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Controlling rheology via boundary conditions in dense granular
flows†

Farnaz Fazelpour, and Karen E. Danielsa

Boundary shape, particularly roughness, strongly controls the amount of wall slip in dense granular
flows. In this paper, we aim to quantify and understand which aspects of a dense granular flow
are controlled by the boundary condition, and to incorporate these observations into a cooperative
nonlocal model characterizing slow granular flows. To examine the influence of boundary properties,
we perform experiments on a quasi-2D annular shear cell with a rotating inner wall and a fixed
outer wall; the later is selected from among 6 walls with various roughness, local concavity, and
compliance. We find that we can successfully capture the full flow profile using a single set of
empirically determined model parameters, with only the wall slip velocity set by direct observation.
Through the use of photoelastic particles, we observe how the internal stresses fluctuate more for
rougher boundaries, corresponding to lower wall slip, and connect this observation to the propagation
of nonlocal effects originating at the wall. Our measurements indicate a universal relationship between
dimensionless fluidity and velocity.

1 Introduction
Understanding the no-slip boundary condition has been instru-
mental to the development of the field of fluid dynamics1. In
granular flows, predicting the amount of slip at a boundary has
been challenging, as neither the no-slip condition nor Coulomb
friction are valid2. Furthermore, boundary roughness can affect
not only the amount of slip near the wall, but also the bulk behav-
ior of granular material.3 Boundary conditions have been found
to impact fluidization and create new plastic events in emul-
sions4, and such nonlocal effects are likely present in granular
materials as well. Because stress propagates through heteroge-
neous force chains, the boundary conditions effects can influ-
ence distant neighbor grains, with either small or large effects
depending on the particular pathways of the force chains. Detri-
mental flow behaviors such as intermittency5, creeping/stagnant
zones6–8, and clogging9–11 arise from a complex interaction be-
tween the flow-forcing and the boundary conditions.

Traditionally, granular materials have been described using lo-
cal rheology, which characterizes granular flows using two dimen-
sionless, locally-determined variables. The first, inertial number
I, describes the flow rate12:

I ≡ γ̇d√
P/ρ

(1)

This quantity arises from examining the ratio between two time
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scales: a microscopic time scale T = d/
√

P/ρ which is the time
to squeeze a particle into a hole of the same size (d is the par-
ticle diameter, P is the pressure, ρ is the particle density) and a
macroscopic time scale 1/γ̇ which is the deformation time under
shear rate γ̇. The second dimensionless variable is the stress ratio
µ, the ratio between the shear stress τ and pressure P:

µ ≡ τ

P
. (2)

In a local rheology, µ plays the role of an effective friction13,
where there is no flow below a yield criterion µs,14. For µ > µs,
the inertial number I is proportional to the excess µ, with a con-
stant b controlling the steepness of this relationship. The relation-
ship I(µ) can therefore be written using the Heaviside function H:

I(µ) =
µ−µs

b
H(µ−µs). (3)

Even though local rheology can explain many features of
granular flows12, it cannot capture some experimental observa-
tions6,13,15–17, particularly where fluctuations or vibrations play
a role. To address these shortcomings, several nonlocal rheology
models have been developed18–23. The nonlocal rheology model
we are focusing on in this paper is the cooperative model de-
veloped by Kamrin and Koval 20 , which extends a Bagnold-type
granular flow via the diffusion of fluidity. We have previously
observed that this model can successfully capture granular flows
in a 2D annular rheometer across various packing fractions and
shearing rates,24 as well as for a variety of particle stiffnesses and
shapes.25 In both cases, a single set of nonlocal parameters can
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Fig. 1 Right: Top view of 2D annular shear cell. The inner wall (Ri =

15 cm) rotates at constant speed and in a clock-wise direction. The
coordinate r measures the distance from the center of inner wheel. Inside
the red box: Sample image of photoelastic particles sandwiched between
two polarizers to visualize the force chains. Left: Six different outer walls
used in the experiment with various roughness/compliance, labelled with
the names used in the figure legends.

be assigned to a particular set of particles. However, in order for
a nonlocal model to be a successful predictive tool, it will be nec-
essary to make flow measurements for a set of particles in one
geometry, and then use them to provide predictions for flows in
other geometries. Currently, good fits of the model to the data
depend on a priori knowledge of the amount of wall slip, limiting
its predictive power.

In this paper, we aim to understand which aspects of a dense
granular flow are controlled by the roughness of the boundaries,
and incorporate those observations into the cooperative model.
We conduct experiments with six different wall roughnesses, local
concavity, and compliance using the same particles (see Fig. 1),
each resulting in a different amount of wall slip. We quantify
how the cooperative model responds to various boundary prop-
erties and characterize flow features as a result of various bound-
aries. While the cooperative model is again successful in describ-
ing granular flow for various boundary properties, it is still nec-
essary to measure the amount of wall slip for each experiment.
Motivated by Thomas and Vriend 26 , we aim to resolve this is-
sue by quantifying the amount of wall slip as a function of both
the inter-particle force fluctuations and the particular boundary
roughness which affects them. We reveal that there is an excess
force fluctuation due to wall roughness and compliance which al-
lows us to qualitatively predict the wall slip for each boundary
and find boundary properties to be a source of nonlocal effects.
While the flow behavior is distinct for each boundary type, we ob-
serve a universal relationship between dimensionless fluidity and
dimensionless velocity.

1.1 The cooperative model

The cooperative model is a nonlocal rheology model developed
by Kamrin and Koval 20 to capture granular flows at intermediate
to creeping rates20–22. It is a continuum model developed by
extending a local Bagnold-type granular flow to include nonlocal
effects considerations. Under Bagnold scaling, there is a linear
relationship between shear stress and shear rate. This gives rise
to the definition of fluidity:

g≡ γ̇

µ
(4)

where γ̇ is the shear rate and µ is the stress ratio defined in Eq. 2.
Taking only local information into account, the local fluidity gloc

can be obtained using locally-determined variables (substituting
Eq. 1 and Eq. 3 into Eq. 4):

gloc(µ,P) =
µ−µs

bµT
H(µ−µs) (5)

However, in granular materials, particle rearrangements in one
part of a flow can trigger (or suppress) rearrangements else-
where, by moving a particular contact closer to, or further from,
failure. Therefore, the flow-resistance should be a function of
both the local shear rate and these nonlocal events. The coopera-
tive model takes into account these nonlocal events by including
a Laplacian term to account for the diffusion of nonlocal effects:

∇
2g =

1
ξ 2 (g−gloc). (6)

The diffusion length scale ξ describes how far away these rear-
rangements can influence the rest of the material. Thus, the non-
local model introduces a new characteristic mesoscopic length-
scale between the particle (micro) and bulk (macro) scales. The
length scale ξ is measured in units of the particle diameter d and
is defined as:

ξ

d
= A

√
1

|µ−µs|
. (7)

where the nonlocal parameter A is an experimentally-determined
constant for a particular set of particles25 and indicates the
strength of their nonlocal effects. The length scale ξ is a function
of the stress ratio µ, and is symmetric around the yield criterion
µs.

The cooperative model has been validated in both 2D and
3D simulations20,21,27 and in 2D experiments (annular Cou-
ette)24,25. While b need only be a quantity near unity, the lo-
cal and nonlocal parameters µs,A are constants and a function of
both material properties and particle shape25; they need to be
determined separately, for each new set of particles. Once these
parameters are known, the cooperative model can model granu-
lar flows by solving Eq. 6 with the boundary condition (wall slip)
determined empirically.

2 Method

2.1 Apparatus

Our apparatus is a quasi-2D annular shear cell, shown in Fig. 1.
The central disk provides a driven inner wall with a radius
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wall name S.I. S.O. smooth L.I. L.O. leafspring
shape small innies small outies smooth large innies large outies large outies

rigidity rigid rigid rigid rigid rigid compliant
v(Ri) [d/s] 1.1 1.1 1.1 1.1 1.1 1.1

# of particles 1784 1740 1715 1747 1724 1724
φ 0.76 0.76 0.76 0.76 0.76 0.76

Table 1 Summary of the datasets. The first row contains the name of each wall shape used in the figure legends, followed by two rows with containing
a more detailed description of the length scale, curvature, and compliance. The final three rows give the inner wall rotation speed v(Ri) (held constant),
the number of particles, and the target packing density (held constant).

Ri = 15 cm, attached to a motor (Parker Compumotor BE231FJ-
NLCN with a PV90FB 50:1 gearbox). The motor rotates the inner
wall with a constant speed (v = 1.1 cm/s for all experiments pre-
sented here). The inner wall is roughened with holes matching
the width of a single particle, providing the shear force that gen-
erates the observed flow. The annular geometry allows for con-
tinuous shearing; all the data reported in this paper are taken at
steady state, after a full rotation of the inner wall (more than 6
strain units).

The stationary outer wall is located at radius Ro = 28 cm, mea-
sured from the center of the inner wall. The outer walls are each
laser-cut with a specific roughness, curvature, and compliance,
providing the six different patterns shown in Fig. 1. Of these, one
is rigid and smooth, one is composed of compliant leafsprings,
two more rigid wall patterns have the same shape taken from
the compliant leafsprings (both denoted L = long for their length
scale), and two rigid walls have the same shape taken from the
diameter of the particles (denoted S = short). The curvature of
the four solid walls is denoted as O = outies and I = innies. The
52 leafsprings, each of which compresses approximately linearly
under stress, are the same walls used in Tang et al. 24 , Fazelpour
et al. 25 . In all the datasets, the inner wall has an S.I. pattern,
with only the outer walls changing.

The particles used in all six datasets are photoelastic disks
made of Vishay PhotoStress material PSM-4 (Young’s modulus
E = 4 MPa and density ρ = 1.06 g/cm3). These are the same par-
ticles used in Fazelpour et al. 25 , Owens and Daniels 28,29 . The
mixture has an equal population of bidisperse circles with diam-
eter dS = 0.9 cm and dL = 1.1 cm and thickness 6.35 mm. The
optical properties of this photoelastic material allows for visu-
alizing the internal stress between particles throughout the ma-
terial, as shown inside Fig. 1. Our data is collected using a
color-separation technique25,30 in which monochromatic, unpo-
larized red light provides the images used for particle-finding, and
monochromatic, polarized green light provides the images used
for measuring internal stresses. We measure the vector force at
each contact by solving an inverse problem using the observed
fringe patterns within each particle. More details about this tech-
nique are available in30–34. From these vector contact forces,
we coarse-grain34,35 the dataset to provide radial profiles of the
two independent components of the stress tensor: shear stress
τ(r) = σrθ (r) and pressure P(r) =− 1

2 [σrr(r)+σθθ (r)].

Before running each new set of walls, we adjust the number of
particles to keep the packing density φ = 0.76 constant for all 6
wall shapes, each of which has a slightly different volume (area)

even though they have the same Ro. A summary of all experimen-
tal runs is provided in Table 1. To precisely measure the volume of
each system, we reference each of the other walls to the smooth
wall, for which the areas between the inner wall and outer wall
is easiest to calculate. We photograph each of the other walls
on top of the smooth wall; because they are cut from different
color acrylic, we can use color separation and image processing
to measure the difference in area and adjust the number of parti-
cles accordingly. The only exception is the leafspring walls: due to
compliance of the springs, a constant packing density is not possi-
ble. Instead we use the same number of particles as for the large
outies (L.O.) since these two walls have the same shape/curvature
in the relaxed state.

2.2 Speed and shear rate measurements

To measure the flow profile, we first find the locations of the par-
ticles using the Matlab Hough transform package36 and then im-
plement the Blair-Dufresne particle-tracking algorithm37 to ob-
tain the trajectory of each particle. Due to the annular geometry,
we divide the area between inner wall and outer wall into 15
concentric rings of the same width, 0.65d, and average the indi-
vidual tangential velocities within these concentric rings, parallel
to shearing wall. This provides a profile of the shearing speed v
as a function of distance from inner wall ∆r. From this binned
data, we also calculate the variance δv2 within each concentric
ring and over all frames, for later use in granular temperature
measurements. Because we observe that the velocity fluctuations
in the radial direction are two orders of magnitude smaller than
in the tangential direction, we exclude them from the calculation.
Finally, we measure the shear rate profile by taking the gradient
of the tangential speed profile γ̇(r) = 1

2

(
∂v
∂ r −

v
r

)
; this is done in

Fourier space, as described in Tang et al. 24 .

We analyze and average the speed and shear rate profiles for
104 images for each wall shape. As shown in Fig. 2a, the speed
profiles near the inner wall (fastest flow) are quite similar for
all 6 wall shapes. However, in the creeping regime close to the
outer wall, we observe significant differences: the roughest walls
(S.I. and S.O.) have much less wall slip than the smoothest walls
(L.O. and smooth), with both curvature and length scale playing a
role. Furthermore, the leafspring walls suppress slip, likely due to
springs’ deformation allowing for a force to be applied in the di-
rection opposing the flow. These observations indicate that while
the applied shear is the same in all cases, the speed profiles are
different due to the effect of boundary conditions: the boundary
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Fig. 2 (a) Tangential speed profile v(∆r) and (b) shear rate γ̇(∆r), both
on a logarithmic scale, as a function of distance from the inner wall
∆r = r− Ri, for all six outer wall shapes. The logarithmic axes were
chosen to highlight the flow behavior in the creeping (slow) region of the
flow near the outer wall. Error bars are standard errors. The leafspring
data are from Fazelpour et al. 25 .

conditions control the rheology. In contrast, we observe that the
shear rate profiles γ̇ for the different wall shapes are more similar
to each other (see Fig. 2b) than are the speeds.

2.3 Shear stress and pressure measurements
Measuring the stress field within a granular experiment has been
a longstanding challenge. In most experimental studies, stress
fields are measured at the boundaries and predicted throughout
the material by considering physical and chemical interactions in
the system. Here, we are able to employ photoelastic techniques
to obtain stress fields throughout the material, as illustrated via
the bright pattern of force chains in Fig. 1.

Using color-separated images of the polarized and unpolarized
light, we perform quantitative measurements of the force vector
at each contact using an optimization technique30–34. Via coarse-
graining34,35 with a Lucy function with a length scale of w = 1.3d
(see Fazelpour and Daniels 34 for more details), we calculate the
local shear stress τ and local pressure P from these measured
vector contact forces. In Fig. 3, we plot the azimuthally-averaged
shear stress τ(∆r) and local pressure P(∆r) (for 2000 frames, over
∼ 3 hours) within the same concentric rings (width 0.65d) used
for the velocity profiles. As was observed by Kamrin and Koval 20

in DEM, we assume σrr(∆r)≈ σθθ (∆r).
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Fig. 3 (a) Shear stress profiles τ(∆r) and (b) pressure profiles P(∆r), both
measured using photoelasticity, as a function of distance from inner wall
∆r, for all 6 wall shapes. The error bars indicate spatial and temporal
standard deviations. The leafspring data are from Fazelpour et al. 25

Shear stress τ(∆r) and pressure P(∆r) profiles are shown in
Fig. 3 for all 6 wall shapes. The stress profiles are not reported
near the inner and outer walls due to both imperfect lighting near
the inner wall, as well as the 1.3d the cutoff due to the coarse-
graining length scale. As we can see in the stress profiles, even
though we are using the same particles in all datasets and they
rest on the same bottom plate, the pressure profiles P(∆r) have
different slopes (depending on the choice of boundary conditions)
instead of being constant. This is likely due to both basal friction
and humidity, which provides weak adhesion between the parti-
cles and the bottom plate. Therefore, we find that it is important
for all datasets to be collected at similar humidity (we selected a
subset of runs which all have ∼ 40% humidity) in order to make
direct run-to-run comparisons. For some wall shapes, we observe
a slight increase in pressure (see Fig. 3b) near the outer wall; this
indicates that pressure can be applied on the particles due to wall
roughness/compliance.

3 Results

3.1 Cooperative model validation
As expected, we have observed that the choice of wall proper-
ties strongly controls the resulting flow (most apparent in the
speed v(∆r) and pressure P(∆r) profiles), particularly near the
outer wall. This sensitivity likely arises because the creeping flow
(away from the shearing surface) is the most sensitive to nonlocal
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effects.

We first test the cooperative model to determine whether the
same model and parameters can be used, independent of the wall
shape/compliance. The model validation is done by comparing
the model prediction with experimental results (see Fig. 4). With
the speed v(∆r) and shear rate γ̇(∆r) obtained from particle track-
ing and shear stress τ(∆r) and pressure P(∆r) obtained from pho-
toelastic measurements, we can calculate µ(I) profiles using Eq. 1
and Eq. 2. The data points in Fig. 4 represent experimentally-
measured v(∆r) and µ(I) for different walls. The cooperative
model is shown as solid lines. In the cooperative model, the fluid-
ity g is obtained by solving Eq. 6 using Matlab’s ODE solver. The
constitutive parameters (A,b,µs) used in Eq. 6 match those used
in Fazelpour et al. 25 for the same photoelastic particles, are given
in Fig. 4, and are found to provide good fits, independent of wall
roughness. Thus, we observe them to be well-founded material
parameters.

The boundary conditions in Eq. 6 need to be determined ex-
perimentally, by knowing gexp, as previously described in Tang
et al. 24 , Fazelpour et al. 25 . Once the fluidity g(∆r) has been
solved for, it can thereafter be used to calculate µ(I), from I(∆r) =
g(∆r)µ(∆r)T , and v(∆r), from integrating γ̇ = µ(∆r)g(∆r). How-
ever, the boundary condition for solving γ̇ = µ(∆r)g(∆r) currently
needs to be determined experimentally from measuring vexp near
the outer wall. This is unfortunately not known from first princi-
ples. This challenge is readily seen in Fig. 2, where vexp near Ro

is very different for the six different wall shapes. Thus, the wall
properties and measuring vexp near the outer wall are crucial for
correctly implementing the cooperative model.

Fig. 4ab provides a comparison between the experimental re-
sults and cooperative model using a single set of parameters
(Fig 4b). This comparison shows that the cooperative model
agrees well with the data even in the very slow region of the flow
(creeping region). This is apparent in both the speed profile v(∆r)
(Fig. 4a) and the rheology µ(I) (Fig. 4b). Therefore, the cooper-
ative model can successfully capture the flow characteristics, and
accommodate wall effects on the flow, if the wall slip has been
independently measured. Thus, the key challenge remains that
the cooperative model requires knowing wall slip to predict the
flow, which depends on the wall properties. Currently, we have
no first-principles method for predicting the wall slip.

Last, it is important to note that we observed that measure-
ments of the constitutive parameters (A,b,µs) are sensitive to
changes in humidity, and that it is advisable to collect particle-
tracking and stress-field measurements under as similar condi-
tions as possible.

3.2 Force network fluctuations

Understanding the effect of the wall properties on inter-particle
interactions would advance our understanding of the controls on
granular slip, and therefore also granular rheology. One mecha-
nism by which this may be happening is the transmission of fluc-
tuations via the force network. Our photoelastic particles provide
a means to address how changes in internal stress propagation
arise due to the wall properties. In Thomas et al. 39 , we already
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Fig. 4 (a) Speed profiles v(∆r) as a function of distance from inner
wall ∆r, on a logarithmic scale. The data points represent experimen-
tally measured flow speeds obtained from particle-tracking, for all 6 wall
shapes. The error bars are the standard error of the particle speeds, and
the solid lines are the cooperative model predictions. (b) Stress ratio
µ as a function of inertial number I for all 6 wall shapes. The data
points are the experimentally measured µ from Eq. 2 and experimen-
tally measured I from Eq. 1. The error bars are the standard errors, and
the solid lines are the cooperative model prediction of µ(I). Table in-
side (b) Nonlocal parameter A, local parameter b, and yield criterion µs,
with the ± values indicating the confidence interval for the parameters.
These same fitting parameters are used in Fazelpour et al. 25 . (c) µ(I)
data from (b) re-plotted, with µ rescaled by θ 1/8 (nondimensionalized
granular temperature) as predicted by the results of Kim and Kamrin 38
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observed that the force chains fluctuate in quasi-static regimes
even where the particles are not rearranging. In this new investi-
gation, we further test how the wall properties affect force chain
fluctuations, focusing on regions near the outer wall (quasi-static
regime).

To measure the force fluctuations, we utilize light intensity I as
a proxy of force magnitude, rather than the fully-resolved vector
forces. We split each image into concentric rings of width 0.57d
(this is slightly smaller than the width used for the speed and
stress calculations, due to the selection of a slightly different do-
main size) and find the force intensity fluctuations by considering
the intensity of all pixels within these rings I∆r. We quantify the
fluctuations within each ring F(∆r) as the standard deviation of
light intensity over both time and space:

F(∆r) =

√√√√√ ttot

∑
t=1

(I∆r,t −〈I∆r,t〉t,∆r)

N∆rttot
(8)

where the total number of frames is ttot = 2000, I∆r,t is the intensity
of all pixels within each ring in ttot frames, and N∆r is the number
of pixels within each ring. To compare force fluctuation for var-
ious boundaries, we normalize the force fluctuation by average
light intensity of the all particles over time F(∆r)

〈I〉 . This removes
the effect of total pressure in the system.

As shown in Fig. 5a, we observe that for all 6 wall shapes, the
force fluctuations F are understandably highest near the inner
wall: the shearing wall generates force fluctuations as it moves.
We further observe that the force fluctuations decrease approx-
imately linearly while moving radially outward from the inner
wall, and that this rate of decrease is similar for different wall
roughness and compliance. However, the behavior near the outer
(stationary) wall is quite different among the six runs, depending
systematically on its roughness and compliance.

We observe two main behaviors: for walls with larger wall slip
(smooth, L.O., and L.I.), the force fluctuations decrease all the
way to the outer wall at their approximately constant rate. How-
ever, for boundaries which have less slip at the wall (S.I., S.O.,
and leafspring), we instead observe a sharp increase in the force
fluctuations starting a few particle diameters away from the outer
wall. We interpret these fluctuations as arising from the rough-
ness and/or compliance of the outer wall: the same feature that
suppresses slip. Within this group of three, note that the two
smoothest of these (smooth, L.O.) exhibit spatial oscillations away
from the outer wall. This is likely associated with the formation
of patches of ordered packings near the outer wall. These ob-
servations elucidate that force fluctuations can control granular
slip, and could point toward a source of granular fluidity g as a
possible additional term to include in the ODE.

To quantify this observed effect of the wall properties, we di-
rectly connect these excess force fluctuation to the measured wall
slip vslip. First, we consider the inner region where force fluctu-
ations drop at constant rate for all walls (white background in
Fig. 5a) and make a linear fit F ′(∆r) (solid lines in Fig. 5a). Next,
we extrapolate this fit into the outer region where the force fluc-
tuations are affected by the wall properties (gray background in
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Fig. 5 (a) Normalized force fluctuations F measured as a function of
distance from inner wall for different wall shapes shown by data points.
The solid lines indicate a linear fit to measured data in the white region.
The gray shaded region correspond to the part of force fluctuation which
deviates from linear trend. The dashed lines are the extension of original
fitted line (solid lines) used to compare with measured data. (b) The
mean absolute error (MAE) of force fluctuation near outer wall between
measured data and fitted line on a log scale.

Fig. 5a), shown as extensions dashed lines in Fig. 5a. The excess
fluctuations above each dashed line can be quantified by calculat-
ing the mean absolute error (MAE) between the points and this
line within the gray area:

MAE = 〈|F ′(∆r)−F(∆r)|〉 (9)

where 〈·〉 is the average in the gray-shaded area in Fig. 5a. Larger
MAE corresponds to observed force fluctuations deviations which
are more in excess of the linear trend. As shown in Fig. 5b, we
compare this value to the measured wall slip velocity at the outer
wall, with vslip taken as the average value of 3 data points (∼ 1d)
closest to the outer wall, from Fig. 2a. We observe that this plot
exhibits a logarithmic-like relationship between the two values,
with larger excess fluctuations corresponding to smaller wall slip.
As a physical mechanism, it seems that particles can respond to
external loads either by compressing, or by moving; the two ends
of the graph differ in which one is the predominant response.
Note that the data point for the smooth boundary appears some-
what out of order, as it is not the rightmost point on the graph. We
believe this is due to the formation of patches of ordered packings
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standard error, for values calculated within a single bin of width 0.65d.

that were mentioned above. While this plot allows us to empiri-
cally predict the amount from the force fluctuations, we recognize
that incorporating such an observation into a continuum model is
challenging.

A possible route forward lies in the observed correlation be-
tween the force fluctuations and the amount of slip near the
wall. Both tangential speed and internal stress fluctuations are
the likely the source of the propagation of nonlocal effects. This
may be related to the observations by Artoni et al. 40 , that there
is a global scaling law between effective friction and dimension-
less slip for smooth walls with various friction. To examine this
further, we consider a quantitative relationship between veloc-
ity, stress and fluctuations. According to the microscopic descrip-
tion22 of the granular fluidity g = δv

d F(φ), velocity fluctuations
underly the fluidity g. As shown in Fig. 6, we observe a univer-
sal relationship between the dimensionless fluidity gd√

(P/ρ)
and

the dimensionless speed v√
(P/ρ)

, regardless of boundary rough-

ness/compliance, over many multiple orders of magnitude.

3.3 Rescaling µ(I) to a master curve

While the µ(I) relation has been widely used to describe granular
flows, the shapes of these curves vary extensively with varying
system properties, particularly in quasi-static regions. Recently,
Kim and Kamrin 38 proposed a new form for the µ(I) relation-
ship, whereby flow profiles for various geometries collapse onto
a master curve, and tested its validity for numerical simulations
in 2D and 3D. They found that the shear stress ratio µ should
be rescaled by the nondimensionalized granular temperature θ ,
raised to some power. Motivated by the Chapman-Enskog rela-
tions, they examined a quantity θ ≡ ρ δv2

DP where D is the number
of spatial dimensions and δv2 is the variance of the particle-scale
velocity measurements (due to kinetic-theory-like fluctuations).
We tested this prediction and found, in agreement with their re-

sults for 2D numerical simulations, that θ 1/8 provides a good col-
lapse to a universal curve, regardless of wall roughness. This data
is shown in Fig. 4c. There is currently no theoretical prediction
for the observed exponent 1/8, but our experimental observations
are consistent with the value obtained in their numerical simula-
tions.

4 Conclusions

In this paper, we report on how dense granular flows can be con-
trolled with boundary roughness and compliance. We test 6 dif-
ferent boundaries, 5 of which are rigid with different shapes and
curvature, and one is deformable to test the effect of compliance.
Using particle tracking, we observe that the speed profile near
the inner wall is similar for all boundaries, while differing signif-
icantly near the outer wall. On the other hand, shear rate is not
as strongly affected by boundary properties. Stress measurements
are made throughout the material using photoelasticimetry which
enables us to measure the full µ(I) profile. Variations in the µ(I)
profiles for different boundaries, under the same shear speed and
for the same particles, indicate that the granular rheology is con-
trolled by the boundary properties, and that the nonlocal fluidity
model is able to capture these changes.

To test the efficacy of the cooperative model and its response
to boundary roughness, we utilize the model parameters (A,b,µs)

previously optimized for our photoelastic particles. By comparing
the model prediction to our measurements, we find that the co-
operative model can capture the full flow profile and the effects
of boundary properties on the flow. However, although the coop-
erative model is successful in describing granular flows, it is still
necessary to a priori know the granular slip near the wall, in order
to be able to predict flow.

We addressed this challenge by examining the inter-particle in-
teractions arising through force chains. We find that dynamics of
the force chains are strongly affected by the boundary properties,
as the force chains fluctuate more near the rough boundaries than
near the smooth boundaries. These effects are observed up to 5
particle diameter away from the wall. We establish a logarith-
mic relationship between excess force fluctuations and wall slip,
providing an empirical tool for making qualitative predictions. In
addition, we observed that a relation between dimensionless flu-
idity and dimensionless velocity provides a collapse to a single
curve regardless of wall properties. Future studies should find
the functional form by mapping out wall rheology using various
shearing condition.40

Moreover, we find, as observed in simulations of various ge-
ometries38, rescaling µ(I) by a power of the nondimensional-
ized granular temperature provides a good collapse to a universal
curve, regardless of boundary properties. This brings us one step
closer to a general characterization of granular flows independent
of geometry properties. In that regard, a next step is to test the co-
operative model in various geometries, make flow measurements
for a set of particles in one geometry and find the model param-
eters and then use them to provide predictions for flows in other
geometries.
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