far from equilibrium behavior8,10–13. The experimental
studies have served as an impetus to develop simulations and the-
oretical models14–19, which have established that proliferation as
well as CC dynamics are governed by mechanical feedback and
the microenvironment associated with cells in the MCS. Dynam-
ics in a growing MCS is reminiscent of the influence of active
forces in abiotic systems20–22. In a growing MCS, the analogue of
active forces are self-generated23, arising from biological events
characterized by cell growth, division and apoptosis.

Although it has long been recognized that the stresses in the tu-
mor interior are enhanced24–26, it is only recently that direct non-
uniform pressure variations in the MCS has been measured. Fol-
lowing the early pioneering experiments24–26, several experimen-
tal techniques have been introduced in order to quantify the local
stresses or pressure on the CCs27–32. The stresses within MCSs
were measured32 by embedding micron-sized inert deformable
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polyacrylamide beads, which we refer to as tracer particles (TPs).
The reduction in the volume of the TPs in the presence of the
colon carcinoma cancer cells, was used to estimate the strain on
the TPs. From the calibrated stress-strain plot for the TPs, mea-
sured in the absence of the CCs, they obtained the stress value
at the location of the TPs. By assuming that the stresses associ-
ated with the fluorescently labeled TPs faithfully report the pres-
sure of the CCs, it was argued that the pressure propagates non-
uniformly across the tumor. It was concluded that the TPs could
be used as local stress sensors.

The experiments raise an important question: What should
be the characteristics of the TPs for them to be faithful sensors of
stresses in an evolving MCS? This question emerges naturally from
the experimental results32,33. We believe that the following cri-
teria must be satisfied : (a) Because in a growing MCS, pressure
is dynamically generated, predominantly by cell division, the TPs
should have negligible effect on the CC dynamics. (b) The radial
pressure profile in the MCS with and without the TPs must be
qualitatively similar. (c) Finally, the TPs should have negligible
effect on the distribution of pressure on the cells across the MCS.
In essence, to the extent possible, the TPs should “observe” but
not “disturb” the CC microenvironment.

In order to assess the influence of TPs on the fate of cancer
cells, we used theory and simulations by embedding the TPs in
an evolving MCS. We first show that the CCs, whose dynamics is
sub-diffusive for t . τ (τ is the cell division time), exhibits super-
diffusive behavior at long times with the MSD, ∆CC(t) ∼ tαCC .
Exponent αCC does not change appreciably from the value in the
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Fig. 1 Difference between the CCs (pink sphere) and the TPs (magenta
sphere). The cells grow if the local pressure, p, is less than a critical
pressure pc. Cell division, also regulated by local pressure p, creates two
daughter CCs (blue and green sphere), each with Rd =

Rm
21/3 . Their relative

position is displaced by 2Rm(1− 1
21/3 ) with the orientation being random

with respect to the sphere center. The TP is inert but deformable.

absence of the TPs. It could be argued that because the tracer
density in the long time limit is small compared to cell density,
the CC dynamics and in particular αCC should not change.
However, there is a rich literature in glass forming materials in
which by pinning a small fraction (roughly 2-3%) of particles
(analogous to TPs) the dynamics of unpinned particles (CCs in
our case) are significantly slowed down, roughly by an order of
magnitude, (see the curve corresponding to T=0.46 in figure
3 of reference34 ). Thus, it is not a priori clear why the CC
dynamics would not be impacted by the TPs even in the long
time limit. Thus, criterion (a) described above is satisfied. We
find that the pressure profiles vary radially across the MCS. The
pressure is larger near the core and decreases as the boundary of
the tumor is approached. Most importantly, the radial pressure
profiles, not their magnitudes, of the CCs with and without the
TPs are identical. It is important to realize that it is difficult to
experimentally measure profiles in the absence of the TPs. Thus,
it is only through simulations could we can assess if criterion
(b) is qualitatively satisfied. We note parenthetically that the
motility of the TPs is unusual. On short times ( t . τ) ∆T P ∼ tβT P

with βT P < 1. In the long-time limit, (t > τ), the TPs undergo
hyper-diffusive motion, ∆T P(t) ∼ tαT P with αT P > 2. Despite the
unusual TP dynamics, it has only a small effect on the CCs, thus
obeying criterion (c). Because TP is a passive reporter of the
CC microenvironment, we conclude that deformable gel-like TPs
may be used as sensors of local stresses in the tumor.

Results:
In order to investigate the effects of the inert but soft TPs on the
properties of the CCs, we developed a theory supplemented by
computer simulations of an agent based model. The comple-
mentary approaches allow us to draw sharp conclusions, which
show that despite the unusual non-equilibrium dynamics the TPs,
driven by the self-generated random forces created by the CC di-
vision, they faithfully report, at least qualitatively, on the local
stresses within the solid MCS.
Theoretical Considerations:We consider the dynamics of de-
formable inert TPs in a growing MCS in a dissipative environment

by neglecting inertial effects. In contrast to the TPs, the CCs grow
and divide at a given cell division rate, and also undergo apop-
tosis (see Fig.(1)). The CCs and TPs experience systematic short-
ranged attractive and repulsive forces arising from the other CCs
and TPs14. To model a growing MCS, we modify the density equa-
tion for the CCs by adding a non-linear source term, ∝ φ(φ0−φ)

that accounts for cell birth and apoptosis, and a non-equilibrium
noise term that breaks the CC number conservation35. The noise,
fφ , satisfies < fφ (r, t) fφ (r′, t ′) >= δ (r− r′)δ (t − t ′). The source
term, ∝ φ(φ0 − φ), represents cell division and apoptosis, with

φ0 = 2kb
ka

35,36. The coefficient,
√

kbφ + ka
2 φ 2 of fφ , is the noise

strength, corresponding to number fluctuations.

In order to obtain analytic insights, we first derive equations
that describe the dynamics of the TPs and CCs. We introduce the
density fields, φ(r, t) = ∑i δ [r− ri(t)] for the CCs, and ψ(r, t) =
∑i δ [r− ri(t)] for the TPs. A formally exact Langevin equation for
φ(r, t) and ψ(r, t) may be derived using the Dean’s method37 that
accounts for diffusion and systematic non-linear interactions. The
equations for φ(r, t) and ψ(r, t) are,

∂ψ(r, t)
∂ t

= Dψ ∇
2
ψ(r, t)+∇ · (ψ(r, t)J)+ η̃ψ , (1)

∂φ(r, t)
∂ t

= Dφ ∇
2
φ(r, t)+∇ · (φ(r, t)J)+ ka

2
φ(

2kb

ka
−φ)

+

√
kbφ +

ka

2
φ 2 fφ + η̃φ (2)

where J =
∫

r′ [ψ(r′, t) + φ(r′, t)]∇U(r− r′), η̃ψ (r, t) =

∇ ·
(

ηψ (r, t)ψ1/2(r, t)
)

, η̃φ (r, t) = ∇ ·
(

ηφ (r, t)φ 1/2(r, t)
)

, and

ηφ ,ψ satisfies < ηφ ,ψ (r, t)ηφ ,ψ (r′, t ′) >= δ (r− r′)δ (t − t ′). The
second term in Eq.(1) accounts for the TP-TP interactions
(∇ · (ψ(r, t)

∫
r′ ψ(r′, t)∇U(r− r′))) and TP-CC interactions,

(∇ · (ψ(r, t)
∫

r′ φ(r
′, t)∇U(r− r′))). The influence of the CCs on the

TP dynamics is reflected in the TP-CC coupling. The third term
in Eq.(2) results from cell division and apoptosis, and the fourth
term in Eq.(2) is the non-equilibrium noise. It should be noted
that Eq.(1) does not satisfy the fluctuation-dissipation theorem
in a growing tumor.

The coupled stochastic integro-differential (SID) equations are
difficult to solve analytically38,39. Even numerical solutions in
the absence of TPs, are usually obtained by replacing η̃φ (r, t),
the last term in Eq.(2), by η̃φ (r, t) = ∇ · (η̃φ (r, t)φ

1/2
0 ), where

φ0 is a constant. Instead of using uncontrolled approximations,
we solved the exact coupled SIDs (Eq.(1) and Eq.(2)) numer-
ically (see the appendix for details) in order to calculate the
needed correlation functions from which the exponents charac-
terizing the mean square displacement may be derived. For in-
stance, from the time-dependent decay of the correlation function
Cψψ (t) =

∫
d3rCψψ (r, t), we can extract the dynamical exponent,

z. Previously14, we had argued that Cψψ (t) ∼ t1−(2+d)/z (d is the
spatial dimension). The correlation function Cψψ (t)/Cψψ (0) de-
cays in two stages, depending on t/τ, where τ is the cell division
time (Fig.(2a)). For t/τ < 1, we find that Cψψ (t) ∼ t−3/7 from
which we obtain z = 7/2. The MSD (∆T P(t)) exponent for the TPs
is related to z as ∆T P(t) ∼ tβT P ∼ t2/z, which implies βT P = 4/7.
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a) b)

Fig. 2 (a) The normalized time-dependent density correlation function plot for the TPs. The cell cycle time is τ = 54,000 s. The integrated time
(t ≈ 4τ) is long enough to obtain accurate exponents from the power law decay for both short (t < τ) and long times (t > τ). The plots for three box
sizes confirm that the decay of the correlation function is independent of the system size. (b) MSD of the TPs (∆T P) using the Gaussian potential.
The plots are for 3 cell cycle times (blue (0.5τ), red (τ), and green (2τ). Time to reach the hyper-diffusive behavior, which is preceded by a jamming
regime (∆T P ∼ tβT P ,βT P= 0.11, shown in black dashed line), increases with τ. The inset highlights the hyper-diffusive regime ( t

τ̃
> 1). τ̃ is the cell

cycle time for the respective curves. Time is divided by 1
τ̃
. ∆T P ∼ tαT P ,αT P = 2.3 (dashed black line).

Similarly, at long (t/τ > 1) times Cψψ (t) ∼ t−33/7 from which we
deduce that ∆T P(t) ∼ tαT P with αT P = 16/7. Thus, the numerical
solution of the exact equations together with the scaling ansatz
predict that, in the long time, the TPs undergo hyper-diffusive
motion in the presence of CCs. It should be noted that we have
extracted the exponents even though the data spans less than a
decade in time. Our goal is to make connections with simulations
and more importantly experiments. In the latter case, the obser-
vations are made for time spanning about (2-3)τ , which is not
that dissimilar from the range probed in numerical simulations of
the SIDS.

Simulations: In order to validate the theoretical predictions and
decipher the mechanisms for the origin of the CC driven hyper-
diffusive motion, we simulated a 3D MCS with embedded TPs
using an agent-based model14,16,23,40–43 (see Figure S1 in the SI).
The cancer cells, treated as interacting soft deformable spheres,
grow with time, and divide into two identical daughter cells (Fig.
(1)) upon reaching the mitotic radius (Rm). We used, τ = 1

kb
=

54,000s as the cell division time. The CCs also undergo apoptosis
at the rate ka << kb. The sizes and the number of TPs are held
constant, which means that the density of the TPs decreases, as
in the experiments, as the tumor grows.

We used a pressure inhibition mechanism to model the ob-
served growth dynamics in solid tumors14. Dormancy or the
growth phase of the CCs depends on the local microenvironment,
which is determined by the pressure on the ith cell (Fig.(1)). Cell
division and the placement of the daughter cells stochastically
alter the dynamics of the CCs. More importantly, cell division
generates active forces, referred to self-generated active force

(SGAF)23,42, that persist for a period of time, thus affecting the
dynamics of the neighboring cells. To determine the TP dynamics,
we model the CC-CC, CC-TP, and TP-TP interactions using two po-
tentials (Gaussian and Hertz) to ensure that the qualitative results
are robust (simulation details are described in the Appendix).

Mean Square Displacement of the TPs (∆T P(t)): The simula-
tions show that, in the limit t < 1

kb
, the TPs exhibit sub-diffusive

behavior, ∆T P(t) = 〈[r(t)− r(0)]2〉 ∼ tβT P , with βT P < 1 (Fig.(2b)).
Note, ∆T P(t) was calculated by averaging over ≈ 2,000 trajecto-
ries using the Gaussian potential. The simulations confirm (qual-
itatively) the theoretical predictions that the dynamics on times
less than than the cell division time is sub-diffusive. We also cal-
culated ∆T P(t), for the Hertz potential (Figure S3a in the SI). Sim-
ilar behavior is found in both the cases, which suggests that the
conclusions are robust.

The modest increase in the MSD at short times is reflected as
a near plateau in time dependence of ∆T P(t) (Fig.(2b)). The du-
ration of the plateau (Fig.(2b)) increases as the cell cycle time
increases. Although jamming behavior predicted theoretically is
consistent with the simulations, the numerical values of βT P dif-
fer (compare Fig.(2a) and (2b)), implying that the dynamics in
the t/τ < 1 limit depends on the details of the model.

In the t > 1
kb

limit, theory and simulations predict hyper-
diffusive dynamics for the TPs, ∆T P ∼ tαT P with αT P ≈ 2.3. Vari-
ations in kb = τ−1 do not change the value of αT P (Fig.(2b)). It
merely changes the coefficients of the linear term and the value
of 2kb

ka
. Therefore, αT P is independent of the cell division rate in

the long time limit. Simulation results are in excellent agreement
with the theoretical predictions. For the Gaussian potential, we
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Fig. 3 CC dynamics in the presence of the TPs. ∆CC using the Hertz
potential. The curves are for different TP radius ( magenta - rT P = 2
rCC, green - rT P = rCC, and red - rT P = 0.75rCC , and blue - rT P = 0.5rCC,
where rCC = 4.5µm is the average cell radius. Inset shows ∆CC for the four
curves, focusing on the super-diffusive regime. The black dashed line is
drawn with αCC = 1.47.

obtain αT P ≈ 2.3 (see the inset in Fig.(2b)) for 0.5τ, τ and 2τ.
Thus, αT P is independent of cell cycle time, as argued above.

Note that TP-TP interactions play an insignificant role in the dy-
namics of TPs or the CCs (Figure S4 in the SI). They merely alter
the amplitude of ∆T P in the intermediate time without affecting
the long time dynamics. We conclude that the long-time behavior
is universal, in the sense that it is impervious to the details of the
interaction but is determined by cell division and apoptosis rates.

Impact of TP on CC dynamics: Interestingly, the time-dependent
changes in ∆CC(t) are not significantly affected by the TPs. Fig.(3)
shows that changing the tracer size affects only the amplitude of
the ∆CC in the intermediate time without altering the αCC values
(see also figure S5 in the SI). This is because the TP size only
changes the nature of the short-range interactions without intro-
ducing any new length scale. Since, αCC is a consequence of the
long-range spatial and temporal correlations that emerge because
of cell division and apoptosis, it is independent of the tracer size
(see the details in the SI).

In the absence of the TPs, birth and apoptosis determine the
CC dynamics in the long time regime, yielding αCC = 1.3314,15.
When the TPs are present, the CCs continue to exhibit super-
diffusive motion with a modest increase in αCC (Table II in the
SI). The origin of the predicted super-diffusive behavior in the
CCs is related to the long range spatial correlation that arises
due the SGAF (self-generated active force) that is related to
cell division. This is reflected in the CC pair-correlation, g(r) =

V
4πr2N2 ∑

N
i=1 ∑

N
j 6=i δ (r− |ri − r j|) ∼ r−0.5, in the presence and ab-

sence of TPs at t ≈ 8τ (Fig.(4a)). The dynamically-induced long-
range CC correlations is independent of the TPs, thus explaining
the insignificant effect of the TPs on the CC dynamics.

Mechanistic Origin: To explain the finding that, αT P > αCC, we
calculated the force-force autocorrelation function, FFA=〈F(t +
td) ·F(t)〉t . Here, 〈...〉t is the time average and td is the duration
of the delay time. Since, the TPs (CCs) exhibit hyper-diffusion
(super-diffusion), we expect that the FFA of the TPs should decay
slower relative to the CCs. This is confirmed in Fig.(4b), which
shows that the FFA for the TPs (CCs) decays as t−0.7

d (t−1.2
d ). Thus,

the motion of the inactive TP is significantly more persistent than
the CCs, which explains the hyper-diffusive nature of the TPs.

Physically, the mobilities of the TPs are mainly driven by CC cell
division. At each cell division, the CCs impart an impulsive force
to the TPs. The active force propels them in a directed manner
for a period of time. As the CC density grows the number of
cell divisions increases, resulting in enhanced motility of the TPs,
which is also reflected in the slow decay of the FFA of the TPs. The
active forces generated by the CCs produces the observed hyper
diffusive behavior in the TPs.

To illustrate the difference between the dynamics of the TPs
and CCs, we calculated the angle (θ) between two consecutive
time steps in a trajectory. We define cos(θ(t,δ t)) = δr(t+δ t)·δr(t)

|δr(t+δ t)||δr(t))| ,
where δr(t) = r(t + δ t)− r(t). Fig.(5a) shows the ensemble and
time averaged cosθ distribution for δ t

τ
= 1. If the motion of the

CCs and TPs were diffusive, the distribution of cosθ would be
uniformly distributed from -1 to 1. However, Fig.(5a) shows that
P(cosθ) is skewed towards unity implying that the motion of both
the TPs and CCs are persistent. Interestingly, the skewness is
more pronounced for the TPs compared to the CCs (Fig.(5a)).
The enhanced persistence of TP motion due to SGAF is also re-
flected in the FFA(t) displayed in Fig.(4b). The slower decay of
FFA(t) (Fig.(4b)) in the TPs compared to the CCs is neglected
in the distribution of P[cos(θ)], shown in Fig.(5a). During each
cell division, the motion of the CCs is randomized, and hence the
persistence is small compared to TPs. This explains the hyper-
diffusive (super-diffusive) for the TPs (CCs) and thus αT P > αCC

in the long time limit (see Fig.(5a), which shows TPs movement
is much more persistent than CCs).

Monotonic decrease of pressure from the core to periphery
of the MCS: To assess the effectiveness of the TPs as sensors
of the local microenvironment, we calculated the radial pressure
(Eq.(10) in the Appendix) profile for both the CCs and TPs at
t = 7.5τ. In order to distinguish between the local pressure due to
the TPs and CCs, we calculated pressure experienced just by the
TPs. Finally, we computed pressure in a system consisting of only
the CCs. By comparing the results from different simulations, we
establish that TPs are good reporters of the local stresses within a
single tumor.

From the results shown in Fig.(5b), we draw the following con-
clusions. (i) All three curves qualitatively capture the pressure
profile found in the experiment32, even though the protocol used
in the experiment and simulation is different. From the results in
Fig.(5b) several conclusions that are relevant to experiments may
be drawn. Pressure decreases roughly by a factor of four, as the
distance, r, from the center of the tumor increases. The pressure
is almost constant in the core, with a decrease that can be fit us-
ing the logistic function, as the boundary of the tumor is reached
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Fig. 4 (a) CC correlation function, (g(r)), as a function of inter-cellular distance. Red (blue) curve shows g(r) in presence (absence) of the TPs. The
two dashed lines (black and orange) are power law fits to g(r) in the large r limit. (b) Force force autocorrelation (FFA), as a function of delay time
(td). The red (blue) curve shows the FFA for TPs (CCs). Inset shows FFA on log-log scale. The black (yellow) dashed line is a power law fit with
exponent of -0.7 (-1.2).

(Fig.(5b)). The experimental data, shown in the inset in Fig.(5b),
was fit using a power law (∼ r−β with β ≈ 0.2) (see Figure(4b)
in the experiment32). Both the fits account for the data with the
important point being that the stress is non-uniform across the
solid tumor.

(ii) The experiments used reduction in volume of the polyacry-
lamide microbeads upon external compression (= 5KPa) as local
pressure sensors in colon carcinoma cells. Although our simu-
lations qualitatively reproduce the experimental pressure profile,
the magnitude of the stress in the simulations is about three or-
ders of magnitude less compared to experiments. The most likely
reason is that in experiments high stress is uniformly applied by
compressing the spherical tumor. In contrast, in our simulations
pressure arises explicitly due to SGAF arising from an interplay of
systematic forces, cell division, as well as mechanical feedback.
The simulated MCS is not intended to mimic the characteristics of
the colon carcinoma cells studied in the experiment32. The simu-
lations illustrate that the TPs are good pressure sensors. It should
also be noted that the magnitude of the pressure is also depen-
dent of the tissue type. For example, a recent experiment33, us-
ing fluorescently labeled water-soluble peptide-based microtubes,
showed that the measured pressure ≈ 0.4KPa. The qualitative
agreement between experiments and simulations (Fig.(5b)) sug-
gests that the dynamical rearrangement due to cell division and
apoptosis and mechanical feedback controls the observed radial
variations in the pressure profiles.

(iii) The higher value of pressure in the core of the MCS as
the MCS grows is a consequence of jamming, which increase the
local density. Because of the rapid cell division rate, the pres-
sure experienced by cells in the interior is high (Figs. 5b, 5c and
5d). As a result, the local stresses in the core of the MCS do not
have enough time to relax. The higher core density implies that
pressure in the interior increases and exceeds pc, which further

inhibits proliferation, thus deceasing the number of cell divisions.
The reduction in the number of cell divisions, which is a mecha-
nism of stress relaxation, leads to an increase in pressure at r < R0

(Figs. (5b, 5c and 5d)). As r increases, the jamming effects dimin-
ish, and local stress relaxation is faster resulting in the pressure on
the cells being less than pc. Consequently, the CCs proliferate, re-
sulting in a decrease in self-generated stresses, and consequently,
a decreases in the magnitude of the pressure (Figs. (5b, 5c and
5d)).

(iv) Most importantly, the CC pressure profiles are unaltered
even in the presence of the TPs (compare blue circles and
greenish-yellow squares in Fig. 5b, which shows that the latter
does faithfully report the microenvironment of the CCs. In ad-
dition to the radial profile, we also show that the CC stress dis-
tribution is unaltered with and without TPs in Fig.5e. The plot
in Fig. 5f establishes that the stress distribution associated with
the TPs roughly approximates the CC stress distribution, implying
that TPs can serve as reasonable reporters of not only the radial
profile (Fig. 5b) but also the CC stress distribution. It should be
pointed out that the magnitude of the pressure calculated with
only the TPs is less than the values obtained using the stresses
using only CCs. In this sense, TPs only qualitatively report the
stresses experienced by the CCs, which imply that the TPs are
not perfect reporters. This situation likely exists in experiments
as well. Using the current experiments, the contribution to the
stresses arising from TPs and CCs cannot be estimated. Based
on our simulations, we would assert that the pressure reported
using the characteristics of the TPs provide only a lower bound.
We should add that the differences between the pressure reported
using TPs does not differ significantly from the CC pressure.

The simulations also provide plausible reasons for the decrease
in the pressure from the center to the boundary of the tumor.
Pressure on the ith cell located at a distance r from the tumor cen-
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Fig. 5 (a) Distribution of cos(θ) for the TPs and CCs. θ is the angle between two consecutive steps that a given cell takes in a trajectory. The
red (blue) plot is for the TPs (CCs). The distribution is skewed to cos(θ) > 0, indicative of persistent motion. Extent of skewness is greater for the
TPs than CCs. The inset shows the P[cos(θ)] of CCs with and without TPs. (b)Pressure as a function of the radial distance (r scaled by R0: tumor
radius ≈ 100µm) from tumor center. The blue circles correspond to local pressure measured using both CCs and TPs. The red data points is the local
pressure measured using just the TPs in simulations containing both the CCs and TPs. The greenish yellow squares give the local pressure obtained
in simulations with only the CCs. The black and green dashed lines is logistic fit. The inset shows the radial pressure profile in experiments (green
data points). The red dashed lines are logistic fits. Note that the magnitude of pressure measured in simulations and experiments are in qualitative
agreement. (c) Pressure probability distribution, P( pi

pc
) for CCs. In the main figure, orange (blue) distributions correspond to stress distribution in the

CCs whose distance is greater (less) than 80 µm (20 µm). Similarly in the inset, orange (blue) distributions correspond to stress distribution on CCs
whose distance is greater (less) than 60 µm (30 µm). (d) Same as (c), except the distributions correspond to TPs. (e) The blue (orange) distribution
corresponds to the stress distributions on the CCs in the presence (absence) of the TPs. (f) The blue (orange) distribution are the stress distributions
on all the CCs (TPs) in the spheroid.
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ter depends not only on the total force exerted by the neighboring
cells but also is controlled by cell division, which is a dynami-
cal process. As the tumor evolves through cell division, the local
density φ(r) of the cells at small r increases. More importantly,
cell division induces local stresses44, which would relax on time
scales that depend on φ(r). Thus, cell division induced jamming
leading to an increase in φ(r), and stress relaxation times are inti-
mately related. If the local stress relaxation time decreases as the
local density φ(r) decreases, the pressure would be small. It is
clear that near the periphery of the tumor φ(r) is smaller than at
the core, which explains the origin of the pressure profile in Fig.
5b.

Conclusions: We used simulations and theory to elucidate the
dynamics of inert tracer particles that are embedded in an evolv-
ing multicellular spheroid (MCS). Surprisingly, theory and simu-
lations show that for kbt > 1 the TPs exhibit hyper-diffusive be-
havior, which does not depend on the details of interaction be-
tween the cells. In contrast, the exponent, αCC, characterizing
the long-time behavior of ∆CC(t) is nearly the same with or with-
out the TP, and is also independent of the probe radius. This
suggests that TPs may be used to probe the behavior of cancer
cells within a solid tumor, which cannot be established using ex-
periments alone.

Direct connections to experiments were made by showing that
the simulated and measured stress profiles are qualitatively simi-
lar. This is unexpected because the protocol used in experiments
(response to an isotropically applied stress to a spheroid) is com-
pletely different in the simulations in which stresses within the
MCS are self-generated. The higher stress values in the interior
of the spheroid imply that proliferation is suppressed in the core.
The most important finding is that the CC pressure profiles are
virtually identical, and is independent of the presence or absence
of TPs (Fig.(5(b)). Thus, we conclude that the TPs are reasonable
reporters of the CC microenvironment in a growing solid tumor.

The radial dependence of local stresses in Fig.(5(b) is related
to the non-uniform proliferation of cells in the MCS. In the
models used in the simulations, mechanical feedback controls
the growth of the MCS. This implies that if the local stresses
exceed a critical value then the cells become dormant, and
cannot grow or divide until the neighboring cells rearrange to
decrease the pressure on a labeled cell. However, as the MCS
evolves, the pressure on cells that are in the interior could exceed
a critical value (pc) due to jamming. In contrast, the pressure
on cells near the MCS boundary is typically below pc, which
results in enhanced proliferation. It is the non-uniformity in
the cell division rates due to mechanical feedback that not only
is the cause of the radial variation in pressure in the MCS but
also gives rise to the complicated radial dependent dynamics
(glass-like slow dynamics in the interior to super diffusion near
the periphery)16. The implication is that the effective diffusion
constants of CCs as well as the TPs also vary with distance from
the center of the MCS.

It is not uncommon to measure properties of equilibrium sys-
tems (such as simple and molecular fluids) by embedding tracer

particles. In these systems, the measurements are reasonable be-
cause fluctuation-dissipation theorem (FDT) holds. In contrast,
a growing tumor, driven by cell division, is out of equilibrium,
thus violating the FDT. Nevertheless, the response of tracer par-
ticles could be used to determine accurately the local stresses, as
shown here explicitly. More generally, it appears that the theoret-
ical and simulation approaches developed here are applicable in
a range of active systems that are always out of equilibrium.

In the current model, we have neglected active forces arising
from self-propulsion because the matrix viscosity is very large.
However, in cases where the matrix viscosity is low, it will be
important to incorporate the role of self-propulsion. In this
scenario, physics due to self-propulsion, cell growth and division
will be coupled, which provides a new direction for active matter
research.
Appendix:

Numerical solution of the SIDs (Eq.(1) and Eq.(2)): We nu-
merically integrated Eq.(1) and Eq.(2) by discretizing space in
a cubic box with periodic boundary conditions. The size of the
3D box with Lx = Ly = Lz is varied from 300 to 500 µm to en-
sure that the results are not affected by finite size. The 3D
box was divided into grids, each with volume δx× δy× δ z with
δx = δy = δ z = 10µm. The parameters used in the numerical in-
tegration scheme are shown in Table I in the SI. Note that the
precise shape of the box does not affect the numerical solutions
nor does the value of dx as long the solutions converge without
numerical instability.

Initial Conditions: The initial conditions for both Ψ and φ

fields are Gaussian, where the tracer density is roughly ten times
smaller than the cancer cell denisty.

Simulations: In order to test the theoretical predictions, and
provide mechanistic insights underlying the unusual dynamics
of the TPs in the MCS, we simulated a 3D tumor spheroid with
embedded TPs. Following previous studies, we used an agent
based model14,40 for the tumor spheroid. The cells are treated as
deformable spheres. The size of the CCs increase with time, and
divide into two identical cells upon reaching a critical mitotic
radius (Rm), as showin in Fig. 1. The mean cell cycle time,
τ = 54,000 s, which is a realistic value for fibroblast cells. The
CCs can also undergo apoptosis with rate ka. The birth rate,
kb = 1

τ
is large compared to the death rate ( kb

ka
= 20), which

mimics the growth of the MCS. As in the theory, the TPs are inert,
and their sizes and the number are constant in the simulations.
We use two different potentials for the CC-CC, CC-TP and TP-TP
interactions.

Hertz potential: The form of the Hertz forces between the CCs
is the same as in the previous studies14,16,40,45,46. The phys-
ical properties of the CC, such as the radius, elastic modulus,
membrane receptor, and E-cadherin concentration characterize
the strength of the inter-cellular interactions. The elastic forces
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between two spheres with radii Ri and R j, is given by,

Fel
i j =

h
3
2
i j

3
4 (

1−ν2
i

Ei
+

1−ν2
j

E j
)(
√

1
Ri
+ 1

R j
)
, (3)

where Ei and νi are, respectively, the elastic modulus and Poisson
ratio of the ith cell. We assume that Ei and νi are independent of i.
Since the CCs or the TPs are deformable, the elastic force depends
on the overlap, hi j, between two cells. The adhesive force, Fad

i j ,
between the CCs is proportional to the area of contact (Ai j)47,
and is calculated using,45,

Fad
i j = Ai j f ad

Λ0, (4)

where Λ0 is unity in the present study.

Repulsive and adhesive forces in Eqs.(3) and (4) act along the
unit vector ~ni j connecting the centers of cells j and i. Therefore,
the net force on cell i (~FH

i ) is given by the sum over the nearest
neighbors [NN(i)],

~FH
i = Σ jεNN(i)(F

el
i j −Fad

i j )~ni j. (5)

To model the TP-TP and TP-CC interactions, we assume that
the TPs are CC-like objects32. Therefore, CC-TP and TP-TP
interactions are the same as CC-CC interactions. The parameters
used in the simulations using the Hertz potential (Eqs.(3) and
(4)) are given in Table I in the SI. We initiated the simulations
with 100 TPs and 100 CCs. Because the number of the TPs is a
constant, it follows that the TP density decreases as the tumor
size grows with time. The coordinates of the CCs and TPs at t = 0
were sampled using a normal distribution with zero mean, and
standard deviation 50 µm. The initial radii of the CCs and TPs
were sampled from a normal distribution with mean 4.5 µm, and
a dispersion of 0.5 µm.

Gaussian potential: In the theoretical treatment, we assumed
that the CC-CC interaction is given by a sum of Gaussian terms
(Eq. (S2) in the SI). For this potential, the force FG

i j on cell i,
exerted by cell j, is,

FG
i j =

1
(2π)3/2

[
νe

−r2

2λ2

λ 5 − κe
−r2

2σ2

σ5 ]r (6)

where r is r(i)− r( j). We write λ and σ as λ = λ̃ (Ri +R j) and
σ = σ̃(Ri +R j), as the ranges of interactions corresponding to the
repulsive and attractive interactions, respectively. In our simula-
tions, the CCs grow and divide, their radii change in time, and
therefore λ and σ also change with time. However, since these
interactions are short-ranged, we assume that they are constant
in order to be consistent with the assumption in the theory. We
fixed λ = λ̃ (2Rd) and σ = σ̃(2Rd), where Rd (≈ 4µm) is the size
of a daughter cell (introduced in the next section). For simplicity,

we write the force as FG
i j = [ ν̃e

−r2

2λ2

λ 2 − κ̃e
−r2

2σ2

σ 2 ]r, where ν̃ = 1
(2π)3/2

ν

λ 3

and κ̃ = 1
(2π)3/2

κ

σ 3 . In the simulations, we fixed ν̃ = 0.03, λ̃ = 0.28,

κ̃ = 0.003 and σ̃ = 0.4.

Cell division, Dormancy and Apoptosis: The CCs are either
dormant or in the growth phase depending on the microenviron-
ment, which is assessed using the value of the local pressure. The
pressure on cell i (pi) due to NN(i) neighboring cells is calculated
using the Irving-Kirkwood equation,

pi =
1

3Vi
Σ jεNN(i)Fi j ·dri j, (7)

where Fi j is the force on the ith cell due to jth cell and dri j =

ri− r j. The volume of the ith cell (Vi) is 4
3 πR3

i , where Ri is the
cell radius. If pi exceeds a pre-assigned critical limit pc (= 1.7 Pa)
the CC enters a dormant phase. The dormancy criterion serves as
a source of mechanical feedback, which limits the growth of the
tumor spheroid48–52. The volume of a growing cell increases at
a constant rate, rV . The cell radius is updated from a Gaussian
distribution with the mean rate Ṙ = (4πR2)−1rV . Over the cell
cycle time τ, the cell radius increases as,

rV =
2π(Rm)

3

3τ
, (8)

where Rm is the mitotic radius. A cell divides once it grows to
the fixed mitotic radius. To ensure volume conservation, upon
cell division, we use Rd = Rm2−1/3 as the radius of the daughter
cells. The resulting daughter cells are placed at a center-to-center
distance d = 2Rm(1− 2−1/3) (Fig.(1)). The direction of the new
cell location is chosen randomly from a uniform distribution on
a unit sphere. At times ∼ k−1

a , a randomly chosen cell undergoes
apoptosis.

Although the model does not have detailed description of the
important proliferation gradients that are present in tumors, it is
included in an approximate manner. In our model, the spatial
gradients in cell division arise due to the indirect bio-mechanical
feedback. In the agent-based model, the cell division predom-
inantly occurs on the periphery as the self-generated stress is
higher in the core than in the periphery. Therefore, we have con-
sidered a minimal model which takes into account spatial hetero-
geneity of cell-division.

Equation of Motion: The equation of motion governing the dy-
namics of the TP and CCs is taken to be,

~̇ri =
~Fi

γi
, (9)

where ~̇ri is the velocity of ith CC or TP, ~Fi is the force on ith CC/TP
(see equation 5 and 6), and γi is the damping term. The details
including the rationale for neglecting the random forces and in-
ertial forces, are given elsewhere14. The role of internal friction
generated by cell-cell adhesion is neglected. We had accounted
for internal friction in our previous work14, and found that the
value was was small compared to the drag from the matrix. One
could include such terms by following a procedure used recently
in53 if the viscosity of the ECM is small.

Radial dependence of pressure: We calculated the dependence
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of pressure P(r) at a distance r from the center of the tumor using,

P(r) =
1

n(r)

n(r)

∑
i=1

pi, (10)

where pi is the pressure (Eq.(7)) on the ith cell located between
r and r+dr, and n(r) is the number of cells in the same annulus.
It is worth remembering that if the MCS is at equilibrium, P(r)
would be independent of r. Because in the simulations, cell pro-
liferation is enhanced compared to the core of the MCS, there is
more rapid relaxation of the stress at the MCS boundary, which
result in reduced pressure.

In order to show that cell division is more likely to occur away
from the core than in the interior of the MCS, we also calculated
distribution (P(pi(r))) of pressure experienced by cells in the an-
nulus between r and r+dr. We calculated pi(r) using the equation
similar to Eq.(10) except in the n(r) is the number of cells in the
spherical volume between r and r+dr.
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