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Self-sustained three-dimensional beating of a model eu-
karyotic flagellum†

Bhargav Rallabandi,∗a Qixuan Wang,∗b and Mykhailo Potomkinb

Flagella and cilia are common features of a wide variety of biological cells and play important roles in
locomotion and feeding at the microscale. The beating of flagella is controlled by molecular motors
that exert forces along the length of flagellum and are regulated by a feedback mechanism coupled to
the flagella deformation. We develop a three-dimensional (3D) flagellum beating model on sliding-
controlled motor feedback, accounting for both bending and twist, as well as differential bending
resistances along and orthogonal to the major bending plane of the flagellum. We show that beating
is generated and sustained spontaneously for a sufficiently high motor activity through an instability
mechanism. Isotropic bending rigidities in the flagellum lead to 3D helical beating patterns. By
contrast, anisotropic flagella present a rich variety of wave-like beating dynamics, including both 3D
beating patterns as well as planar beating patterns. We show that the ability to generate nearly planar
beating despite the 3D beating machinery requires only a modest degree of bending anisotropy, and
is a feature observed in many eukaryotic flagella such as mammalian spermatozoa.

1 Introduction
Many biological microorganisms and motile cells rely on the coor-
dinated beating of their cilia or flagella to swim or feed in a fluid
environment. Examples include spermatozoa and C. reinhardtii,
among several others. Besides their important roles in the self-
propulsion, cilia and flagella also play critical roles in physiolog-
ical process in other organisms. Several organisms additionally
use arrays of collectively beating cilia to pump fluid and filter
out undesired particles. For example, such arrays are responsible
for clearance mechanisms of the respiratory tract1,2. The mech-
anisms governing the beating of cilia and flagella, as well as the
underlying routes to their synchronization, have been a topic of
considerable interest3–6.

The core of an eukaryotic flagellum or cilium (below we con-
sider flagella only) is the axoneme, a cylindrical skeleton struc-
ture consisting of nine microtubule doublets on the circumfer-
ence and a pair of single microtubules at the center – the “9+ 2"
structure7–9; see Fig. 1. This structure is ubiquitous for eukary-
otes, and has evolved with little variation over the last billion
years10–12. Each circumferential doublet comprises two distinct
microtubules: an A-tubule, which has a circular cross-section and
a B-tubule, whose cross-section is an incomplete circle attached
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Fig. 1 Schematic of axoneme − a cross-section of flagella, as seen from
the base looking towards the tip, with circumference doublets labeled
from 1 to 9. A “bridge" between doublets 5 and 6 (two curved gray
segments) defines the major bending plane (dashed line)

to the A-tubule13 Section 19.4; see Fig. 1. The robustness of the
axoneme structure and transmission of signals from the central
pair to circumference is maintained by radial spokes, T-shaped
macromolecular complexes whose thin ends are anchored to the
circumferential doublets and whose wide ends project towards
the central pair of microtubules14. Adjacent circumferential dou-
blets are connected by linkers composed of the protein nexin.

The beating of a eukaryotic flagellum is powered by dynein
molecular motors15. Dyneins are spaced at almost equal inter-
vals between circumference doublets along the entire length of
the flagellum and are anchored to A-tubules, and directed to-
wards the closest adjacent B-tubules, to which they may bind;
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Fig. 1. When bound and also activated by hydrolysis of adeno-
sine triphosphate (ATP), dyneins generate active sliding forces (by
“walking" along the B-tubule and pulling it towards the tip) which
in turn causes the flagellum to bend7–9 through the surround-
ing fluid. Synchronization of these motors then result in beating.
Flagella are typically several tens of microns long and move at a
few microns per second, so inertia has a mostly negligible effect
on the beating dynamics.

How the individual dynein motors spontaneously synchronize
their activity and sliding force generation, necessary to generate
the regular flagellum beating needed for steady swimming, has
been the focus of many modeling and numerical studies. Several
mechanisms have been proposed to explain the highly coopera-
tive behavior of dyneins, though which ones are most biophysi-
cally relevant remains a topic of debate. In16–18, it was conjec-
tured that dynein activity is regulated by the longitudinal cur-
vature of the axoneme structure. In19,20, a geometrical clutch
theory was developed in which dynein attachment/detachment
activity depends on inter-doublet distance. In18,21–25 a sliding-
control model was developed, in which it was hypothesized that
dynein attachment/detachment results from sliding forces acting
parallel to the long axis of the microtubule doublets. In these
models dyneins tend to split locally in two opposing groups such
that dyneins on one side of axoneme build-up sliding forces lead-
ing to detachment of dyneins on the other side. This “tug-of-war"
(see, e.g., Fig. 1 in25) results in generation of self-organized os-
cillations of axoneme.

For many protozoa (single celled eukaryotes), a pair of adja-
cent circumference doublets (typically doublets 5 and 6; see 5
and 6 Figure 1) are connected by a relatively stiff “bridge"26. This
defines a major bending plane (dashed line in Fig. 1) through
which the flagellum can bend with relative ease, while bending
through the orthogonal plane is relatively stiff. This leads natu-
rally to the notion of 2D wave propagation along the entire length
of axoneme, controlled by a coupled dynamics of two effective
filaments representing the two competing sides18,24,27–29. A de-
scription of dynein activity in the framework of a 2D two-filament
model was introduced and analyzed in terms of buckling insta-
bility in27 and further developed to include important nonlinear
effects in28,29.

A growing number of experiments show that observed beat-
ing patterns of flagellated cells are generally three-dimensional,
for example in sperm30,31 and in Chlamydomonas32. Three-
dimensional flagellum models18,33,34 have either focused on lin-
earized dynamics or have not investigated the feedback of flagel-
lum kinematics to motor kinetics.

Based on these works, we develop here a 3D computational
model of eukaryotic flagellum in which the dynein activity is cou-
pled to an explicit description of “9+2" structure that allow both
bending and twist of the flagellum. Notably, we also model the
effect of a “5-6 bridge” by introducing two distinct bending rigidi-
ties, B1 and B2 ≤ B1, which quantify differential resistance to
bending orthogonal to and along the major bending plane, re-
spectively. In this way, we use equal bending rigidities B1 = B2 to
model an isotropic flagellum with no “bridge" between doublets
5 and 6. By varying the relative magnitudes of B1 and B2 we
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Fig. 2 Model of flagellum. Panel A: a slender body (axoneme) com-
posed of nine filaments (circumference doublets). Panel B: a model
flagellum’s cross-section (cf. Figure 1) as seen from the base looking
toward the tip, rotated so that filament 1 is on the top. Panel C: relative
sliding of two adjacent filaments (black solid line), nexins are represented
by blue springs, and dynein motors are depicted as red straight segments
with a head (active) and as curved segments (passive).

investigate how the breaking of bending isotropy by a “bridge"
qualitatively and quantitatively affects the beating dynamics.

In section 2, we first develop a 3D beating model that cou-
ples motor kinetics and the deformation of the flagellum. We in-
vestigate numerically in setion 3 how varying system parameters
(dynein activity, bending rigidities, etc.) leads to self-sustained
beating dynamics, including the emergence of instability with
the transition to steady wave propagations along the flagellum,
switching from planar beating to 3D, and changing wave propa-
gation direction, i.e., retrograde (from the tip to base) vs antero-
grade (from the base to tip). We then use a linearized analysis to
show how the onset of instability is qualitatively modified by even
a slight bending anisotropy of the flagellum, before concluding in
section 4.

2 Model
We model a flagellum as a slender body with a circular cross-
section of radius a and length L ≫ a; see Figure 2. The flagellum’s
centerline position is x(s, t) where s ∈ [0,L] is the arc length. The
unit vector tangent to the centerline is d(s, t) = ∂x/∂ s. To describe
the geometry of the flexible flagellum we introduce a “material
frame" or local Lagrangian frame given by an orthonormal basis
(e1(s, t),e2(s, t),d(s, t)). The material frame follows deformations
of the flagellum, so that the position x(s, t)+ x1e1(s, t)+ x2e2(s, t)
follows a material point for all t, for fixed (material quantities) s,
x1, and x2. The set of orthonormal basis vectors (e1,e2,d) coupled
with centerline x(s, t) is often called the Cosserat curve (or rod)
model35,36. Derivatives of the basis along the arclength define
rotation angles φ1(s, t), φ1(s, t), and φ3(s, t) according to35

∂se1 = ∂sφ3 e2 −∂sφ2 d, (1a)

∂se2 =−∂sφ3 e1 +∂sφ1 d, (1b)

∂sd = ∂sφ2 e1 −∂sφ1 e2. (1c)

The angles φ1 and φ2 quantify rotations about e1 and e2 axes,
respectively; ∂sφ1 and ∂sφ2 are curvatures associated with bend-
ing of the flagellum. Note that ∂sφ2 corresponds to deformation
through the major bending bending plane; Fig. 2B. The angle φ3

quantifies rotation about the tangent d, and ∂sφ3 quantifies the
twisting of the flagellum35. Analogous relations to (1a) apply
when the s-derivatives are replaced by time derivatives.

We now define F(s, t) and M(s, t) as the internal force and mo-
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ment exerted by the (s,L] section of the flagellum on the [0,s]
section. A viscous force per length fv(s, t) resists the motion of
the flagellum as it sweeps through the fluid, and a viscous mo-
ment per length mv(s, t) resists twisting. Inertia is typically negli-
gible at the microscale, so the conservation of linear and angular
momenta of the flagellum reduce to the local force and torque
balances35

∂sF+ fv = 0, (2a)

∂sM+d×F+mv = 0. (2b)

Introducing the centerline velocity v(s, t)= ∂tx=
∫ s

0 ∂td(u, t)du, we
approximate the viscous force by local resistive-force theory37–40

as fv = −R · v, where R = 8πηξ⊥
(

I− ξ⊥−ξ∥
ξ⊥

dd
)

is a local resis-

tance tensor (I is the identity). Here, η is the dynamic viscos-
ity of the surrounding fluid, and ξ⊥ = (2logΛ+1)−1 and ξ∥ =
1
2 (2logΛ−1)−1 are dimensionless resistance coefficients, with
Λ = L/a ≫ 141 Eq. (8-178) and (8-179). The viscous moment
per length is similarly approximated as mv = −2πa2η∂tφ3d42 p.
49.

Following27–29, the internal moment M(s, t) comprises two
components:

M = Mbend +Mslide. (3)

Here, Mbend = B1∂sφ1e1 + B2∂sφ2e2 + J∂sφ3d is the sum of the
bending moment with stiffness coefficients are B1 and B2, and
a twist moment associated with a stiffness J. The sliding moment
Mslide = ∑

N
i=1 ri ×Fslide

i is exerted by the (s,L] section of the flagel-
lum on the [0,s] section due to sliding of the axoneme circumfer-
ence doublets (filaments 1 to 9 in Figure 2) with respect to each
other. Observe that a 5-6 bridge makes rotation about e1 “stiffer”
than that about e2 (Fig. 1, 2B), so we expect B1 > B2. Indeed,43

modeled the “9+2" structure experimentally with wooden staves
and dowels instead of microtubule doublets and radial spokes,
gluing together staves corresponding to doublet 5 and 6 to repli-
cate the bridge effect, finding that B1/B2 ≈ 2.6.

The sliding force Fslide
i on each filament is determined by the

dynamics of nexins and dynein motors. To model it we first de-
scribe the geometry of flagellum axoneme which comprises N = 9
filaments arranged around the centerline. We express the position
of a point on filament i at a section s as

xi(s, t) = x(s, t)+ ri(s, t), where

ri(s, t) = a(e1(s, t)cosθi + e2(s, t)sinθi) , i = 1, ..,N. (4)

Here, θi = 2π(i−1)/N is an angle (internal to the flagellum) mea-
sured in the cross-sectional plane and is a material quantity at-
tached to filament i. The arclength of filament i from the base up
to the a cross-section s is then si(s, t)≡

∫ s
0 |∂uxi(u)|du. The sliding

displacement of filament i relative to the centerline is therefore

∆i(s, t) = s− si(s, t)≈ a(φ2(s, t)cosθi −φ1(s, t)sinθi) (5)

up to terms quadratic in φi, where we have used the relations
(1a).

We model the nexin linkers as linear springs of stiffness K that

are distributed along the length of filaments. These springs con-
nect neighboring filaments and exert forces in the ±d directions
to restore relative sliding displacements between neighbors, see
Figure 2(c). The restoring spring force per length on filament i
is therefore fspr

i = −K(∆i −∆i−1)d−K(∆i −∆i+1)d. In addition,
dynein motors are bound to each filament i at a mean number
density per length ρ (assumed constant). A fraction ni(s, t) of
these motors are engaged (that is, bound to filament i+ 1) and
pull filament i towards the base (s = 0) and filament i+1 towards
the tip (s = L) of the flagellum44–47. Denoting the load per motor
on filament i by Wi, the active force exerted on filament i by its
motors is −ρniWid; the same motors exert an opposite force of
the same magnitude on filament i+1. Accounting for the motors
engaging filament i with both its neighbors, the net active sliding
force per length on filament i is fmot

i = ρ (Wi−1ni−1 −Wini)d. Thus,
the internal sliding force per length on filament i is the sum of a
passive component due to nexin springs and an active component
resulting from dynein motors,

fi(s, t) = {K(∆i−1 −2∆i +∆i+1)−ρ (Wini −Wi−1ni−1)}d. (6)

The sliding force exerted by the (s,L] part of a filament on the
[0,s] part is therefore27,28

Fslide
i (s, t) =

∫ L

s
fi(u, t)du. (7)

Observe that the resultant sliding force vanishes identically at a
section s, (∑

N
i=1 Fslide

i = 0), even though the resultant sliding mo-
ment (Mslide = ∑

N
i=1 ri ×Fslide

i ) is generally nonzero.

Finally, motor kinetics describe the spatio-temporal evolution
of the motor fractions ni and the load per motor Wi. As noted ear-
lier, motors on filament i move filament i+1 towards the tip and
filament i towards the base with relative velocity vi = ∂t(∆i+1−∆i).
The load carried by motors i decreases with this sliding velocity48.
Following previous work27,48, we assume that this dependence is
linear, so that

Wi = F0 (1− vi/v0) = F0 (1−∂t(∆i+1 −∆i)/v0) , (8)

where F0 is the load at stall and v0 is the zero-load velocity. Motor
kinetics on each filament i are modeled by

∂tni = kb(1−ni)− kuni exp{Wi/Fc}+νi(s, t). (9)

The first term corresponds to binding and the second term to un-
binding, with rate constants kb and ku, respectively. The term
νi(s, t) accounts for biochemical noise in the kinetics through a
white noise that is spatially and temporally decorrelated. The ex-
ponential models the rapid unbinding of motors when the motor
load Wi exceeds a critical value Fc. The above description ac-
counts for the bending elasticity of the flagellum, viscous forces
and torques as well as the internal forces and torques related to
the sliding of the flagellum, which in turn are driven by (and cou-
pled to) motor kinetics.

We now make several simplifications and approximations.
First, we eliminate the velocity v from (2a) by taking an s-
derivative, and noting that ∂sv = ∂td. Then, writing the sliding
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moment in terms of Fslide
i yields (Supplementary Information)

∂
2
s F−∂sR ·R−1 ·∂sF = R ·∂td (10a)

∂sM
bend +d×F+mv −mslide +

N

∑
i=1

∂sri ×Fslide
i = 0, where (10b)

mslide(s, t) =
N

∑
i=1

ri × fi(s, t), (10c)

The last two terms in (10b) together constitute ∂sMslide. The
quantity mslide can be interpreted as the internal sliding moment
per length and depends locally on fi, scaling linearly with the
rotation angles φ j for small rotations. By contrast, the term in
(10b) involving Fslide

i depends nonlocally on fi [cf. (7)] and
scales quadratically with φ j. We will retain only the local con-
tribution below, mirroring the local theory used for viscous forces
and torques.

Table 1 Physical parameters and their dimensional values or their ranges,
taken from27,28,49.

Parameter Value/Range Description
L 50 µm flagellum length
a 100 nm axoneme cross-section radius
η 10−3 Pa · s viscosity of surrounding fluid
K 2×103 N ·m−2 elastic spring constant of nexin linkers
ρ 2×103 µm−1 number density of dyneins per length
F0 1−5pN stall load of dynein on microtubule
Fc 0.5−2.5pN motor undinding threshold force
v0 5−7 µm · s−1 zero-load velocity
kb 17.2 s−1 binding rate of dyneins
ku 2.8 s−1 unbinding rate of dyneins
B1 1.5×10−21 N ·m2 bending rigidity normal to major plane
B2 (0.25−1)B1 bending rigidity in major plane
J 3×10−21 N ·m2 twist rigidity
N 9 number of circumference doublets

Finally, we treat θ as continuous to homogenize the 9-filament
structure. Then, the sliding displacement ∆i(s, t) is replaced by
the continuous function of θ ,

∆(θ ,s, t) = a(φ2(s, t)cosθ −φ1(s, t)sinθ). (11)

We define a sliding force per surface area σ i = fi/(aδθ). Using (6)
and approximating differences between neighboring filaments in
terms of derivatives in θ , the continuous analog of σ i is

σ(θ ,s, t) =
1
a

(
Kδθ∂

2
θ ∆−ρ∂θ (Wn)

)
d. (12)

The sliding moment per length then becomes [cf. (10b)]

mslide =
∫ 2π

0
r(θ ,s, t)×σ(θ ,s, t)adθ =

2π2Ka2

N
(φ1e1 +φ2e2)

+
∫ 2π

0
ρaWn(e1 cosθ + e2 sinθ)dθ , (13)

The active motor fraction and motor load are similarly mapped to
continuous functions of θ .

All physical parameters of the model are listed in Table 1. As
noted earlier, the “5-6 bridge” favors bending about the e2 axis
over that about the e1 axis, so B2 ≤ B1. We non-dimensionalize

the problem by scaling lengths with the flagellum length L, time
by the motor kinetic timescale τ0 = (kb +ku)

−1,27,28 and the force
by B2/L2. This choice of scales identifies several dimensionless
parameters that are defined in Table 2. We then project the force
and torque balances onto the basis (e1, e2, d). This yields a system
of partial differential equations for φ1, φ2, φ3, F1, F2, F3 and n,

F ′′
1 −2φ

′
3F ′

2 +(1+χ)φ ′
2F ′

3 −
(

χ
(
φ
′
2
)2

+
(
φ
′
3
)2
)

F1

+
(
χφ

′
1φ

′
2 −φ

′′
3
)

F2 +(φ ′
1φ

′
3 +φ

′′
2 )F3 = Sp4

∂tφ2, (14a)

F ′′
2 +2φ

′
3F ′

1 − (1+χ)φ ′
1F ′

3 +(χφ
′
1φ

′
2 +φ

′′
3 )F1

−
(

χ
(
φ
′
1
)2

+
(
φ
′
3
)2
)

F2 +
(
φ
′
2φ

′
3 −φ

′′
1
)

F3 =−Sp4
∂tφ1 (14b)

F ′′
3 − 1+χ

χ
φ
′
2F ′

1 +
1+χ

χ
φ
′
1F ′

2 +

(
1
χ

φ
′
1φ

′
3 −φ

′′
2

)
F1

+

(
φ
′′
1 +

1
χ

φ
′
2φ

′
3

)
F2 −

1
χ

((
φ
′
1
)2

+
(
φ
′
2
)2
)

F3 = 0 (14c)

Bφ
′′
1 − (1−J )φ ′

2φ
′
3 −F2 −µKφ1

−µa
(
nc

1 +ζ
(
nc
+∂tφ1 +ns

2∂tφ2
))

= 0 (14d)

φ
′′
2 +(B−J )φ ′

1φ
′
3 +F1 −µKφ2

−µa
(
ns

1 +ζ
(
ns

2∂tφ1 +nc
−∂tφ2

))
= 0 (14e)

J φ
′′
3 +(1−B)φ ′

1φ
′
2 =

Sp4a2

4ξ⊥L2 ∂tφ3, (14f)

∂tn = β (1−n)− (1−β )nexp{αW (θ ,s, t)}+ΛN (θ ,s, t) (14g)

W = 1+2ζ (∂tφ1 cosθ +∂tφ2 sinθ), (14h)

where primes denote partial derivatives with respect to s and we
have defined

nc
k = 2⟨ncos(kθ)⟩θ , ns

k = 2⟨nsin(kθ)⟩θ , nc
± = nc

0 ±nc
2. (15)

Here, the notation ⟨g⟩θ =
1

2π

2π∫
0

g(θ)dθ stands for averaging with

respect to θ . The quantity ΛN in (14g) represents the derivative
of white noise with (dimensionless) variance Λ2 and is drawn
from a normal distribution with zero mean.

Table 2 Non-dimensional parameters of computational model (14).

Parameter Definition Representative value(s)
Sp L{8πηξ⊥/(B2τ0)}1/4 10
µK 2π2Ka2L2/(NB2) 100
µa πρaF0L2/B2 104

ζ πa/(Nv0τ0) 0.2
β kbτ0 0.14
α F0/Fc 2
χ ζ⊥/ζ∥ 2
B B1/B2 1−10
J J/B2 2−5

These equations are subject to the conditions that the base
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of the flagellum (s = 0) is stationary (v = 0 =⇒ ∂sF = 0) and
clamped (without loss of generality, φi(0, t) = 0) and that the tip
s = L is force- and torque free (F = M = 0). Separating these
conditions into components yields

φi = F ′
i + εi jkφ jFk = 0, at s = 0, (16a)

∂sφi = Fi = 0 at s = L, (16b)

where εi jk is the Levi-Civita symbol, subscript indices take values
in {1,2,3} unless otherwise specified, and we use Einstein’s sum-
mation convention for repeated indices. The system (14) subject
to (16) form the coupled 3D flagellum model, which we solve
subject to initial conditions that remain to be specified.

All non-dimensional parameters are listed in Table 2. We distin-
guish three main non-dimensional parameters: (i) Sperm num-
ber Sp which is essentially the relative contribution of bending
forces to viscous forces, (ii) µa which measures activity of dynein
motors relative to bending forces, and (iii) bending anisotropy
B = B1/B2. We focus on the effects of these parameters on the
dynamics, while keeping the other quantities fixed.

3 Results and discussion
We solve the system (14) numerically with boundary conditions
(16) for Fi(s, t), φi(s, t) and n(θ ,s, t); the numerical implemen-
tation is detailed in the Supplementary Information. We use
these solutions to integrate (1a) and obtain the basis vectors
(e1,e2,d), which then yields the centerline of the flagellum as
x(s, t) =

∫ s
0 d(u, t)du. We also define a global coordinate system

(x,y,z) such that the local and global frames coincide at the base
s = 0.

In the absence of noise (Λ = 0), the system (14), (16) admits
the steady-state solution

φ
(eq)
i = F(eq)

i = 0, n(eq) =
β

Γ
, where Γ = β +(1−β )eα . (17)

This static equilibrium corresponds to a straight flagellum whose
centerline coincides with the x axis. Noise in the motor kinetics
(14g) perturbs this equilibrium. We study conditions under which
these perturbations grow, and the beating patterns that emerge
as a consequence. We use the equilibrium solution (17) as the
initial condition for the results presented here, though we also
explore the sensitivity of the numerical solutions to initial condi-
tions (Supplementary Information section 3).

Below, we first discuss beating behaviors observed from numer-
ical solutions. In Sec. 3.2 we will then develop a linear stability
analysis, and obtain an analytic estimate of the threshold for the
onset of instability away from the equilibrium state.

3.1 Numerical results

At a fixed Sp, we find from numerical solutions that the static
equilibrium is robust to perturbations by noise for sufficiently
small motor activity µa. For µa beyond a Sp-dependent thresh-
old value, the static equilibrium becomes unstable and gives way
to periodic beating patterns. Beating patterns persist and change
as µa is increased further. Some of these features are qualita-

tively similar to observations in the 2D model of28, but in our 3D
model, they depend strongly on the new parameters B = B1/B2

and J = J/B2, giving rise to greater variety of beating patterns,
which we discuss below.

3.1.1 Isotropic flagella exhibit helical beating

We first consider an isotropic flagellum, that is, the bending stiff-
ness is identical along both bending axes: B1 = B2 (B = 1).
Unsurprisingly, the flagellum relaxes to its static equilibrium for
small motor activity µa. At sufficiently large µa, the flagellum
exhibits self-sustained beating, indicated by Figure 3 for two dif-
ferent combinations of Sp and µa. These beating patterns take the
form of helical traveling waves that propagate either from tip-to-
base (retrograde; Fig. 3A) or from base-to-tip (anterograde; Fig.
3B). The projections of the 3D waveforms onto different planes
make the direction of wave propagation more evident, and qual-
itatively resemble the results of the 2D model developed by28.
The chirality of the helical waves is not inherently biased in the
model and is set by noise in the motor kinetics.

Figure 4 shows the projection of the trajectory traced by the tip
of an isotropic flagellum in the yz plane for different combinations
of Sp and µa. The tip traces out mostly circular curves in the yz
plane reflecting the bending isotropy in both directions. The beat
amplitude (tip trajectories in Fig. 4 are drawn to scale) and the
direction of wave propagation depends on Sp and µa. The Sp-µa

space can be divided into four domains depending on the beating
dynamics. For low dynein activity (small µa) or a stiff flagellum
(large Sp), the flagellum relaxes to its equilibrium state over time,
as noted earlier (Figure 4, no move black dots). As µa increases
past a first threshold at a fixed Sp, the flagellum oscillates spon-
taneously with waves propagating from tip to base (retrograde)
(Figure 4, red circles in the tip-to-base domain). This first thresh-
old (Figure 4, black solid curve) is identified as a Hopf bifurcation
by a linear stability analysis (detailed later in section 3.2) and is
in good agreement with the computed patterns. Further increas-
ing µa at constant Sp yields a second threshold (Figure 4, red
dashed line) where a transition from retrograde (tip-to-base) to
anterograde (base-to-tip) (Figure 4, green circles in the base-to-
tip domain) wave propagation occurs. These behaviors are qual-
itatively similar to the 2D model results of28, though they are
quantitatively different since bending modes in either direction
are nonlinearly coupled to each other in our 3D model.

We observe that the beating amplitude (represented by the
radii of the circular tip trajectories in Fig. 4) increases with µa

in the tip-to-base regime after passing the stability threshold, for
each Sp. Crossing the second threshold between the tip-to-base
and base-to-tip domains causes a drop in amplitude, and then a
gradual increase again with increasing µa.

Finally, for the combination of small Sp and large µa (very flex-
ible flagella with high motor activity), we find that the beating
pattern is sensitive to initial conditions. Within this “initial condi-
tion (IC)-sensitive” domain, applying different initial conditions
(for example, initially stretching or compressing the flagellum)
leads to either base-to-tip or tip-to-base beating dynamics that are
stable against noise; see supplement figure S1. This region also
contains a few parameter combinations with a large-amplitude
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Sp = 7, µa = 1.4 ⇥ 104

Fig. 3 Beating of isotropic flagellum (B = 1, J = 2) for two specific cases Sp = 10, µa = 1.6×104 (sub-figures A & A′, also see supplement movie
1) and Sp = 7, µa = 1.4× 104 (sub-figures B & B′, also see supplement movie 2). In sub-figures A and B, the flagellum is depicted as a deformed
cylinder in xyz-space; blue, green, and red curves are projections of the flagellum’s centerline onto zx-, xy- and xy-planes, respectively. Straight black
arrows indicate direction of wave propagation: either base-to-tip or tip-to-base. Circular arrows indicate the rotation direction of the tip. Color on the
flagellum cylinder shows the density of bound dyneins n(θ ,s, t). Sub-figures A′ & B′ show instantaneous projections of the flagellum centerline onto
zx-, xy- and xy-planes in nine consecutive time instants. Curves are colored from blue to red corresponding to the earliest and latest depicted time
instants, respectively.

dynamics yet without a clear pattern (shown by the light red col-
ors). We speculate that these may correspond to either another
instability or long-lived transients, though we do not investigate
these in detail. Comparing Figure 4 with supplement figure S1
makes it clear that outside the IC sensitive domain, beating pat-
terns are robust to initial conditions, except for a few close to
the transition thresholds: In most cases, the beating occurs as
isotropic helical waves.

3.1.2 Anisotropic flagella may lead to either planar or 3D
oscillations

Next, we consider an anisotropic flagella with B = B1/B2 > 1,
which models the effect of the 5-6 bridge as differential bending
resistance. We study B = B1/B2 = 2,3,5,10, with fixed twist mod-
ulus J = 5 (Figure 5); note that43 estimate B ≈ 2.6. Similar to
an isotropic flagellum, small µa and large Sp result in stable no
move states without beating (Figure 5, black dots). Across a first
threshold, the equilibrium state becomes unstable via a Hopf bi-
furcation. However, this time, the instability manifests as periodic
planar (and not 3D) oscillations with tip-to-base waves in the sin-
gle plane corresponding to the softer axis (Figure 5, red lines).
This is perhaps surprising as the bending coefficients B1 and B2,
though unequal, are of the same order of magnitude. Linear sta-
bility analysis (Section 3.2) rationalizes this observation by show-
ing that unstable modes along the soft axis (B2) are triggered for
smaller activity than the stiff axis (B1). This is in contrast with
the isotropic case, where both planes of beating become simulta-
neously unstable and result in a 3D instability.

On further increasing µa while keeping Sp fixed, we observe

two other thresholds: a 2D-to-3D transition threshold (Figure 5,
blue solid curves) and a retrograde-to-anterograde transition
threshold (Figure 5, red dashed curves). From our simulations,
it appears that the order in which these two thresholds emerge
depends on the bending stiffness ratio B.

For smaller B values, the 2D-to-3D threshold shows up ahead
of the retrograde-to-anterograde threshold (Figure 5A), dividing
the domain into a 2D retrograde domain (red lines), a 3D retro-
grade domain (red closed curves), and a 3D anterograde domain
(green curves). Many of the trajectories in 3D anterograde do-
main show chaotic patterns (e.g. light green in Fig. 5a) and may
also be sensitive to initial conditions; we do not discuss them in
detail.

For intermediate values of B, the 2D-to-3D threshold mostly
overlaps with the retrograde-to-anterograde threshold (Fig-
ure 5B), leading to a very small 2D anterograde domain (green
lines). As B increases further, the 2D-to-3D threshold shows up
after the retrograde-to-anterograde threshold (Figure 5CD), lead-
ing to an expanding 2D anterograde domain (green lines). In an
anisotropic flagellum, we also observe an IC sensitive domain,
where beating can be either chaotic anterograde (light green
curves) or retrograde showing certain large scale patterns (red
curves).

At larger values of B, 2D anterograde beating occurs over a
wider part of the parameter space (Figure 5c,d, green arrows).
This should be expected on physical grounds since for large B,
it becomes harder to bend in the stiffer direction, leading to dy-
namics that resemble those of a 2D flagellum. Increasing B also
appears to cause a slight expansion of the retrograde domain (Fig-
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Fig. 4 Phase diagram for isotropic flagellum with B = 1 and J = 2.
At each Sp and µa, the trajectory of the flagellum tip, projected on the
yz-plane, is depicted around point (Sp,µa). All trajectories are drawn
to scale. Black solid line separates regions in (Sp,µa) of stability and
instability of the trivial solution corresponding to the straight flagellum.
Trajectories above the solid line are oscillatory with the amplitude in-
creasing away from the solid line, thus, the bifurcation when one crosses
the solid line from below is the supercritical Hopf bifurcation. For tra-
jectories above the solid line, green and red colors indicate base-to-tip
(B-T) and tip-to-base (T-B) directions of wave propagation, respectively.
Trajectories with large amplitudes but without a clear pattern are shown
by light (red) colors. Trajectories enclosed by squares are considered in
more detail in Figure 3.

ure 5, red arrows) and a shrinking of the IC sensitive domain
(Figure 5, purple arrows).

We show example beating dynamics in Figure 6, correspond-
ing to the boxed trajectories in Figure 5A for B = 2, J = 5. As
evident from the 2D projections of the 3D flagellum waveforms,
the shapes of the patterns, the relative amplitudes along the two
bending planes, and the wave direction are sensitive to choice of
parameters.

Our model thus shows that even a modest anisotropy in the
bending stiffness leads to a rich variety of beating patterns that
are qualitatively distinct from those of the isotropic case. In par-
ticular, this includes planar (or nearly planar) beating behaviors
in the principal bending plane, with both retrograde and antero-
grade waves. Such quasi-planar beating is robust across a range
of parameters and emerges spontaneously despite the 3D beat-
ing machinery of the model. Some of the simulated patterns are
clearly non-planar but continue to show signatures of a dominant
beating plane, especially for not-too-large B and shorter flagella
corresponding to smaller Sp (Figs. 5, 6). Qualitatively similar
beating was recently observed in Chlamydomonas32.

The planar retrograde trajectories just above the Hopf bifurca-
tion can be understood in terms of dynamics along the soft axis
being linearly unstable, while those along the stiff axis remain
linearly stable. This is evident from a linear stability analysis
(section 3.2) which yields the Hopf bifurcation curves for beat-

Fig. 5 Phase diagram for anisotropic flagellum with J = J/B2 =

5, B = B1/B2 = 2,3,5,10. Each sub-figure is analogous to Figure 4: Tip
trajectories are projected on yz-plane for various values of (Sp,µa), and
color indicates wave propagation direction (red for retrograde and green
for anterograde waves). Yellow trajectories do not exhibit a clear wave
direction, and dots represents relaxation to the equilibrium state. Black
solid/dotted lines show where the leading eigenvalue crossing (EVC) the
imaginary axis of the soft/stiff axis (3.2); the black solid line indicates
the Hopf bifurcation. Blue solid lines separate 2D planar beating and
3D beating. Purple dashed lines enclose the IC sensitive domains, where
beating dynamics may depend on the choice of initial conditions. Arrows
indicate the change in the thresholds as B increases. Boxed trajectories
are shown in more detail in Figure 6.

ing along the soft and stiff axes (black curves in Fig. 5). We
note that the 2D-to-3D transition threshold curve is well above
the curve of the leading eigenvalue crossing the imaginary axis in
the stiff axis (black dotted curves in Fig. 5), and so conclude that
this transition is a feature of nonlinearities in the model. In fact,
many trajectories above the 1st EVC in φ1 curve but below the
2D-to-3D transition threshold depart from the initial condition
by bending about both the soft and the stiff axes, but ultimately
exhibit beating patterns where bending about the soft axis (non-
linearily) suppresses bending about the stiff axis.

We also consider the effect of the twist modulus J . For
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Fig. 6 Beating of anisotropic flagellum (B = 2, J = 5) for three specific cases with (AA’) Sp = 10, µa = 1.6× 104, 2D retrograde, also see
supplement movie 3. (BB’) Sp = 8, µa = 1.4×104, 3D retrograde , also see supplement movie 4. (CC’) Sp = 7, µa = 1.6×104, 3D anterograde, also
see supplement movie 5. Notations are the same as in Figure 3.

isotropic flagella, the twist relaxes exponentially to zero (up to
noise determined by motor kinetics) and the beating becomes in-
dependent of J , cf. (14). By contrast, anisotropic flagella beat
with a finite twist, with larger J leading to less twisting. Over-
all, we find that J has a relatively small impact on the flagellum
beating dynamics and exerts a modest influence on the location of
the phase boundaries; see supplement section 4 and supplement
figure S2.

3.2 Instability threshold for the equilibrium state

3.2.1 Linear stability analysis

We now identify the threshold when the static equilibrium state
(17) becomes unstable using linear stability analysis, following
the workflow in27. We linearize (14) about the base state to ob-
tain

∂tn = β −Γn−2ζ αβ

(
1− β

Γ

)
(∂tφ1 cosθ +∂tφ2 sinθ), (18a)

[F1, F2, F3]
′′ = Sp4 [φ1, −φ2, 0] (18b)

Bφ
′′
1 −F2 −µKφ1 −µa

(
nc

1 +2ζ n(eq)
∂tφ1

)
= 0, (18c)

φ
′′
2 +F1 −µKφ2 −µa

(
ns

1 +2ζ n(eq)
∂tφ2

)
= 0, (18d)

J φ
′′
3 =

Sp4a2

4ξ⊥L2 ∂tφ3, (18e)

where we recall that Γ = β +(1− β )eα ; see (17), table 2. Lin-
earizing the boundary conditions yields

φi|s=0 = F ′
i |s=0 = φi|s=1 = Fi|s=1 = 0. (19)

Equation (18a) admits solutions n(θ ,s, t) = nc
0(s, t)+nc

1(s, t)cosθ +

ns
1(s, t)sinθ , which separate into independent equations for the

Fourier modes.

For each dynamical variable f (s, t), we seek eigensolutions
f (s, t) = f̃ (s)eσt . We substitute this ansatz into the linearized
equations and eliminate the force components by taking two
derivatives of (18e,f) and utilizing (18b,c), to obtain

Bφ̃
′′′′
1 −Φ(σ)φ̃ ′′

1 +Sp4
σφ̃1 = 0, (20a)

φ̃
′′′′
2 −Φ(σ)φ̃ ′′

2 +Sp4
σφ̃2 = 0, (20b)

J φ̃
′′
3 − Sp4a2

4ξ⊥L2 σφ̃3 = 0, (20c)

where we have defined

Φ(σ) = µK +2µaζ
β

Γ
σ

(
1−

(
1− β

Γ

)
αΓ

σ +Γ

)
. (21)

The boundary conditions reduce to (using the notation B1 = 1
and B2 = B)

φ̃ℓ = Bℓφ̃
′′′
ℓ −Φ(σ)φ̃ ′

ℓ = 0 (ℓ= 1,2), at s = 0, s = 1. (22)

We observe that the dynamics for φ1,2 closely resemble the lin-
earized 2D model of27.

To analyze the instability threshold, we are interested in σ with
Reσ ≥ 0 such that the problem (20a)-(20c) with boundary condi-
tions (22) possesses a non-trivial solution (φ1,φ2,φ3). We observe
that the linearized dynamics for the three rotation angles are
decoupled. The twist angle admits solutions φ̃3 = sin

(
(2k+1)π

2 s
)

with k = 0,1,2, . . . , corresponding to a negative growth rate σ =

−4ξ⊥L2J /(Sp4a2). The equilibrium state is therefore linearly
stable to twist.

The equations (20a) and (20b) govern the stability of φ1,2. We

look for solutions φ̃ℓ =
4
∑

j=1
X (ℓ)

j ep(ℓ)j s, with ℓ = 1,2, where the X (ℓ)
j

are constants and p(ℓ)j are the distinct roots of the characteristic
equations for (20a) and (20b), Bℓp4−Φ(σ)p2+Sp4

σ = 0. Apply-
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Fig. 7 Eigenvalues of the linearized problem (18a)-(18e). For two cases (Sp = 10, J = 2, µa = 1.4× 104) (sub-figures A & A′) and (Sp = 11, J =

5, µa = 1.6×104) (sub-figures B & B′), color-plots for log |detP(1)| (sub-figures A & B) and log |detP(2)| (sub-figures A′ & B′) as functions of complex
variable σ are depicted; yellow color corresponds to small magnitudes whereas dark blue color corresponds to large magnitudes. Peaks are identified
numerically and indicated by red circles centers of which are eigenvalues obtained from (20a) (sub-figures A & B) and (20b) (sub-figures A′ & B′).
Vertical white line depicts imaginary axis Reσ .

ing boundary conditions (22a), we find that nontrivial solutions
exist only when

detP(ℓ) = det
[
P(ℓ)

1 P(ℓ)
2 P(ℓ)

3 P(ℓ)
4

]
= 0, with

P(ℓ)
j =


1

p(ℓ)j ep(ℓ)j(
Bℓ(p(ℓ)j )2 −Φ

)
p(ℓ)j(

Bℓ(p(ℓ)j )2 −Φ
)
ep(ℓ)j

 , ℓ= 1,2. (23)

In summary, σ is an eigenvalue of the linearized problem (18) if
roots of characteristic equation for either (20a) or (20b) satisfy
(23).

In Figure 7, we depict contours of for ln |detP(ℓ)(σ)| for ℓ= 1,2
as functions of the complex variable σ , with two different choices
of problem parameters Sp, J, and µa. Eigenvalues σ are identified
by small red circles and correspond to detP(ℓ)(σ) = 0. Given val-
ues of Sp, J, and µa the system is linearly stable if all eigenvalues
σ for both ℓ = 1 and ℓ = 2 are to the left of the imaginary axis
Reσ = 0. When parameters are varied and the rightmost value
of σ crosses the imaginary axis from left to right, the equilibrium
solution transits from stable to unstable state. In Figures 4 & 5
we depict the curve that separates stable and unstable regions
in parameter plane (Sp,µa) (the black solid curve). For B1 = B2,
bending modes in both directions become simultaneously unsta-
ble, leading to 3D beating patterns. However, for B1 > B2, the
most unstable eigenmodes of (20b) lie to the right of the most
unstable modes of (20a). Thus the instability of an anisotropic
flagellum is initiated as a 2D eigenmode oscillating about the soft
bending axis, independent of B, as is observed in the simulations;

see. Sec. 3.1.2, Fig. 5.

3.2.2 Analytic approximation of the linear stability thresh-
old

To gain analytic insight into the onset of instability, we focus
on the linearized dynamics of φ2. The characteristic equation
of (20b), (p(2))4 −Φ(p(2))2 + Sp4

σ = 0, admits solutions p(2)1 =

−p(2)3 =

√
Φ+

√
Φ2−4Sp4

σ

2 , p(2)2 =−p(2)4 =

√
Φ−

√
Φ2−4Sp4

σ

2 . Substi-
tuting these solutions into (23), we find (using Mathematica) that
the growth rate σ satisfies

Φ
2 −Φp(2)1 p(2)2 tanh p(2)1 tanh p(2)2

−2Sp2
σ(1+ sech p(2)1 sech p(2)2 ) = 0. (24)

We now seek solutions of (24) in the limit where spatial mode ex-
ponents p(2)1 and p(2)2 have asymptotically large real parts, which
will turn out the govern the instability of the entire system. In
this limit, (24) becomes Φ2 −Φp(2)1 p(2)2 −2Sp2σ ≈ 0. Substituting

the expressions for p(2)1,2 into this approximate equation yields [see
Supplementary Information]

Φ ≈−Sp2√
σ , (25)

which, when combined with (21), forms an implicit equation for
σ . The threshold of instability is determined by σ crossing the
imaginary axis, so we look for imaginary solutions σ = iΓω, where
ω is a rescaled (real) oscillation frequency to be found. Substitut-
ing into (25), and separating into real and imaginary parts yields
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Fig. 8 Comparison of the first eigenvalue crossing (EVC) between the
numerical simulations and the analytical solution, with B = 5,J = 5.
Black solid and dotted lines are from numerical solutions of the eigenvalue
problem, blue solid and dashed lines are from (27). The lower threshold,
corresponding to the soft axis, governs the linear stability of the system.

K =
µK

2µaβζ
=

ω
(
γω − γ +ω2 +1

)
ω2 +1

, (26a)

G =
Sp2

Γ1/2

2µaβζ
=

√
2ω

(
γ −ω2 −1

)
ω2 +1

, (26b)

where γ = α (1−β/Γ) is a parameter that depends on the motor
kinetics. This defines a curve in G -K space (parametrized by
ω) corresponding to the onset of instability of modes with large
spatial exponents. A judicious linearization of (26a) [see Supple-
mentary Information], after casting in terms of µa and Sp, yields
a closed-form approximation for the threshold for instability

µa ≈
µK +DΓ1/2Sp2

2Cβζ
, (27)

Here, C and D are analytic functions of γ [see Supplementary
Information]; for the parameters in Table 2, γ ≈ 1.96, yielding
C ≈ 0.96 and D ≈ 1.56.

Figure 8 shows that the relation (27) provides an excellent pre-
diction of the stability of the system for the parameter range stud-
ied. We note that (27) describes the instability threshold of modes
with large spatial exponents Re[p1, p2]≫ 1. These modes appear
to also have the fastest growth rates and control the linear stabil-
ity of the entire system. The analysis reveals that unstable modes
at the onset of instability have dimensionless wavelengths that
scale as Sp−1 (dimensional wavelength ∝ (B2τ0/(ξ⊥η))1/4), asso-
ciated with dimensionless forces F1,2 scaling as Sp2 (dimensional
force scale ∝ (B2ηξ⊥/τ0)

1/2). It remains to be seen how well
these scaling relations persist far away from the stability thresh-
old, and whether they provide insight into the nonlinear dynami-
cal regime.

4 Conclusions
In this work, we developed a novel 3D model of eukaryotic flagel-
lum capturing both bending and twist of axoneme structure tied
into dynein motor kinetics. Our main focus is to explore the pos-
sible options of a single flagellum beating dynamics out of a 3D
machinery. In particular, we studied the effects of a differential
resistance to bending in and orthogonal to the principal bending
plane, which occurs due to the internal structure of the axoneme.
Computational results show that self-sustained beating modes are
excited after crossing a Hopf bifurcation that occurs at sufficiently
high motor activity. We find that an isotropic flagellum, which has
identical bending stiffness both bending axes, beats by propagat-
ing helical waves. However, for an anisotropic flagellum, even
a small bias in bending stiffness can lead to a wide variety of
beating patterns that include both planar and non-planar beating
patterns. Simulations also find that the direction of the beating
waves generated are always retrograde (tip-to-base) after the mo-
tor activity µa is sufficient to trigger the Hopf bifurction, while a
further increase in activity will lead to the transition from ret-
rograde to anterograde (base-to-tip) beating. Meanwhile, in an
anisotropic flagellum, depending on the bending stiffness ratio
B, another transition from 2D to 3D beating may also emerge,
leading to different combinations of retrograde/anterograde and
2D/3D beating behaviors.

Computational results show that very flexible flagella with
large motor activity (small Sp and large µa) may result in do-
mains sensitive to initial conditions or exhibiting chaotic patterns,
both associated with large amplitude chaotic beating. The present
model is based on the assumption that internal sliding forces are
generated by small deformations. Further development of the
model to account for nonlinearities large-amplitude sliding may
provide better insights in these behaviors.

Linear stability analysis provides insight into the no-move-to-
beating threshold, showing that beating is initiated along the
softer axis. An approximate analysis identifies that the most un-
stable modes of the dynamics have the shortest allowable wave-
lengths, set by a combination of the bending rigidity, fluid viscos-
ity and the motor kinetic timescale, but only weakly dependent
on the length of the flagellum.

Taking into account flagella dynamics is important in elucidat-
ing swimming strategies of various types of biological microswim-
mers as well as their impact on macroscopic properties of their
habitat, see e.g.50. The 3D model developed here shows promise
in understanding experimentally observed beating patterns30,32

and their relation to motor kinetics.

Though here we consider only eukaryotic flagella rigidly at-
tached (clamped) to an immobilized surface, our computational
model can be further developed to describe fully mobile mi-
croswimmers. This may include situations where one or more
active flagella propel a head of a finite size through fluid. It is
noteworthy that 2D flagellum models that are set free to swim in
this way exhibit beating patterns that are qualitatively different
from their clamped analogs. It is pertinent to ask how our 3D
flagellum model including bending anisotropy and twist will be
modified when similarly relaxed to a free-swimming state. Such
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a model may deepen our understanding of the swimming dynam-
ics of eukaryotic microorganisms.
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