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Pulling simulation predicts mixing free energy for binary mixtures

Wezi D. Mkandawire and Scott T. Milner

Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging.
We present a novel molecular dynamics (MD) simulation method to extract the chemical potential
µ(X) for mixtures of species A and B. Each molecule of species A and B is placed in equal and
opposite harmonic potentials ±(1/2)Uex(x) centered at the middle of the simulation box, resulting
in a nonuniform mole fraction profile X(z) in which A is concentrated at the center, and B at the
periphery. Combining these, we obtain Uex(X), the exchange chemical potential required to induce a
given deviation of the mole fraction from its average. Simulation results for Uex(X) can be fitted to
simple free energy models to extract the interaction parameter χ for binary mixtures. To illustrate our
method, we investigate benzene-pyridine mixtures, which provide a good example of regular solution
behavior, using both TraPPE united-atom and OPLS all-atom potentials, both of which have been
validated for pure fluid properties. χ values obtained with the new method are consistent with values
from other recent simulation methods. However, the TraPPE-UA results differ substantially from
the χ obtained from VLE experimental data, while the OPLS-AA results are in reasonable agreement
with experiment, highlighting the importance of accurate potentials in correctly representing mixture
behavior.

1 Introduction
Predicting the mixing free energy of binary mixtures enables the
prediction of phase behavior, which is a fundamental task and
challenge for physical chemists and chemical engineers. Within
the context of regular solution theory, non-ideal contributions to
the mixing free energy are often quantified by an effective interac-
tion parameter χ. Intuitively, χ represents the cost of placing two
unlike species in a mixture next to each other, reflecting net unfa-
vorable interactions between them.1 As χ increases, the species
have an increased propensity to demix.

Intuitively, we expect local interactions between species in a
mixture to depend sensitively on chemical details, so atomistic
simulations would appear to be well suited for investigating mix-
ing free energies. However, molecular dynamics (MD) simula-
tions only give direct access to quantities that depend on coor-
dinates, so that measuring the entropy or free energy requires
special techniques.

Many attempts have been made to calculate mixing free ener-
gies. One approach determines the mixing free energy from the
difference in the thermodynamic work to take a species from vac-
uum into pure and mixed systems.2 3 4 However, it takes a very
large amount of work to remove a molecule from solution into
vacuum, so values computed in this way inevitably involve sub-
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traction of two large values to obtain a small result, with conse-
quent large uncertainties. Versions of this approach that measure
chemical potential by attempting to insert molecules into dense
fluids also face challenges of poor statistics, because the chemical
potential depends exponentially on the extremely low probability
of successful insertion.

Perego et al. have recently improved upon the insertion
method, using metadynamics to enhance concentration fluctua-
tions to increase the extremely low success rate for insertion, for a
Lennard-Jones fluid.5 However, this approach will be increasingly
challenging for atomistic simulations of larger molecules, for
which the bare insertion probabilities are progressively smaller.

Another commonly used approach to obtain chemical poten-
tials is provided by the Kirkwood-Buff equations,6 which relate
derivatives of chemical potentials with respect to concentrations
to volume integrals of pair correlation functions (Kirkwood-Buff
integrals). However, this approach is challenging, in that 1) very
large simulation systems are required to obtain the pair correla-
tion functions out to large distances such that the KB integrals
converge; and 2) multiple simulations at different concentrations
plus numerical integrations are required to obtain chemical po-
tentials versus concentration, which then can be integrated once
more to obtain excess free energies.7–9

Quite recently, Heidari et al. developed a sophisticated method
for measuring excess chemical potentials from atomistic simula-
tion.10 The method describes molecules with atomistic interac-
tions in a subregion, and as ideal gas elsewhere, with a position-
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dependent crossover between Hamiltonians. Molecules equili-
brate by diffusing across the system; single-molecule external
potentials are applied in the ideal gas region, and adjusted to
enforce constant density across the system. The potentials then
have the interpretation of excess chemical potential. This method
avoids thermodynamic integration, but requires elaborate custom
coding not available in standard simulation platforms, and pro-
vides the chemical potential at only one value of concentration
per simulation.

In our group, we have recently developed methods using “mor-
phing” simulations to get the mixing free energy.11 12 13 14 In this
approach, one species in a mixture is transformed or“morphed"
into another species, by progressively varying force field param-
eters. A parameter λ quantifies the progress along the morphing
path. By integrating the change in average energy with respect
to λ , the thermodynamic work is calculated to morph one species
into another. From the difference between the thermodynamic
work to morph one species to another in a mixed system versus
a pure system, the excess mixing free energy can be computed.
This approach works well for idealized bead-spring model blends;
however, it is limited in its application to atomistic simulations
of real molecules, because of the difficulty in morphing between
structurally dissimilar molecules.

In another recent approach, which we call “mutual ghosting”,
the thermodynamic work to separate species A and B in a mixture
can be computed by progressively weakening the A-B attractions
to induce phase separation. and integrating the change in sys-
tem energy along the path.15 Once phase separation is induced
between the two species, the interfacial tension between the co-
existing pure phases is measured by standard techniques. The
mixing free energy is then the work to induce the phase-separated
state, minus the free energy of the resulting interface.

This method does not require species to be structurally simi-
lar. However, it is somewhat involved; multiple simulations are
required to morph the system to the phase separated state, and
accurately simulating the interfacial tension between the sepa-
rated species can require long equilibration. Finally, the method
computes the entire mixing free energy (including the ideal-gas
contribution), not just the excess. So for near-ideal systems such
as miscible polymer blends, measuring the mixing free energy ac-
curately enough to infer the χ parameter can be challenging.

In this work, we develop a new simulation method to calculate
the mixing free energy versus concentration for A-B binary mix-
tures. Equal and opposite harmonic potentials ±U(z) centered at
the middle of the simulation box are applied to every molecule
of the two species, so that one species is pulled towards the cen-
ter while the other is pushed towards the periphery, inducing a
nonuniform mole fraction profile X(z). (We emphasize that the
potentials must be applied to every molecule individually, not sim-
ply to the center of mass of each species.)

Figure 1 shows a snapshot (made using VMD16 ) of such a
simulation for an equimolar mixture of benzene and pyridine, in
which the pyridine molecules are each pulled towards the center
(in the horizontal direction in the image) and the benzene pushed
towards the boundaries.

In essence, we are imposing an external contribution Uex(z) =

(a)

(b)

Fig. 1 Equimolar benzene-pyridine mixture, in which pyridine (shown
in a) is pulled towards the center, and benzene (shown in b) is pushed
towards the periphery.

2U(z) to the exchange chemical potential. The system responds
by rearranging the molecules, such that the local chemical poten-
tial versus mole fraction cancels the imposed external potential,
and restores equilibrium throughout the system. By combining
the imposed exchange potential Uex(z) with the measured mole
fraction X(z) we obtain Uex(X), the external potential required to
shift the mole fraction to X from its average value. In this way,
we effectively measure the exchange chemical potential versus
mole fraction. Numerically integrating this exchange chemical
potential would give the mixing free energy, without assuming
any particular model.

Our approach is related in spirit to work of Mehrotra et al.,
who applied a constant gravitational field in a Monte Carlo simu-
lation of a Lennard-Jones liquid.17 The linear gravitational poten-
tial induces a nonuniform concentration profile, which shifts the
local chemical potential to cancel the applied field, from which
the chemical potential versus concentration can be inferred. This
approach could in principle be generalized to a two-component
mixture, by applying a constant gravitational field to only one
component. However, this would only work in a system with a
bottom wall, which would induce undesirable surface ordering
artifacts, particularly for linear or plate-like molecules, such as
oligomers, polymers, or polyaromatics.

In this paper, to interpret the results of our molecular pulling
simulations, we compare the resulting behavior of Uex(X) to pre-
dictions of a model free energy function. For regular solutions
of small molecules, the natural choice is a Margules model, in
which non-ideal mixing effects are parameterized in terms of bi-
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nary interactions between mole fractions. For a binary mixture,
this model contains a single χ parameter, which can be fit to the
observed Uex(X) behavior. If the resulting fit is uniformly good
throughout the range of mole fractions explored, the choice of
model is phenomenologically justified a posteriori.

More generally, fitting the excess free energy of a binary mix-
ture may require an interaction parameter χ(X) that depends on
mole fraction in some arbitrary fashion. Because our method can
determine Uex(X) over a wide range of mole fractions with a sin-
gle simulation, it is well adapted to test for mole-fraction depen-
dence of χ, and to fit such dependence when necessary.

The status of χ parameter values so obtained is analogous to
values from neutron scattering experiments on polymer blends
fitted to the random-phase approximation (RPA), which de-
scribes concentration fluctuations in miscible blends. Indeed, our
method may be regarded as the response function analog of such
measurements; instead of observing thermally driven concentra-
tion fluctuations, we apply an external potential to induce a con-
centration response. In simulations, this method is more conve-
nient than watching fluctuations, because we control the shape of
the external potential, and measure the time-averaged response
over a long simulation for improved signal-to-noise.

To illustrate our new method, we investigate an equimolar mix-
ture of benzene and pyridine, which serves as a good example
of regular solutions, since the molecules roughly the same size
and shape.18 The large dipole of pyridine (2.26 Debye) leads
to significant non-ideal mixing, as pyridine dipoles interact with
each other, but not with nonpolar benzene. Moreover, vapor-
liquid equilibrium (VLE) data for benzene and pyridine mixtures
is available,19 from which an experimental χ parameter can be
calculated, by fitting model free energy predictions of vapor pres-
sure and vapor-phase composition to experiment.

2 Mixing free energy
For mixtures of molecules of similar size and shape like benzene
and pyridine, the mixing free energy is reasonably modeled by
regular solution theory:

β∆G = ∑
i

Xi logXi +∑
i j

χi jXiX j +β ∑
i

XiUi (1)

In Eqn. 1, the first term represents ideal mixing, the second
models non-ideal contributions in terms of binary interactions
between constituent mole fractions, and the final term includes
the effect of external potentials we apply to the different species.
For a truly ideal solution, in which the two species are physi-
cally identical and only distinguished by labels, the second terms
vanish (ideal solutions are experimentally well approximated by
mixtures of deuterated and non-deuterated species).

In writing Eqn. 1, we have neglected any square-gradient con-
tributions to the local free energy. Of course, we are applying
potentials U(z) to our simulation that vary substantially over dis-
tances of 10 nm or so. As described in detail below, we take pains
both to minimize gradient effects, and to check that gradient con-
tributions to the local chemical potential are small. Briefly, we use
an oblong simulation box, twice as long in the z direction along
which U(z) varies as in the transverse dimensions. Next, we check

that simulations performed in longer and shorter boxes give con-
sistent results for the concentration profile when harmonic poten-
tials of the same amplitude are applied in each case.

Finally, we check that simulations applied to truly ideal mix-
tures (labeled and unlabeled benzene) are consistent with pre-
dictions of ideal solution theory (i.e., Eqn. 1 with χ = 0) and no
gradient terms. We expect square-gradient contributions to the
chemical potential even in ideal mixtures, with a characteristic
length scale of the molecule itself. These reflect the increased
thermodynamic cost of spatially rapid variations in the concen-
tration, even of physically identical species.

To predict the nonuniform concentration profile resulting from
application of potentials Ui(z) to component i, we minimize the
Gibbs free energy subject to the constraint that the mole fractions
sum to unity (∑i Xi = 1), using the method of Lagrange multipli-
ers. Minimization with respect to X1 and X2 leads to

0 = logX1 +χX2 +βU1 −α

0 = logX2 +χX1 +βU2 −α

(2)

in which α is the Lagrange multiplier conjugate to the sum of the
mole fractions.

Corresponding to our simulations in which we pull on the two
species with equal and opposite harmonic potentials, we write
U1 =U and U2 =−U , and take X1 = X and X2 = 1−X; subtracting
the two equations gives

−βUex(X) = log(
X

1−X
)+χ(1−2X) (3)

Here Uex(z) = 2U(z) is the exchange potential, i.e., the energy
change on transforming the species of a molecule at z. Eqn. 3
predicts the shape of Uex(X), with χ as an adjustable parameter.

This result evidently respects the symmetry of the regular so-
lution free energy model, with respect to interchange of the two
species. In Eqn. 3, the result is unchanged if we exchange X with
1− X and Uex(X) with −Uex(X); physically, this corresponds to
exchanging the labels on the two species.

3 Simulation setup
In our investigations, we simulate two different systems: pure
benzene, and an equimolar mixture of benzene and pyridine, both
at 300K. Each system consists of 3072 molecules in a 6 x 6 x 12
nm box with periodic boundary conditions in all directions. The
box is twice as long in the z-direction along which the potential
U(z) varies, to minimize the effect of gradient terms on the lo-
cal chemical potential, which we neglect in our analysis of the
simulation results. (Below, we describe how we validate this ap-
proximation.)

Our simulations are run in Gromacs, using the TraPPE united
atom potentials for benzene and pyridine, which have been val-
idated against pure fluid properties.20–22 The TraPPE potentials
represent benzene and pyridine by six united atoms (CH or N),
plus three additional charge-bearing “virtual sites” near the cen-
ter of the rings to account for the electrostatic quadrupole of the
π orbitals. Hence 3072 molecules total 27,648 atoms.

The simulations were executed on 16 cores with support from
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1 GPU (half of an NVidia K80), with a 2 fs timestep, 1.4nm cutoffs
for Lennard-Jones interactions, and particle-mesh Ewald evalua-
tion of Coulomb interactions. The simulations run at 80 ns/day
when no potentials are applied, and at 35 ns/day with harmonic
potentials acting on all the molecules.

Each system is equilibrated for 4 ns with semi-isotropic pres-
sure control, such that the simulation box can adjust its transverse
dimensions but not its length along the z direction, along which
the external potentials ±U(z) vary. We keep the box dimension
along z fixed so that potentials with the same center and spring
constant can be applied to all systems. The transverse dimensions
adjust slightly, from the initially constructed 6nm down to about
5.94 nm.

From the mean-square displacement versus time, the diffusion
constant of each species was measured as 2.6 2/ns for benzene
and 2.5 nm2/ns for pyridine. The 4 ns equilibration time is suf-
ficient for molecules to diffuse across the entire system. After
equilibration, composition profile data was collected for 200 ns.
As a further check on equilibration, we verify that the density pro-
file for each species from the first and last half of the run are the
same.

To explore ideal and regular solution behavior, we perform
three different pulling simulations. For pure benzene, we pull half
the molecules towards the center, and push the other half away.
This serves as a model ideal solution. For the equimolar benzene-
pyridine mixture we perform two simulations, in which we a) pull
benzene towards the center and push pyridine away, and b) pull
pyridine towards the center and push benzene away. Although
they lead to different mole fraction profiles X(z), these two sim-
ulations should be physically equivalent in the resulting profile
Uex(X), and thus serve as an additional check on our method.

Figure 2 displays results for the time-averaged mole fraction
profiles X(z) for all three pulling simulations, as well as the total
number density profiles for each case. (The coordinate z= 0 is the
left side of the box, and z = 6 is the box center; the left and right
halves of the profiles have been averaged, and the figure displays
the resulting average.)

The mole fraction profiles are evidently smooth and free of
noise, indicating good statistics. The total number density pro-
files are nearly flat, indicating that the potentials we have applied
are not so strong as to have significantly altered the liquid density.

In Fig. 2, the range of mole fractions produced by the applied
potential is substantial, ranging from about 0.15–0.75 for the
ideal solution of benzene in benzene, and from about 0.1–0.8 for
the benzene-pyridine mixture. The spread of X values determines
the range over which we measure the chemical potential and test
the model free energy predictions.

The spread of X is governed by our choice of amplitude for the
harmonic potential Uex(z). By trial and error, we chose the po-
tential applied to every molecule of each species UA,B(z) =± 1

2 Kz2

such that the energy difference between the middle and boundary
of the box is 3

2 kT . For a box of length 12 nm in the z-direction, this
gives a spring constant K = 0.2078 kJ/(mol nm2). Correspond-
ingly, the exchange potential Uex(z) varies by 3kT from the middle
to the boundary of the box.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

z (nm)

X

Fig. 2 Pulled species mole fraction X vs. box coordinate (nm); pulled
species is benzene in pure benzene (red), benzene in mixture (green),
and pyridine in mixture (orange).

To apply harmonic potentials to each and every molecule in
the system, we make use of shell scripts to write the necessary
pull code options for each molecule to the .mdp (Gromacs MD
parameter) file. They are repetitive, differing only in their indices,
so well adapted to a simple script in which an index variable in a
“template” file is replaced using the Unix utility sed. Likewise, we
must include index groups for each molecule in the system .ndx
(Gromacs index) file, again generated with a brief shell script.

4 Results
Qualitatively, Fig. 2 shows the expected behavior of regular ver-
sus ideal solutions; for the same strength potentials Uex(z), the
regular solution results (yellow and green), with net repulsive
interactions between species, exhibits a stronger response of the
mole fraction X(z) as compared to the ideal solution (red), with
no repulsive interactions.

The mole fraction profiles X(z) for pulling benzene from the
mixture (green) and pulling pyridine from the mixture (yellow)
are very similar, which is consistent with a simple regular solution
model in which the two species are symmetric under interchange.

To proceed further with our analysis, we combine the measured
mole fraction profiles X(z) with the imposed exchange potential
Uex(z), to determine the imposed potential versus mole fraction
Uex(X), shown in Fig. 3 for all three cases.

(Note that in Fig. 3, we have slightly shifted the applied po-
tential so that U = 0 at X = 1/2, consistent with the symmetry
of the regular solution model under interchange of species for an
equimolar mixture.)

Consistent with our remarks on the concentration profile in
Fig. 2, Fig. 3 shows that a weaker potential suffices to induce
a given degree of separation in the benzene-pyridine mixture as
compared to pure benzene. Repulsive interactions in the regular
solution confer a tendency to demix, and amplify the response to
the external potential.

In the pure benzene system, a given benzene molecule sees no
difference between a “pulled" benzene and a “pushed" benzene,
so its placement in the simulation box is simply determined by
its Boltzmann factor in the potential U(z). Whereas in the mix-
ture, pyridine molecules prefer to be with other pyridines, and
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Fig. 3 Imposed exchange potential Uex vs. mole fraction X for benzene
pulled from benzene (red), pyridine pulled from mixture (orange), and
benzene pulled from mixture (green).

benzenes with other benzenes; a given pyridine molecule in the
mixture feels the pull from the potential U(z), as well as an ex-
tra “pull" towards other pyridines likewise gathered towards the
potential minimum.

For the ideal mixture of labeled and unlabeled benzene, the re-
sults for Uex(X) are well described by Eqn. 3 with χ = 0 appropri-
ate for an ideal solution, as shown in Fig. 4. The good agreement

0.2 0.3 0.4 0.5 0.6 0.7
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

X

β
U
ex

Fig. 4 Ideal Uex(X) data (points) compared to Uex(X) prediction for ideal
solution (curve).

of the ideal solution theory without contributions from gradient
terms supports our assumption that with this size simulation box,
gradient terms can be neglected.

The regular solution model we want to use to analyze our sim-
ulation results is symmetric under interchange of species. This
should be a reasonable approximation for benzene and pyridine,
since they have roughly the same shape and size. We can check
whether the simulation results respect that symmetry, by plotting
Uex(X) for a given pulling simulation together with −Uex(1−X),
which corresponds to exchanging X with 1−X and Uex with −Uex,
as results from exchanging the roles of the two species.

Fig. 5 shows the results of this comparison, for a) the data in
which pyridine is pulled to the center from the mixture, and b)
the data in which benzene is pulled to the center. In both cases,
the anticipated symmetry is well respected, with tolerably small
deviations.

0.0 0.2 0.4 0.6 0.8

-2

-1

0

1

2

X

β
U
ex

(a)

0.0 0.2 0.4 0.6 0.8
-2

-1

0

1

2

X

β
U
ex

(b)

Fig. 5 (a) Original (red) and “exchanged" (blue) Uex(X) for pyridine
pulled to the center, and (b) original (orange) and “exchanged" (green)
Uex(X) for benzene pulled to the center, in benzene-pyridine mixtures.

In similar fashion, we can compare the Uex(X) results for the
two different simulations, in which pyridine or benzene was
pulled to the center of the mixture. If the solution is regular,
then Uex(X) for the case in which pyridine is pulled towards the
center should overlay with −Uex(1−X) for the case in which ben-
zene is pulled towards the center. Fig. 6 makes this comparison,
which again shows our results for benzene-pyridine mixtures are
consistent with this exchange symmetry.

Finally, we fit a value for χ to the data from both pulling simula-
tions on the benzene-pyridine mixture, symmetrized with respect
to species exchange, both within and between the two data sets.
A linear least-squares fit gives χ = 0.763± 0.005. Fig. 7 displays
the combined Uex(X) results versus the regular solution theory
prediction, which evidently gives a very good fit across the entire
range of mole fractions explored, lending support to our choice
of the simple free energy model for this regular solution.

The good fit of regular solution theory to simulation results
throughout the entire mole fraction range is strong evidence that
for this system, a constant χ parameter suffices. More gener-
ally, χ(X) may be taken to depend on mole fraction X; indeed,
a free energy curve of any shape whatsoever can be described
phenomenologically by such a function.

If the predicted curve Uex(X) with constant χ fit well near
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Fig. 6 Original pyridine-pulling (red) and “exchanged" benzene-pulling
(green) Uex(X) data.
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Fig. 7 Combined and symmetrized pyridine and benzene Uex(X) data
versus regular solution Uex(X) with χ = 0.763.

X + 1/2 but deviated at the ends of the range, it would suggest
some χ(X) would be needed to describe the data. Qualitatively,
if Uex(X) with constant χ underpredicted the deviation of X from
1/2 on one end of the data, it would imply χ was larger at that
end of the data than near X = 1/2, and so forth. One can en-
vision deviations corresponding to positive or negative linear or
quadratic dependence of χ(X) on X − 1/2, all of which are phe-
nomenologically found for example in various polymeric systems.
The derivation of Eqn. 3 could be extended to include terms re-
sulting from the derivative of χ(X). Here at least, such refine-
ments are unnecessary.

4.1 Comparison to simulation and experiment
The interaction parameter χ for benzene and pyridine has been
determined experimentally, as well as in recent “mutual ghost-
ing” simulations, which were performed using the same TraPPE
potentials as used in the present work. The χ value obtained by
mutual ghosting simulations is 0.79,15 reassuringly close to the
value obtained here by our pulling approach.

We obtain an experimentally derived value for χ from vapor-
liquid equilibrium (VLE) data, by comparing the vapor pressure
and vapor mole fraction as a function of liquid mole fraction to
regular solution model predictions, and adjusting χ for the best

fit. Fig. 8 displays for benzene-pyridine mixtures the vapor-liquid
equilibrium pressure P and vapor mole fraction data y versus pyri-
dine liquid mole fraction X .19

(a)

(b)

Fig. 8 (a) Vapor pressure P (kPa) vs. pyridine liquid mole fraction X ;
(b) pyridine vapor mole fraction yp vs. pyridine liquid mole fraction X .

To predict the VLE behavior, we start by writing the gas and
liquid chemical potentials for species i as

µ
g
i = µ

∗
i + kT log(

Pi

Po
)

µ
l
i = µ

pure
i +∆µ

excess
i

(4)

For the gas (assumed ideal), µ∗
i is the standard chemical poten-

tial, Pi is the partial pressure of component i, and Po is the refer-
ence pressure of the system. For the liquid, µ

pure
i is the chemical

potential of a pure liquid of species i, and ∆µexcess
i is the excess

chemical potential.

At vapor-liquid equilibrium the liquid and gas phase chemical
potentials are equal, µ

g
i = µ l

i . We can simplify the equations by
introducing the vapor pressure Psat

i of pure component i. For pure
fluids, we have

µ
pure
i = µ

∗
i + kT log(

Psat
i
Po

) (5)

which relation can be used to eliminate µ
pure
i −µ∗

i in terms of Psat
i ,
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leading to

∆µ
excess
i = kT log(

Pi

Psat
i

) (6)

Equation 1 is the free energy per particle G/N. Differentiating
with respect to the number of particles Ni of component i gives the
excess chemical potential in terms of the interaction parameter χ

and liquid mole fraction X . With subscripts p and b denoting pyri-
dine and benzene, we find ∆µexcess

p and ∆µexcess
b from the excess

free energy per particle G(Np,Nb):

∆µ
excess
p = kT log(X)+χ(1−X)2

∆µ
excess
b = kT log(1−X)+χX2

(7)

Combining Eqns. 6 and 7, we obtain the vapor pressure P(X)

as a function of pyridine liquid mole fraction X:

P(X) = Psat
p Xeχ(1−X)2

+Psat
b (1−X)eχX2

(8)

In Eqn. 8, the two terms correspond to the pyridine and ben-
zene partial pressures Pp(X) and Pb(X). Because we regard the
vapor as an ideal gas, the vapor mole fraction of pyridine yp(X)

equals the ratio of the pyridine partial pressure to the total pres-
sure:

yp(X) =
Pp(X)

P(X)
(9)

Eqs. 8 and 9 can be fit to the experimental P(X) and yp(X) data
to find an experimental value of χ. To carry out the comparison
and fit of theory to the data, it is useful to focus on the ratio
between the pressure and vapor mole fraction and their ideal-
solution limits, as shown in Fig. 9.

The colored curves in Fig. 9 are predictions for different val-
ues of χ = 0,0.05,0.1,0.15,0.2 (respectively red, orange, yellow,
green, blue). Qualitatively, a repulsive interaction between the
two species boosts the vapor pressure, particularly for intermedi-
ate mixtures. Evidently, the VLE data is rather sensitive to χ, and
thus a good way to determine its value.

To determine experimental χ, we fit simultaneously the vapor
pressure and composition data, both represented as ratios with
respect to the ideal-solution limit. Since the values in Figs. 9 a)
and b) have appreciably different ranges, minimizing the sum of
square errors for the two sets of ratios would fit the vapor mole
fraction ratio data with its wider range of values at the expense
of the pressure ratio data.

To remedy this, we scale the vapor mole fraction ratio data such
that it has a range comparable to the pressure ratio data. We
achieve this by multiplying each vapor mole fraction ratio value
by the ratio of the standard deviations σP and σyp of the pressure
ratio data and vapor mole fraction ratio data respectively. Having
thus rescaled the data sets so that errors in fitting them are ren-
dered equally important, we minimize the combined square error
for the two data sets with respect to the prediction.

Figs. 9 a) and b) displays the resulting fit (dashed lines), cor-
responding to an interaction parameter of χ = 0.210±0.004. This
value evidently does not agree with the values obtained by two
different simulation approaches. The simulation methods both
use the TraPPE potentials, and give consistent results. This sug-

(a)

(b)

Fig. 9 (a) Pressure ratio vs. pyridine liquid mole fraction X data (black)
and (b) pyridine vapor mole fraction ratio vs. pyrdine liquid mole frac-
tion X data (black) with models where χ = 0 (red), 0.05 (orange), 0.1
(yellow), 0.15 (green), 0.2 (blue), and 0.21 (purple).

gests both methods are working properly, and that the discrep-
ancy between simulation and experiment reflects systematic er-
rors in the TraPPE potentials, which were validated for pure fluids
but not for mixture behavior.

5 All-atom potential results
To explore the sensitivity of results for χ to the choice of force
fields, we repeated the pulling simulations for the benzene-
pyridine mixture using another well-validated and widely used
potential, the OPLS-AA (Optimized Potential for Liquid Simula-
tions) all-atom potential.23–25 Like TraPPE-UA, the OPLS-AA po-
tentials have been validated for a wide range of organic liquids, by
comparing predictions for liquid physical properties to measured
values. (A useful source of such comparisons is the compendium
at virtualchemistry.org.)

In this second set of simulations, we use the same number of
molecules and system dimensions; the same timestep, temper-
ature, cutoff, and harmonic potential strengths; the same equi-
libration procedure and run lengths; in short, everything is the
same except the force field. The all-atom system has slightly more
atoms (35238 versus 27648), and a slightly different density
than the UA system (the transverse dimension grows to 6.044Å,
rather than shrinking to 5.938Å). The simulations run at compa-
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rable rates on the same hardware (60 ns/day all-atom versus 80
ns/day UA without harmonic potentials, and comparable rates of
35 ns/day with potentials applied).

Just because OPLS is an all-atom potential in which hydrogens
are explicitly represented, while TraPPE is a united atom potential
in which hydrogens are lumped together with the atom to which
they are bonded, does not mean OPLS necessarily provides a more
accurate representation of real molecules than TraPPE. A united-
atom potential can be tuned to faithfully represent real molecules,
and an all-atom potential can be improperly parameterized and
fail miserably.

However, in the present case, it appears that OPLS does much
better than TraPPE in representing the mixture behavior of ben-
zene and pyridine. This is evident qualitatively in Fig. 10, which
(compared to Fig. 3 for TraPPE) shows a much smaller deviation
of the pulling results for Uex(X) for benzene pulled from pyridine
(green) and vice versa (orange) compared to the ideal case of
benzene pulled from benzene (red).
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Fig. 10 Imposed exchange potential Uex vs. mole fraction X for benzene
pulled from benzene (red), pyridine pulled from mixture (orange), and
benzene pulled from mixture (green), for simulations using OPLS-AA
potentials.

As for the united-atom pulling results, the all-atom pulling re-
sults respect the exchange symmetries expected for a regular so-
lution. Likewise, a concentration-independent χ parameter equal
to 0.282 ± 0.002 gives an excellent fit to the pulling results, as
shown in Fig. 11 (compare Fig. 7 for TraPPE results).

Although not perfect, the pulling value using OPLS potentials is
much closer to the experimental result (see Table ??) highlighting
the importance of well-adjusted forcefields that faithfully repre-
sent real molecules in simulations of fluid mixtures.

Source χ

TraPPE-UA 0.763±0.005
OPLS-AA 0.282±0.002
VLE fit 0.210±0.004

Table 1 Results for benzene-pyridine χ from pulling simulations using
TraPPE-UA potentials, OPLS-AA potentials, and from fitting to vapor-
liquid equilibrium data.
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Fig. 11 Combined and symmetrized pyridine and benzene Uex(X) data
versus regular solution Uex(X) with χ = 0.282±0.002, obtained by fitting
all-atom results.

6 Conclusion
We have presented a new “pulling” method to predict the mixing
free energy of binary mixtures using molecular dynamics (MD)
simulations. The method works by applying equal and opposite
harmonic potentials U(z) to every molecule of both species, to in-
duce a nonuniform mole fraction X(z) in the system. In essence,
the externally applied potentials shift the local exchange chemical
potential; the system responds by adjusting the local concentra-
tions until equilibrium is restored.

By combining the observed mole fraction profile X(z) with the
imposed exchange potential Uex(z), we can determine the poten-
tial Uex(X) required to shift the mole fraction to a given degree.
The interaction parameter χ for a binary mixture can be deter-
mined by comparing predictions of regular solution theory for
Uex(X) to simulation results.

As a first example, we applied the pulling method to binary
mixtures of benzene and pyridine, which are reasonably well de-
scribed by regular solution theory, since the molecules are of simi-
lar size and shape, but interact differently because of the substan-
tial dipole on pyridine.

We can observe how our simulations work qualitatively by com-
paring results for an equimolar mixture of labeled and unlabeled
benzene in which the labeled benzene is pulled towards the cen-
ter and unlabeled pushed away, with results for a equimolar mix-
ture of benzene and pyridine, in which benzene is pulled in-
wards and pyridine pushed outwards. The concentration varia-
tion induced by the pushing and pulling is larger for the benzene-
pyridine mixture than for the ideal mixture of labeled and un-
labeled benzene. This result reflects the increased tendency of
benzene and pyridine to demix because of the effective repulsive
interactions between the two species.

Fitting the simulation results for Uex(X) for benzene-pyridine
mixtures using TraPPE UA potentials to regular solution theory
predictions gives χ per molecule equal to 0.763±0.005. This value
is consistent with χ determined using a recently developed “mu-
tual ghosting” method.15 In brief, the mutual ghosting method
computes the mixing free energy by integrating the thermody-
namic work to induce phase separation along a path on which
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the attractions between two species are artificially weakened, and
correcting for the interfacial tension of the resulting interface.

However, both values derived from UA simulations differ sub-
stantially from the experimental value of χ equal to 0.210±0.004,
determined from fitting regular solution theory to VLE data. We
obtain much closer agreement with the pulling method using
OPLS-AA all-atom potentials for benzene-pyridine mixtures, for
which we obtain a χ value of 0.282± 0.002. This suggests that
the TraPPE-UA potentials need to be tuned to better represent
benzene-pyridine mixtures.

More broadly, these results highlight the importance of accu-
rate potentials in simulations of mixtures, for which validation
of the potentials against results for the pure fluids evidently does
not always suffice. Evidently, where VLE or other data is available
to obtain experimental χ parameters, the pulling method can be
used to test and refine simulation potentials to better represent
mixtures.

The pulling method is convenient and powerful, in that we can
measure the exchange chemical potential over a range of species
concentration from a single simulation. This is evidently more
convenient than the mutual ghosting method, which requires a
sequence of simulations at different interaction strengths, as well
as an accurate measurement of the interfacial tension. Like mu-
tual ghosting, the pulling method can be applied to chemically re-
alistic systems as well as idealized bead-spring models, and does
not require structural similarity between mixture components.

With some modifications, we can also employ the pulling
method to investigate mixing free energies in polymer solutions
and polymer-polymer blends. For such systems, Flory-Huggins
theory rather than regular solution theory would be the simplest
phenomenological model to use in fitting interaction parameters
to simulation results. Gradient contributions to the local chemical
potential may become important in applying the pulling method
to oligomer blends, because the magnitude of ideal-mixing and
relevant χ parameters both become smaller, so that gradient
terms are no longer negligible by comparison.
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