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Defect Dynamics in Active Polar Fluids vs. Active
Nematics†

Farzan Vafaa

Topological defects play a key role in two-dimensional active nematics, and a transient role in two-
dimensional active polar fluids. Using a variational method, we study both the transient and long-time
behavior of defects in two-dimensional active polar fluids in the limit of strong order and overdamped,
compressible flow, and compare the defect dynamics with the corresponding active nematics model
studied recently. One result is non-central interactions between defect pairs for active polar fluids,
and by extending our analysis to allow orientation dynamics of defects, we find that the orientation
of +1 defects, unlike that of ±1/2 defects in active nematics, is not locked to defect positions and
relaxes to asters. Moreover, using a scaling argument, we explain the transient feature of active
polar defects and show that in the steady state, active polar fluids are either devoid of defects or
consist of a single aster. We argue that for contractile (extensile) active nematic systems, +1 vortices
(asters) should emerge as bound states of a pair of +1/2 defects, which has been recently observed.
Moreover, unlike the polar case, we show that for active nematics, a linear chain of equally spaced
bound states of pairs of +1/2 defects can screen the activity term. A common feature in both models
is the appearance of +1 defects (elementary in polar and composite in nematic) in the steady state.

1 Introduction
In the context of biological systems, topological defects are ubiq-
uitous, where they have been associated with cell extrusion1,2,
changes in cell density3 and morphogenetic processes4, among
others. Here we will study defects in the context of active sys-
tems, which are composed of self-propelled active units that move
and exert forces on their surrounding by consuming energy, either
internal or external5,6. One class of active matter is active nemat-
ics, which consists of head-tail symmetric active units that tend to
align, locally generating nematic (apolar) order 7,8. For suffi-
ciently large activity, there is a proliferation of topological defects
in the nematic texture8–12, and understanding of the dynamics of
topological defects has been advanced by treating the defects as
quasiparticles9,13–19.

Another class of active matter is active polar fluids, which con-
sists of active polar units that tend to align, locally generating
polar order5,20,21. The phase diagram of active polar fluids has
been extensively studied (for example, 21–27), and defects have
been observed in for example28–32. In contrast to active ne-
matics, since active polar fluids have long range order33,34, de-
fects are not spontaneously generated, and if generated due to
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boundary effect for example, the defects are expected to be tran-
sient21,35,36. That being said, aspects of dynamics of defects in
active polar fluids have been studied in25,26,32,35,37–39. Here we
study transient dynamics of defects, and give another perspective
why they are transient. Applying the same argument to active
nematics uncovers a 1D chain of +1 defects which screens the
activity.

In this paper, we study both the transient and long-time behav-
ior of defects in two-dimensional active polar fluids in the limit
of strong order and overdamped, compressible flow. As in18,19,
we consider an approximation for the global texture motivated
from the passive case where the defects are widely separated
and quasi-static, and use the variational principle to find defect
dynamics within this ansatz. Here we shall follow the general
approach of18. In contrast to previous work on the active ne-
matics model9,14,15,18,40, in this model we find that there are no
active self-propulsion terms for the lowest charge (±1) energy ex-
citations. Also in contrast to18, we obtain interactions between
two defects that are neither central nor perpendicular to a central
force; they are generically non-central. By extending this ansatz
to allow orientation dynamics of defects, we find that the orien-
tation of +1 defects, unlike that of ±1/2 defects in active nemat-
ics18, is not locked to defect positions and relaxes to asters, which
we confirm with simulations. Moreover, using a scaling argument,
we explain the transient feature of active polar defects and show
that in the steady state, active polar fluids are either devoid of
defects or consist of a single aster. We argue that for contractile
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(extensile) active nematic systems, +1 vortices (asters) should
emerge as bound states of a pair of +1/2 defects, which has been
studied in16,41–46. Moreover, unlike the polar case, we show that
for active nematics, a linear chain of equally spaced bound states
of two +1/2 defects can screen the activity term. This hints at the
existence of stationary lattice of bound states of pairs of +1/2 de-
fects in the long term behavior of active nematics, perhaps similar
to44,47. A common feature in both models is the appearance of
+1 defects (elementary in polar and composite in nematic) in the
steady state.

The paper is organized as follows. We introduce the model
in Sec. 2 and in Sec. 3 we review the class of quasi-stationary
multi-defect solutions we use to parameterize the dynamics of
textures. In Sec. 4 we review the derivation of defect dynamics
equations and present our results for the active induced pair-wise
interactions. In Sec. 5 we extend our method to study orientation
dynamics of defects, and in Sec. 6 we offer an explanation as to
why defects are transient and describe the long-time behavior.
Finally, in Sec. 7 we compare this model to the active nematics
model introduced recently in18. Most of the technical details are
relegated to Appendices A-C.

2 The Model
We consider a minimal model of a two-dimensional polar order
parameter p described by the free energy22,48 F ({p}):

F ({p}) = 1
2

∫
dxdy

[
K Tr(∇p)2 +g(1−p2)2

]
, (1)

where K is the Frank constant in the one-constant approxima-
tion and g controls the strength of polar order. We assume to be
deep in the ordered state (g → ∞), where the coherence length
ξ =

√
K/2g is the smallest relevant lengthscale and |p| ≈ 1 except

within polar defect cores of size a ∼ ξ . Although symmetry allows
us to write terms that are odd in p, for simplicity of analysis and
in order to later connect with a nematic model, we will assume
that this contribution can be ignored, for example by imposing
p →−p symmetry.

For the dynamics, we consider simplified Toner-Tu theory33,49

where relaxation towards the minimum of the free energy while
advection by compressible flow v leads to

∂t pi +v ·∇pi +ωi j p j =− D
4K

δF

δ pi
, (2)

where D is the diffusivity and ωi j = (∂iv j − ∂ jvi)/2 is the vortic-
ity. We would like to comment here that for simplicity we have
ignored any explicit couplings between the density ρ and p, and
that in principle, ρ can be determined by the continuity equation
through v.

In the overdamped limit, v = v0p, where v0 has the dimensions
of a speed and represents the speed of an isolated active particle.
Then our equations take the form

∂t pi +
v0

2
p ·∇pi =− D

4K
δF

δ pi
. (3)

In Eq. (2) we have dropped the rate of strain alignment
term20,22 because in 2D and in the overdamped limit, its effect

on dynamics can be represented by renormalizing the advection
term. We rescale length with ℓ, where ℓ is the characteristic sep-
aration between topological defects, and time with τ = ℓ2/D. We
assume that defects are widely separated, that is ℓ≫ ξ , and thus
define the dimensionless small parameter ε = ξ/ℓ ≪ 1. We also
define the dimensionless activity parameter λ = v0/8D.

As in18, it is convenient to adopt the language of complex anal-
ysis. In terms of complex coordinates z = x+ iy and z̄ = x− iy,
the complex partial derivatives ∂ = ∂z =

1
2 (∂x − i∂y) and ∂̄ = ∂z̄ =

1
2 (∂x + i∂y), and the complex order parameter p = px + ipy, the
(dimensionless) free energy takes the form

F ({p}) =
∫

dzdz̄
[
4|∂ p|2 + ε

−2(1−|p|2)2
]
. (4)

Finally, the equation of motion can be written as

∂t p = I (p) =−δF ({p})
δ p̄

+λIλ (p) , (5)

where
Iλ (p) =−(p∂ + p̄∂̄ )p . (6)

3 Stationary and quasi-stationary textures deep in
the ordered state

For simplicity, we first consider the passive case where λ = 0.
Then we are interested in solving

∂t p =−δF ({p})
δ p̄

= 4∂ ∂̄ p+2ε
−2(1−|p|2) . (7)

Since this model was studied in18, we will simply review it here.
The single defect solution is

p = ψ(z, z̄) = A(|z|)
(

z
|z|

)σ

, (8)

with the amplitude A(|z|) describing the defect core50: as r → 0,
A(r) ∝ r, and for r ≫ ε, A(r) ≃ 1− ε2

4r2 (see Appendix A for more
details about A).

The multi-defect solution takes the form

p0(z, z̄|{zi}) = eiψ
∏

i
Ψi = eiψ

∏
i

A(|z− zi|)
(

z− zi

|z̄− z̄i|

)σi

, (9)

where ψ is the phase of p at infinity. This texture satisfies the
boundary condition p→ eiψ eiϕ ∑i σi as |z|→∞, where ϕ is the polar
angle. In the special case of a charge neutral system, ∑i σi = 0,
and so p is constant on the boundary.

In the limit ε → 0, the multi-defect texture p0(z, z̄|{zi}) is the
minimizer of F (p) when defects are pinned (see e.g.51 and ref-
erences within). In terms of the defect positions zi, the free energy
F0 = F (p0) takes the well-known form

F0 ≈ 2π ∑
i̸= j

σiσ j log
|z j − zi|

L
, (10)

which describes a Coulomb interaction between defect charges52,
where L is the system size. Due to the Coulomb interaction, even
in the absence of any “activity", the defect cores will move to min-
imize the free energy F0. Thus even though p0 textures minimize
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(a) +1 defect (b) −1 defect

(c) aster (d) vortex

Fig. 1 Sketches of single defect textures showing the angle φi (the phase
of Pi) for (a) a +1 defect where φi is the angle between Pi and r̂, (b) a
−1 defect where φi/2 is the angle of the separatrix. Special values of φi
are shown in (c) and (d) for a +1 defect: (c) is an aster (φi = 0), and
(d) is a vortex (φi = π/2).

the free energy when defects are pinned, they are only quasi-static
when the defects are no longer pinned.

As noted in18, near a defect zi, we can write

p0(z, z̄)≈ PiΨi(z− zi, z̄− z̄i) . (11)

where

Pi = eiφi = eiψ
∏
j ̸=i

(
zi − z j

|z− z j|

)σ j

. (12)

is a phase factor that will play an important role in the active
induced dynamics of the defects. See Fig. 1 for a geometrical
interpretation.

Finally, we note that for a global rotation, under which z→ eiη z,
the complex order parameter transforms as p0 → p0eiη(1−∑i σi).
This implies that if ∑i σi ̸= 1, we can choose η such that it elimi-
nates the global phase factor ψ. In particular, we cannot eliminate
the phase for a single +1 defect. This obstruction is not surprising
since +1 defects are unique among defects in that they are rota-
tionally invariant as p ∝ z. We will see in our analysis that ψ plays
a crucial role for +1 defects.

4 Dynamics of active polar defects (interactions)

4.1 Method

We are interested in solving the following PDE:

∂ p
∂ t

= I (p) (13)

We do so by following the variational method used in18,19, which
we now review. We start by making the ansatz

p(z, z̄, t) = p0(z, z̄,{wa(t)}) (14)

where wa(t) (perhaps infinitely many) are parameters that need
to be specified. (For example, wa(t) can include the defect posi-
tions, but is not strictly limited to them.) Once specified, wa(t)
are computed by minimizing the deviation of d p0/dt from that
described by the equation of motion, Eq. (5). In other words, we
minimize the error

E =
∫

d2dzdz̄
∣∣∣∣∂t p(z, z̄, t)− d

dt
p0(z, z̄|{wa(t)})

∣∣∣∣2

≈
∫

dzdz̄
∣∣∣∣I (p0)− ẇa

∂ p0

∂wa

∣∣∣∣2 (15)

with respect to ẇa, where I is defined in Eq. (5). Of course,
the goodness of our minimization depends on the ansatz and the
chosen parameters wa. We choose our ansatz to be p0, because
we know that when the defects are fixed and when λ = 0, p0 is a
good solution51. Specifically, we assume that the defects are far
away from each other and that λ ≪ 1, in which case p0 is a quasi-
static solution to Eq. (5). Taking into account that λ ̸= 0 and the
defects are not infinitely far away from each other leads to motion
of the defects, and we will assume that the time-dependence of p
is only through the defect positions zi(t), and that the motion is
slow. In other words, we will make the ansatz

p(z, z̄, t) = p0(z, z̄,{zi(t)}) (16)

where we have chosen wa(t) to be zi(t), the defect positions.

Doing so, one finds that18

Mi j ż j +Ni j ˙̄z j =−∂F0

∂ z̄i
+λUi , (17)

where

Mi j =
∫

d2z[∂̄i p̄0∂ j p0 + ∂̄i p0∂ j p̄0] (18)

Ni j =
∫

d2z[∂̄i p̄0∂̄ j p0 + ∂̄i p0∂̄ j p̄0] . (19)

are the mobility matrices,

F0 =−2π ∑
i̸= j

σiσ j ln
|zi − z j|

L
, (20)

is the Coulomb free energy, and

Ui =
∫

d2z[∂̄i p̄0Iλ + ∂̄i p0Īλ ] . (21)

The mobility matrices Mi j and Ni j have been calculated in18 to
be

Mi j ≈ πσiσ j ln
L
ri j

(22)

Ni j ≈ 0 . (23)
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(a) −1 and +1 defects (b) −1 and −1 defects

Fig. 2 Sketches of the active forces fi j for λ > 0. The blue arrows
denote the two components of the active force fi j, and the red line joins
the center of the two defects. For each pair, fi j = f ji, and the net forces
are generically non-central.

Before proceeding, we would like to emphasize that in order
to determine zi, we are doing a global fit within our ansatz that
finds the zi that minimizes the error. That is to say, although we
interpret zi as the positions of defects, zi are simply parameters in
our ansatz for the global texture that act as a proxy for the defect
positions, and similarly żi are not the true velocities of the defects.
If we were interested in calculating the exact defect velocities,
then we could do so with a local calculation which tracks the zeros
of p. However, we are interested in how p evolves everywhere,
not just at specific points, which is why we minimize the error E
in Eq. (15). Note that the fact that our equations depend on the
system size L is not surprising given we are doing a global fit in a
region of size L. And, we have the freedom, if we are interested,
to focus on the physics in a subregion of size ℓ < L by minimizing
Eq. (15) in this subregion.

4.2 Interactions

In Appendix B, we show that Ui (defined in Eq. (21)) can be
explicitly written in terms of the defect positions as

λUi =−8π ln
L
a

λ P̄iδσi,2 +∑
j ̸=i

fi j, (24)

where in terms of the unit vector ẑi j = (zi − z j)/|zi − z j| and its
complex conjugate ˆ̄zi j,

fi j =
1
2

λσiσ j ẑi j

(
Piẑ

σi−1
i j I(1)i j − P̄i ˆ̄z

σi−1
i j I(2)i j

)
(25)

with

I(1)++ = I(1)−− = 2π

I(1)+− = I(1)−+ = 2π ln
L
ri j

+O(L0)

I(2)++ = 2π ln
L
ri j

+O(L0); I(2)−− = 0

I(2)+− = I(2)−+ = 2π . (26)

(a) Two +1 defects (b) A single +2 defect

Fig. 3 Sketches of active forces with λ > 0 for (a) two +1 defects, and
(b), for a single +2 defect (the “self-propulsion” force). The forces for
both cases are essentially in the same direction.

The first term in Eq. (24) is the “self-propulsion” of a +2 de-
fect along the P̄i direction, where Pi was defined in Eq. (12).
Of course, we should not take this term too seriously, because a
+2 defect can be interpreted as a bound state of two +1 defects,
which is unstable because of the Coulomb repulsion. The second
term in Eq (24) is the active induced pair-wise interaction, and
its leading dependence on distance ri j between two defects i and
j is lnL/ri j.

We now examine the net force. Since I(1)i j ̸= I(2)i j , then fi j is a
generic non-central force; in particular, it is also not orthogonal to
the line connecting the two defects. We also comment that since
fi j = f ji, then the defect pair moves together, as if it is a bound
object. Another feature is that for a pair of −1 defects, there is no
dependence on the distance between the defects, unlike in cases
of the neutral pair or pair of +1 defects. See Fig. 2 and Fig. 3 for
sketches.

We have learned that two +1 defects exert the same force on
each other (same magnitude and direction), as if they’re bound.
In the limit that these defects are really close to each other,
then there is no reason a priori to expect that they are actually
bound, as our assumptions no longer hold. However, interest-
ingly enough, the two defects behave as if they’re a +2 defect,
a bound state of two +1 defects, which is “self-propelled" in the
same direction, along its separatrix, consistent with the behavior
of a +2 defect (see Fig. 3). This did not have to be the case, and
does not hold for the other defect pairs.

5 Orientation dynamics

In the previous section, we ignored orientation dynamics. We
now incorporate orientation dynamics and sketch out the argu-
ment here (the details of the computation are in Appendix C).
For simplicity, we consider a single defect of charge σ at the ori-
gin, in which case our ansatz is

p0 = eiψ(t)
(

z
|z|

)σ

, (27)
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where now the phase ψ(t) is dynamical. Choosing wa(t) = ψ(t) in
Eq. 15 leads to∫

d2z| ∂ p
∂ψ

|2ψ̇ =
λ

2

∫
d2z

∂ p̄
∂ψ

Iλ + c.c (28)

and upon evaluation in a region of size ℓ near the defect, where
a ≪ ℓ≪ L and a is the core size,

πℓ2
ψ̇ =−2πλℓsinψδσ ,1 =⇒ ψ̇ =−2

λ

ℓ
sinψδσ ,1 . (29)

Only the solution for +1 defects is nontrivial, which for complete-
ness is given by

ψ(t) = 2arccot
(

e
2λ

ℓ t cot
(

ψ(0)
2

))
. (30)

Note that we can interpret Eq. 29 as relaxational dynamics

ψ̇ =−2
ℓ

dV
dψ

(31)

for the potential V = −λ cosψ (see Fig. 4 for a plot). Thus for
λ > 0, the defect will relax to an aster (ψ = 0), and for λ < 0, the
defect will relax to an inward-pointing aster (ψ = π).*. In other
words, there is a preferred phase. Stable asters have been ob-
served in related simulations25,26,35,39,53,54, as well as analyzed
in related models37–39,55,56.

We also check our theory with simulations. We evolve an
isolated +1 defect for nonzero λ = 1, where initially the phase
ψ(0) = π/2. We computed the phase in two different ways: a lo-
cal computation, which locates the +1 defect and measures the
phase, and a global computation, which calculates the defect po-
sition and phase by minimizing in a region of size ℓ= 30a ≪ L =

300a the deviation of our ansatz p0 from the measured p0, which
is basically equivalent minimizing Eq. (15), as we did in deriving
Eq. (29). We find that initially and at long times, the two differ-
ent measurements of the phase agree, and even though they are
not identical in the middle, they both are similar. Moreover, we
checked our measured global definition of ψ(t) vs that predicted
from theory obtained by integrating Eq. (31), and find remark-
able agreement (see Fig. 5).

Given that our method suggests that there appear to be two
different stationary solutions for +1 defects (aster or inward-
pointing aster, depending on the sign of λ), it raises the ques-
tion whether these solutions are stationary solutions of Eq. (5).
By inspection, +1 defects, in particular asters or inward-pointing
asters, are indeed stationary solutions of Eq. (5).

Since the phase appears to be important, it is natural to ask
if we can modify our ansatz in Eq. (16) to take into account the
phase, for example by taking Ψi → eiφi f (|z−zi|)Ψi, where for exam-
ple as in57 f (|z−zi|) = eiγi ln |z−zi| †. We leave this analysis to future
work.

* Note that there is a symmetry of our system when λ →−λ and p →−p symmetry.
† We do not assume this form of f as this modified ansatz leads to an infinite free

energy addition.

Fig. 4 Plot of V (ψ) for λ > 0 and λ < 0. Extrema are at ψ = 0,π.
Minimum for λ > 0 is at ψ = 0, whereas minimum for λ < 0 is at ψ = π.

(a) +1 defect (b) −1 defect

Fig. 5 Dynamics of the phase ψ(t) of a single +1 defect for λ > 0 with
ψ(0) = π/2. In (a), plot of local computation vs global computation of
the phase ψ for a single +1. Their ending points are the same, but they
are not identical in the middle. In (b), theoretical prediction vs simulation
of ψ(t).

6 Stationary solution through scaling argument
In this paper, we have focused on defects. Here we make contact
with the discussion contained in21, and provide another perspec-
tive about why defects are transient in active polar fluids.

We make use of a scaling argument. By inspection, there is a
scaling symmetry; that is, solutions obey‡

p(z, t;λ ) = p(z/β , t/β
2;βλ ) . (32)

We are interested in the stationary, longtime behavior, which
means that we are looking for p such that for any t

lim
γ→∞

∂

∂ t
p(z,γ2t;λ ) = 0 . (33)

From our scaling relation in Eq. 32, choosing β = γ is equivalent
to finding p such that

lim
γ→∞

∂

∂ t
p(z/γ, t;γλ ) = 0 . (34)

We thus look for steady states for large λ . For large λ , the ad-
vection term in Eq. (5) dominates, and thus long-time stationary

‡ For notational convience, we drop the explicit dependence on g. Explicitly, g scales
as p(z, t;g,λ ) = p(z/β , t/β 2;β 2g,βλ ). Since we are in the deep nematic limit, g → ∞,
so it is unaffected by rescaling. But for finite g, this is how it would scale.
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states satisfy
∂t p =−λ (p∂ + p̄∂̄ )p = 0 . (35)

We will now show that the only solutions to the above equation
other than constant p are a single aster or inward-pointing aster,
which as we commented in Sec. 5 satisfies the above equation.
Because we are deep in the ordered phase, our ansatz is p =

f (z)
f̄ (z̄) .

Then

∂t p =−λ (p∂ + p̄∂̄ )p =− λ

f̄ 2 ( f ∂ f − f̄ ∂̄ f̄ ) (36)

which vanishes only if ∂ ( f 2) = c1, where c1 ∈ R. Therefore, f 2 =

c1z+ c2, and so p is constant if c1 = 0, and otherwise

p = eiψ (z− zi)
1/2

(z̄− z̄i)1/2
(37)

where either ψ = 0 (aster) or ψ = π (inward pointing aster), de-
pending on the sign of λ ; no other ψ is allowed. Note that this
single aster stationary state is consistent with the single vortex to
aster transition, as in Eq. (31). We have thus provided another
perspective for transient behavior of defects.

7 Comparison with active nematics model

In this section, we compare our model to the active nematics
model studied in18. Both models consider the dynamics of topo-
logical defects of an order parameter (polar or nematic) deep in
the ordered phase and in the overdamped limit. One might be
misled to think that since we can use similar techniques to study
topological defects in both models, then the behavior would be
similar. Here we will show that the type of topological defect
(polar vs nematic), due to activity, leads to drastic differences in
the dynamics. By studying and comparing these models in depth,
we can learn which features are common resulting from topolog-
ical defects and which are specific to polar vs. nematic order. In
particular, we will see that for the same choices of defect charges
and positions, unlike in the passive case, activity leads to different
forces. Moreover, the orientation dynamics are rather different in
the active case in the two cases. These differences lead to trivial
stationary solutions in the polar case as opposed to the nematic
case, which exhibit non-trivial stationary solutions.

7.1 Type of order and activity

In the passive case (absence of activity), the two models are math-
ematically equivalent, except that the nematic case admits half-
integral defects, whereas the polar case admits only integer de-
fects. In the active setting, however, the dependence of the flow
field on the order parameter is different. In the overdamped limit,
in the case of nematic order, v = α∇ ·Q, where α is a measure of
activity, and in the case of polar order, v = λp. This difference in
dependence of length scaling implies that in the nematic model,
α cannot be scaled out of the problem, but in the polar model, λ

can be scaled out. To summarize, the main differences between
the two models arise from the interplay between the type of order
and activity, which we now turn to.

7.2 Forces

Here we compare the active forces. In the active nematics case,
a +1/2 defect, the smallest allowed energy excitation, is “self-
propelled", whereas in the active polar case, a ±1 defect, the
smallest allowed energy excitation, is not “self-propelled"; in-
stead, a +2 defect is “self-propelled". Another difference between
these two models arise in the pair-wise interactions induced by
activity. In the active nematics case, the active forces are central
for a (+1/2,+1/2) pair, and for the other pairs are orthogonal to
line connecting the defects. Also, the forces for (+1/2,−1/2) pair
are non-reciprocal. All of these forces fall off as 1/r, where r is
the distance between the defects, and the magnitude depends on
the geometry, that is, overall phase of Q. In contrast, in the case
of active polar, the active forces are neither central forces nor or-
thogonal to the line connecting the two defects. For each pair of
defects, the active forces are also always equal in magnitude and
point in the same direction. Similar to active nematic, the mag-
nitude of the force depends on the orientation of the defect, i.e.,
the phase of p.

7.3 Orientation dynamics / solutions

In this paper, we learned that +1 asters (inward-pointing asters)
are stationary solutions and that they are stable for λ > 0 (λ <

0). It is natural to ask whether in the nematic model there can
be stationary +1 defect configurations, and does the existence
of solutions, or stability, depend on the phase of the defects. We
show that indeed solutions exist, and the type of solution depends
on the phase of the defects.

We first check to see what happens if we incorporate orien-
tation dynamics into the active nematics model. In terms of
the complex order parameter Q = Qxx + iQxy, the active nemat-
ics model has the following equation of motion,

∂tQ = I (Q) =−δF ({Q})
δ Q̄

+αIα (Q) , (38)

where

δF ({Q})
δ Q̄

=−4∂̄ ∂Q−2ε
−2(1−|Q|2)Q (39)

Iα (Q) =−(∂Q∂Q+ ∂̄ Q̄∂̄Q)+(∂ 2Q− ∂̄
2Q̄)Q (40)

We work in the deep nematic limit (ε → 0). For simplicity, we
consider a single defect of charge σ =±1/2 at the origin, in which
case our ansatz is

Q0 = eiψ(t)
(

z
z̄

)σ

, (41)

where now the phase ψ(t) is dynamical. Minimizing the error

E =
∫

d2dzdz̄
∣∣∣∣∂tQ(z, z̄, t)− d

dt
Q0(z, z̄|ψ(t))

∣∣∣∣2

≈
∫

dzdz̄
∣∣∣∣I (Q0)− ψ̇

∂Q0

∂ψ

∣∣∣∣2 (42)
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(a) Aster bound state (b) Vortex bound state (c) Spiral bound state

Fig. 6 In active nematics model, sketches of bound state of two +1/2 defects. In (a), bound aster state in extensile system when ψ = 0, (b), bound
vortex state in contractile system when ψ = π, and in (c), bound spiral state in contractile system when 0 < ψ < π/2.

with respect to ψ̇ (the analogue of Eq. (15)) leads to∫
d2z|∂Q0

∂ψ
|2ψ̇ =

α

2

∫
d2z

∂ Q̄0

∂ψ
Iα + c.c (43)

(the analogue of Eq. (17)). We now evaluate both sides of this
equation in a region near the defect of size ℓ. As before,∫

d2z|∂Q0

∂ψ
|2 = πℓ2 (44)

We now evaluate the RHS. We have∫
d2z

∂ Q̄0

∂ψ
Iα + c.c = (45)

− i
∫

d2z[−σ
2(

Q0

z2 − Q̄0

z̄2 )+σ(σ −1)(
Q0

z2 − Q̄0

z̄2 )]+ c.c

= 0 (46)

which implies that
ψ̇ = 0 (47)

and we thus learn that the phase is frozen, in accordance with the
expectation in18. Here there is no preferred orientation, unlike
in the active polar case, where asters or anti-asters are preferred,
depending on the sign of λ .

In related models, +1 defect states consisting of two +1/2 de-
fects have been observed in active nematics42,44,45, and in16,46,
it was argued that the type of +1 defect was determined by the
activity: asters in extensile systems, and vortices in contractile
systems. This observation is related to our result of finding a sta-
tionary +1 defect in the active polar model, as we will now see.
We now review and present another argument for the existence
and stability of a stationary defect pair of two +1 defects in the
active nematics case.

Let’s consider two +1/2 defects situated on the real axis. For
simplicity, let’s assume that the orientations of the +1/2 defects,
which anti-align18,44,45,58, are along the real axis, so they either

point away from each other (phase is 0), or toward each other
(phase is π). There are four forces: the defect drag force, the
repulsive Coulomb force, the self-propulsion, and the active in-
duced pair-wise force. We will ignore the defect drag force and
active induced pair-wise force because they renormalize the ve-
locity and Coulomb force, respectively. In this case, for α > 0
(contractile), the +1/2 defects move with constant velocity in
the direction of their phase, and for α < 0 (extensile), the +1/2
defects move with constant velocity in the opposite direction of
their phase. Therefore, at a unique separation r∗, the repulsive
Coulomb force can balance the attractive self-propulsion force de-
pending on the sign of α and the phase. The configuration is sta-
tionary for either extensile system and phase of 0 or contractile
system and phase of π. In the former, the two +1/2 defects form
a bound aster state, and in the latter, they form a bound vortex
state (see Fig. 6). This argument was pointed out in16,43,46.

Moreover, this bound state is stable to transverse fluctuations of
the polarization16. Here we present an alternative argument. If
the defects are not exactly aligned, one would naively think that
the self-propulsion will cause the +1/2 defects to go away from
each other. However, we will now show that as the defects move,
the orientation readjusts in such a way that it leads to inward
spiral motion of the pair of defects. From arguments presented
in18, in terms of this phase φ (the angle of the orientation, that
is, the deviation from radial line connecting the two defects), the
solution takes the form

Q(z, t) = eiφ z− zi(t)
|z− zi(t)|

z− z j(t)
|z− z j(t)|

(48)

where zi and z j are the positions of defects i and j, respectively.
The orientation Qi(t) of defect i is simply

Qi(t) = eiφ zi(t)− z j(t)
|zi(t)− z j(t)|

(49)

Since +1/2 defects are self-propelled along their orientation, in
the direction of Qi, then they will always move at a constant angle
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(a) Asters (b) Vortices

Fig. 7 Configuration of 1D chain of equally spaced +1 defects for active
nematics model that screens the activity term.

φ relative to the radial line connecting the two defects. Thus for
example in contractile system, if φ is sufficiently close to 0, and
the activity is not too large, then the two defects will simply spiral
towards each other (see Fig. 6). The solution is thus stable, but
not stationary.

Given that it seems that a composite made of a pair of +1/2
defects is a stationary solution for the active nematic model and
far away it looks like an aster or vortex, it is natural to ask if an
aster or vortex is actually a solution to Eq. (38). By inspection,
indeed a nontrivial solution is Q = ± z

z̄ (as one can easily check
that the active term Iα = 0), where the + sign corresponds to
an aster and the − sign corresponds to a vortex. Note that this
solution of aster or vortex is consistent with the picture in Fig. 6,
as any other phase results in a non-stationary state. Thus a single
aster or a vortex is indeed a stationary solution to Eq. (38).

Screening of activity term by +1 defects in active nematics is
similar to what we found in active polar fluids. In active polar
fluids, this configuration is the only configuration that screens the
active term, thus explaining the transient behavior of defects. Is
this the case in active nematics or are there more general config-
urations that screen the active term? Or can we extend this solu-
tion to allow multiple defects? A natural place to look for this (ig-
noring the passive forces) is to look for configurations that screen
the active term (Iα = 0), as in the case of single aster/vortex.
In the polar case, a single aster was the only defect configuration
that screened the active term. Here we will see that the situation
(and solution) is more interesting for a nematic system.

We are thus interested in solving

Iα = 0 , (50)

where
Iα =−∂Q∂Q− ∂̄ Q̄∂̄Q+(∂ 2Q− ∂̄

2Q̄)Q . (51)

Deep in the ordered phase, Q =±ei( f (z)+ f̄ (z̄)), and so

iQ
(

∂
2 f e2i f + ∂̄

2 f̄ e−2i f̄
)
= 0 (52)

Other than the constant solution, the unique solution is

f (z) =−i lnsink(z− z0) (53)

where without loss of generality we can assume k ∈R by rotation

of z coordinate if necessary and place the origin at z0. Therefore,

Q =±ei( f (z)+ f̄ (z̄)) =± sinkz
sinkz̄

. (54)

Notice that this vanishes at z = nπ/k, for n ∈ Z, and near each
zero, Q ∼ ± z

z̄ . We thus have an infinite chain of +1 nematic de-
fects on the real axis, separated by π/k. Because of the sign of
Q, either the defects are all asters (when the sign is positive), or
the defects are all vortices (when the sign is negative). These
configurations are depicted in Fig. 7.

Ignoring the Coulomb term, we have analytically found a sta-
tionary 1D lattice solution. For example, in the geometry of a
thin annulus (or equivalently, long channel with periodic bound-
ary conditions), we can imagine that the boundary condition bal-
ances the Coulomb forces. In any case, this shows that Iα = 0
has a much more interesting set of solutions than Iλ = 0, and
deserves further study, pointing to the importance of defects in
active nematic systems as opposed to active polar systems.
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Appendices

A Single defect solution

Stationary textures in the limit of zero activity (λ = 0) minimize
free energy and hence solve 48,50

δF

δ p̄
=−∇

2 p−2ε
−2(1−|p|2)p = 0 . (55)

We look for a solution for a single defect of charge σ of the form

p = A(r)eiσϕ . (56)

A(r) would thus satisfy

A′′(r)+
A′

r
+

(
2ε

−2 − σ2

r2 −2ε
−2A2

)
A = 0 . (57)

For example, for σ =±1, A(r) can be approximated as50

A(r) = r̃

√
.68+ .28r̃2

1+ .82r̃2 + .28r̃4 , (58)

where r̃ = r/ε. As r → 0, A(r) ∝ r, and for r ≫ ε, A(r) ≃ 1− ε2

4r2 .
The defect core size a, which is the length scale over which A goes
from 0 to 1, is of the order a ∼ ε.
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B Computation of Ui

We are interested in computing

Ui =
∫

d2z∂̄i p̄0Iλ +
∫

d2z∂̄i p0Īλ = I1 + I2 , (59)

where

I1 =−
∫

d2z∂̄i p̄0 p0∂ p0 −
∫

d2z∂̄i p0 p0∂ p̄0 (60)

I2 =−
∫

d2z∂̄i p0 p̄0∂̄ p̄0 −
∫

d2z∂̄i p̄0 p̄0∂̄ p0 . (61)

Substituting for p0, we find that

I1 =
1
2 ∑

j

∫
d2zp0

σiσ j

(z̄− z̄i)(z− z j)
(62)

I2 =−1
2 ∑

j

∫
d2zp̄0

σiσ j

(z̄− z̄i)(z̄− z̄ j)
(63)

It is convenient to rewrite the above as

I1 =
1
2

∫
d2zp0

σ2
i

|z− zi|2
+

1
2 ∑

j ̸=i

∫
d2zp0

σiσ j

(z̄− z̄i)(z− z j)
(64)

I2 =−1
2

∫
d2zp̄0

σ2
i

(z̄− z̄i)2 − 1
2 ∑

j ̸=i

∫
d2zp̄0

σiσ j

(z̄− z̄i)(z̄− z̄ j)
(65)

The first term for I1 vanishes by phase integral. The first term
for I2 is only non-zero for σi = 2, in which case (since we are
assuming that defects are well-separated), we can approximate

−1
2

∫
d2zp̄0

σ2
i

(z̄− z̄i)2 ≈−δσi,2
1
2

P̄i

∫
d2z

(z̄− z̄i)
2

|z− zi|2
4

(z̄− z̄i)2

=−8πP̄iδσi,2 ln
L
a

(66)

where a is the defect core size and L is the system size. We can
identify this term as the self-propulsion of a +2 defect. In the
following, we will explicitly be assuming that σi = ±1, so this
term does not appear. Thus we can write

I1 ≈
1
2 ∑

j
Pi j

∫
d2z

(z− zi)
σi

|z− zi|σi

(z− z j)
σ j

|z− z j|σ j

σiσ j

(z̄− z̄i)(z− z j)
(67)

I2 ≈−1
2 ∑

j
P̄i j

∫
d2z

(z̄− z̄i)
σi

|z− zi|σi

(z̄− z̄ j)
σ j

|z− z j|σ j

σiσ j

(z̄− z̄i)(z̄− z̄ j)
, (68)

where

Pi j = ∏
r ̸=i, j

(zi − zr)
σr

|zi − zr|σr
. (69)

First shifting z → z+ z j and then rescaling z → zi jz, we have

I1 =
1
2 ∑

j
σiσ jPi j

(
zi j

|zi j|

)σi+σ j

I(1)i j (70)

I2 =−1
2 ∑

j
σiσ jP̄i j

(
z̄i j

|zi j|

)σi+σ j−2
I(2)i j (71)

where

I(1)i j =
∫

d2z
(z−1)σi

|z−1|σi

zσ j

|z|σ j

1
z̄−1

1
z

(72)

I(2)i j =
∫

d2z
(z̄−1)σi

|z−1|σi

z̄σ j

|z|σ j

1
z̄−1

1
z̄

(73)

are integrals that need to be computed. For notation, let +(−)

index denote plus (minus) defect. Using techniques utilized in18,
we find that

I(1)++ = I(1)−− = 2π

I(1)+− = I(1)−+ = 2π ln
L
ri j

+O(L0)

I(2)++ = 2π ln
L
ri j

+O(L0); I(2)−− = 0

I(2)+− = I(2)−+ = 2π (74)

To summarize, Ui can be written explicitly in terms of the de-
fect positions as

λUi =−8π ln
L
a

λ P̄iδσi,2 +∑
j ̸=i

fi j, (75)

where
fi j =

1
2

σiσ j

(
Pi j ẑ

σi+σ j
i j I(1)i j − P̄i j ˆ̄zσi+σ j−2

i j I(2)i j

)
(76)

can be interpreted as the active induced pair-wise force on defect
i due to defect j. fi j can be rewritten as

fi j =
1
2

σiσ j ẑi j

(
Pi j ẑ

σi+σ j−1
i j I(1)i j − P̄i j ˆ̄zσi+σ j−1

i j I(2)i j

)
(77)

or equivalently as

fi j =
1
2

σiσ j ẑi j

(
Piẑ

σi−1
i j I(1)i j − P̄i ˆ̄z

σi−1
i j I(2)i j

)
(78)

C Orientation dynamics computations

For simplicity, we consider a single defect of charge σ at the ori-
gin, in which case our ansatz is

p0 = eiψ(t)
(

z
|z|

)σ

, (79)

where now the phase ψ(t) is dynamical. Choosing wa(t) = ψ(t) in
Eq. 15 leads to∫

d2z|∂ p0

∂ψ
|2ψ̇ =

λ

2

∫
d2z

∂ p̄0

∂ψ
Iλ (p0)+ c.c, (80)

where the Coulomb term vanishes because there is only one de-
fect. We now evaluation both sides of the above equation in a
region of size ℓ near the defect, where a ≪ ℓ≪ L and a is the core
size. We first evaluate the LHS. Since | ∂ p0

∂ψ
|= 1, then

∫
d2z|∂ p0

∂ψ
|2 = πℓ2 . (81)
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We now evaluate the RHS. We have

λ

2

∫
d2z

∂ p̄0

∂ψ
Iλ (p0)+ c.c =−λ

2

∫
d2z

∂ p̄0

∂ψ
(p0∂ + p̄0∂̄ )p0 + c.c

= i
λ

2
σ

2

∫
d2z(

p0

z
− p̄0

z̄
)+ c.c . (82)

By phase integral, the above vanishes unless p0 = eiψ z
|z| , that is,

σ = 1. Thus

λ

2

∫
d2z

∂ p̄0

∂ψ
Iλ (p0)+ c.c =−λ

2
sinψδσ ,1

∫
d2z

1
|z|

+ c.c

=−2πλℓsinψδσ ,1 . (83)

Putting it all together,

πℓ2
ψ̇ =−2πλℓsinψδσ ,1 =⇒ ψ̇ =−2

λ

ℓ
sinψδσ ,1 . (84)
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