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Enhanced clamshell swimming with asymmetric beating
at low Reynolds number

Shiyuan Hu,abc Jun Zhang,abc and Michael J. Shelley∗ad

A single flexible filament can be actuated to escape from the scallop theorem and generate net
propulsion at low Reynolds number. In this work, we study the dynamics of a simple boundary-
driven multi-filament swimmer, a two-arm clamshell actuated at the hinged point, using a nonlocal
slender body approximation with hydrodynamic interactions. We first consider an elastic clamshell
consisted of flexible filaments with intrinsic curvature, and then build segmental models consisted of
rigid segments connected by different mechanical joints with different forms of response torques. The
simplicity of the system allows us to fully explore the effect of various parameters on the swimming
performance. Optimal included angles and elastoviscous numbers are identified. The segmental
models capture the characteristic dynamics of the elastic clamshell. We further demonstrate how the
swimming performance can be significantly enhanced by the asymmetric beating patterns induced
by biased torques.

1 Introduction
Reciprocal motions at low Reynolds number (Re) in Newtonian
fluids cannot generate net translations, a fact known as the scal-
lop theorem1,2. Non-reciprocal kinematics that break time re-
versal symmetry can lead to locomotion. In the biological realm
many microorganisms use elastic appendages to swim. The bac-
teria flagella are helical and driven by rotary motors at the base3.
Eukaryotic flagella and cilia are internally actuated by distributed
molecular motors and can display various beating patterns4–6.
For example, spermatozoa generate wavelike deformations along
their flagella7. For a ciliated microorganism, each cilium beats
asymmetrically: the cilium extends during the power stoke push-
ing the fluids and bends with larger deformation, thus reduc-
ing the drag during the recovery stroke8. The biflagellate alga
Chlamydomonas adapts an effective gait during locomotion that
resembles ‘breaststroke’ swimming as its two flagella asymmetri-
cally bent during the power and recovery strokes9,10.

The design and optimization of artificial swimmers are impor-
tant research areas, related to biological locomotion11, with ap-
plications to pumping, mixing, and cargo delivery at low Re12–16.
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Biologically inspired microswimmers with synthetic appendages
have been realized and tested experimentally17–21. Simple swim-
mers using discrete degrees of freedom to generate non-reciprocal
motions have also been studied, as demonstrated by Purcell’s
three-link swimmer1,22, the three-sphere swimmer23,24, and the
N-sphere swimmer25. For the optimization of swimming and
propulsion performance, earlier works include finding the opti-
mal waveform for flagellum26,27 and the optimal geometry of the
swimming cell28,29. More recent studies on swimming optimiza-
tion have been devoted to the stroke patterns of the three-link
swimmer30, beating patterns of cilia31, and swimming gaits of
Chlamydomonas32.

A simple design strategy of artificial swimmers involves elas-
tic filaments with boundary actuations, such as angular or po-
sitional oscillations at the filament’s ends, that send travelling
waves along the filaments33–35. The effects of various mecha-
nisms on swimming performance have been studied, such as the
hydrodynamic interactions36–38, the number of filaments39, and
the filament intrinsic curvature38–40. It has been demonstrated in
experiments that the velocity of a swimmer propelled by multiple
filaments may be enhanced by intrinsically curved filaments39,
which was subsequently explored in numerical simulations based
on discrete elastic rod model38. The enhanced swimming was
attributed to the alignment of the propulsion directions of the fil-
aments and their tilt angles. An elastic clamshell moving in two-
dimensional Stokesian fluid has been constructed using a bead-
spring model and found to translate from the hinge point to the
open side41. Spagnolie proposed a rigid clamshell that cleverly
evades the scallop theorem by a successive repositioning of the
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Fig. 1 Schematic of an elastic clamshell swimmer. Two flexible filaments
with intrinsic curvature are hinged at s = −L/2 and mirror-symmetric
about x axis. The swimmer is driven by a time-varying angle α(t) at
s =−L/2 and translating along x axis. The green dashed curves indicate
the shapes of the filaments at rest. The tangent angle θ is defined to
increase counterclockwise from −π to π.

hinge point, and generalized the design to include elasticity and
multiple segments42. However, the mechanical design and op-
timization of low-Re swimmers with multiple filaments still re-
mains largely unexplored.

In this paper, we study the dynamics of a simple multi-filament
swimmer, a clamshell consisting of two arms hinged at one com-
mon end without load, moving in a three-dimensional Stokesian
fluid. The slender and inextensible filaments are modeled using
a non-local slender body approximation with hydrodynamic in-
teractions (HIs)43. We also construct a segmental model with fi-
nite degrees of freedom by replacing the flexible filaments with
jointed rigid segments. As functions of the relative deflection
angle between the rigid segments, different forms of passive re-
sponse torques at the joints are considered, which add rotational
resistance to the filament dynamics. In particular, we consider bi-
ased response torques that mimic flexible filaments with nonzero
intrinsic curvature. The asymmetric beating patterns generated
by the biased torques significantly increase the swimming speed
and efficiency.

We present the theoretical formulation of the elastic clamshell
in Sec. 2.1 and that of segmental model in Sec. 2.2. The deriva-
tion of boundary conditions and details on numerical methods are
included in Appx. A and B. We discuss our main results in Sec. 3
and finally conclude this work with remarks in Sec. 4.

2 Theoretical formulation

2.1 Elastic clamshell

Consider a slender, inextensible and elastic filament of radius a,
length L (with aspect ratio ε = a/L� 1), and bending rigidity
B, moving in a quiescent three-dimensional Stokesian fluid of vis-
cosity µ with the filament’s motion confined to a two-dimensional
plane. The filaments have an intrinsic curvature κ0, taken as con-
stant along the filament. Denote the filament centerline by r(s)
with the signed arc length s∈ [−L/2,L/2]. The unit tangent vector
p = rs = cosθ x̂+ sinθ ŷ with θ the tangent angle. The unit normal
vector p⊥ = ps/θs =−sinθ x̂+cosθ ŷ. We describe the filament as
an Euler-Bernoulli beam with its energy given by

E =
1
2

B
∫ L/2

−L/2
(κ−κ0)

2ds+
1
2

∫ L/2

−L/2
T (|rs|2−1)ds, (1)

where the local curvature κ = θs. The first term is the bending
energy and the second term imposes the inextensibility of the fil-
ament with T the filament tension. The filament force per unit
length f upon the fluid can be derived from the variation of E

with respect to a small and arbitrary shape deformation δr, i.e.,
δE =−

∫ L/2
−L/2 f ·δrds, leading to,

f =−B [rssss +κ0 (κp)s]+ (Tp)s , (2)

From non-local slender body theory43, the velocity of the fila-
ment centerline rt is governed by a balance of filament forces and
viscous drag:

8πµ(rt −U) = [c(I+pp)+2(I−pp)] · f, (3)

where c= | ln(ε2e)| and U is the nonlocal flow field induced by the
filaments. Using the inextensibility condition, rs · rst = 0, Eq. (3)
can be manipulated to give the equation for the tension,

2cTss− (c+2)θ 2
s T =−8πµUs ·p−6cBθ

2
ss− (7c+2)Bθsθsss

+(c+2)Bθ
4
s − (c+2)Bκ0θ

3
s +2κ0Bθsss,

(4)

The evolution equation of the tangent angle θ can be derived
from θt = rst ·p⊥,

8πµθt +(c+2)Bθssss = 8πµUs ·p⊥+(9c+6)Bθ
2
s θss

+(3c+2)Tsθs +(c+2)T θss− (4c+4)κ0Bθsθss.

(5)

Equations (3), (4), and (5) are the governing equations of the dy-
namics of a flexible filament with intrinsic curvature in Stokesian
flow.

We construct a clamshell swimmer with two mirror-symmetric
flexible filaments jointed at s = −L/2 (Fig. 1). The swimmer is
driven by a sinusoidally-oscillating angle at the hinged point be-
tween the filaments:

α(t) = α0 [sin(2πt/τ0)+1] , (6)

where τ0 is the oscillation period, and α0 is the actuation am-
plitude and α ∈ [0,2α0]. Here, α0 is limited to avoid filament
intersections. Due to the mirror symmetry, we only consider the
dynamics of the upper filament r(s, t). The background velocity U
in Eq. (3) is the flow induced by the motion of the two filaments,
which are associated with distributions of fundamental solutions
of Stokes equation along the filament centerline and which cap-
ture nonlocal hydrodynamic interactions. There are two contri-
butions to U, U(s) = V1[f](s)+V2[f](s). The flow field induced by
the filament upon itself, V1, is given by

V1(s) =
1

8πµ

∫ L/2

−L/2

[
I+ R̂R̂
|R|

· f(s′)− I+pp
|s− s′|

· f(s)
]

ds′, (7)

where R = r(s)− r(s′). The flow field induced by the other fila-
ment is given by

V2(s) =
1

8πµ

∫ L/2

−L/2

I+ R̂R̂
|R|

· f(s′)ds′, (8)
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(b)

(a)

Fig. 2 Segmental model of the elastic clamshell. (a) Rigid filaments are
connected using mechanical links such as torsional springs at J2. (b) The
linear torque (blue dashed line), limiting torque (red line), and rectified
torque (green dotted line) applied at J2 as functions of the deflected angle
θ1−θ2. The inset shows a possible mechanical hinge that cannot open
outwards with a constraint torque.

where R = r(s)− q(s′) and q is the position of the other fila-
ment. The system can be non-dimensionalized using length L,
force B/L2, and time τ0. One resulting dimensionless parame-

ter is the elastoviscous number, η = L
/(

Bτ0
8πµ

)1/4
. In the small η

regime, the filaments are nearly rigid with elastic force dominat-
ing viscous force; in the large η regime, the filaments are very
flexible with viscous stress dominating elastic stress.

The necessary constraints and resulting boundary conditions
are given in Appendix A. We solve the set of partial differential
equations given by Eqs. (3)–(5) numerically based on a second-
order finite difference scheme44. Due to the nonlinearity we use
Newton’s method to solve the tension equation. To avoid the
stability limit for the time-step size arising from the fourth-order
derivative, we use a second-order implicit/explicit backward dif-
ferentiation scheme for the time stepping and treat the fourth-
order derivative implicitly. More details of the numerical methods
are given in Appendix B. The control parameters include the os-
cillating amplitude α0, elastoviscous number η , and the intrinsic
curvature κ0.

2.2 Segmental model with rigid filaments
We develop a second model by replacing each flexible filament
with two rigid segments of different lengths (see schematic in
Fig. 2a). Below we use subscript integer to denote quantities asso-
ciated with segment 1 and 2. The total length of the two segments
is fixed, L1 +L2 = L, and we vary their length ratio, γ = L1/L. The
two segments are connected with different mechanical joints at
J2. The orientation of segment 1 is kinematically driven with the
angle dynamics the same as Eq. (6) and segment 2 is passively
responding (subjected to the rotational resistance applied by the
mechanical joint). The centerline of each segment is described by
a straight line rk = rc

k + skpk for k =1, 2, where rc
k is the center-of-

mass (COM) position and pk = (cosθk,sinθk) with θk the segment
orientation.

The dynamics of each rigid segment is governed by Eq. (3) with
the constraint that the total x-component force is zero,∫ L1/2

−L1/2
f x
1 ds1 +

∫ L2/2

−L2/2
f x
2 ds2 = 0. (9)

The COM velocity of segment 1 can be decomposed into two com-
ponents: the translation with J1 and the COM rotation around
J1. Since J1 only moves along the x-axis due to symmetry, the
y-component COM velocity of segment 1 is determined by the ro-
tation around J1,

ẏc
1 =

L1

2
θ̇1(t)cosθ1, (10)

where θ1 is prescribed by Eq. (6), θ1 = α(t). The dynamics is
further subjected to the constraints that the velocities of the two
segments at J2 are the same,

ṙc
1 +

L1

2
ṗ1 = ṙc

2−
L2

2
ṗ2. (11)

Finally, we balance the hydrodynamic torque acting upon seg-
ment 2 with the response torques by the mechanical joints at J2,∫ L2/2

−L2/2
(s2 +L2/2)p2× f2 ds2 = σ [θ1,θ2]ẑ. (12)

The simplest σ is a linear function of the relative angular deflec-
tion (blue dashed line in Fig. 2b): σ = K∆θ , where ∆θ = θ1−θ2.
The linear torque can be generated by a torsional spring with elas-
tic modulus K. Another variant is a limiting torque implemented
as a piecewise function (red line in Fig. 2b):

σ =


σn, ∆θ < σn/K;

K∆θ , σn/K ≤ ∆θ ≤ σp/K;

σp, ∆θ > σp/K.

(13)

The above torque may be generated by a mechanical joint simi-
lar to the one in a ‘torque wrench’. We also consider a rectified
torque (green dotted line), which has a different elastic modulus
K′ when ∆θ > 0 and K′� K. These different forms of torques do
not add a hard constraint on ∆θ . To implement a locked hinge
similar to the one shown in Fig. 2 inset, a constraint torque σc is
needed to prevent θ2 from increasing further when ∆θ becomes
smaller than a threshold θm during the power stroke, i.e., σ = σc

when ∆θ < θm and θ̇1 < 0; σ = K∆θ otherwise. The constraint
torque is exactly the hydrodynamic torque needed to keep θ̇2 = θ̇1

(∆θ fixed), which can be written out explicitly if the nonlocal in-
tegral in Eq. (3) is ignored,

σc =
πµL2

2
c+2

[
4(−ẋc

2 sinθ2 + ẏc
2 cosθ2)+

2
3

L2θ̇1

]
. (14)

Compared with the infinite-dimensional elastic clamshell, the seg-
mental model has only 4 discrete degrees of freedom, described
by rc

1, θ1, θ2.
We non-dimensionlize the system by scaling lengths on L, time

on τ0, and forces on µL2τ
−1
0 . The dimensionless control parame-

ters include the segment length ratio γ, the elastoviscous number,
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Fig. 3 (a) Time-lapse of the deformations of the elastic clamshell over
one oscillation period with η = 3, κ0 = 0, α0 = 1.1, and c = 15.0 during
the recovery stroke (blue) and power stroke (red). Time runs from blue
to red. See supplemental videos showing motions of the elastic clamshell
with different parameters. (b) Swimming speed |〈Uc〉| shown as a single-
peaked function of α0 and η.

η = L
/
(Kτ0/µ)1/3, and the torque-bias parameters σn, σp, K/K′,

and θm. At each time step, a linear system from Eq. (3), (9)–(12)
is solved to determine ṙk, θ̇k, and fk. The set of ordinary differ-
ential equations thus obtained are then evolved using a 4th-order
Runge-Kutta scheme. For both the elastic clamshell and the seg-
mental model, the filaments are not self-intersecting for the range
of parameters explored in this work.

3 Results and Discussion

3.1 Elastic clamshell
The motion of the clamshell swimmer in each period consists of
a recovery stroke with the two filaments opening (α̇ > 0) and
a power stroke with the two filaments closing (α̇ < 0). The fila-
ments are bent inward due to the viscous drag during the recovery
stroke and the COM moves towards the +x direction; during the
power stroke, the filaments are bent outward and the COM moves
towards the −x direction. This asymmetry in the filament’s defor-
mation leads to a net translation after one period (Fig. 3a). We
compute the time-averaged COM velocity 〈Uc〉= 〈Uc〉x̂, where the
time-averaged swimming speed is given by

〈Uc〉=
1

Lτ0

∫ L/2

−L/2

∫
τ0

0
rt · x̂dsdt. (15)

Here, forward swimming is when 〈Uc〉 < 0 and backward swim-
ming is when 〈Uc〉 > 0. In Fig. 3b, we show the contour plot
of |〈Uc〉| as a function of η and α0 with zero intrinsic curvature

Fig. 4 (a) 〈Uc〉 as a function of κ0 for three different values of η. (b),
(c) Time lapse of the deformations of the upper filament for (b) κ0 =−1
and (c) κ0 = 1 with η = 3.0. Blue: recovery stroke; red: power stroke.

κ0 = 0. Given an included angle α0, 〈Uc〉 is maximized around
η ≈ 2.7. At small η , the filaments are relatively rigid. The net
translation over one period is small due to nearly reciprocal mo-
tions; at large η , viscous force dominates and the filament’s de-
formation is confined around the actuation point (at s = −L/2)
with the filament tail (at s = L/2) barely moving, leading to small
propulsion. On the other hand, given η , there exists an optimal
value of α0. The optimal α0 is around 1.1 when η = 2.7. When α0

approaches π/2 (≈ 1.57), the propulsions from the two filaments
nearly align with the y-axis and are opposite to each other. The
cancellation between them leads to a small 〈Uc〉 along x direc-
tion. At the opposite limit, where α0 → 0, 〈Uc〉 is small due to
small actuation amplitude.

The intrinsic curvature κ0 has a strong effect on the swimming
velocity (Fig. 4a). When κ0 < 0, the two filaments are curved in-
ward at rest, and |〈Uc〉| is increased significantly. For κ0 = −1,
|〈Uc〉| is nearly tripled compared with κ0 = 0. Figure 4b shows
that the beating pattern for κ0 =−1 resembles that of cilia: com-
pared with Fig. 3a, the filaments are bent significantly during the
recovery stroke, and the filaments stretch out straight during the
power stroke. Over one period, the net displacement along the
−x direction is larger than that of κ0 = 0. When κ0 > 0, |〈Uc〉| de-
creases and the swimming direction is even reversed (backward
swimming) for sufficiently large κ0. The beating patterns shown
in Fig. 4c indicate that the power strokes become ineffective with
larger deformation and thus yield less propulsion. But the re-
covery strokes become stronger, leading to a net displacement
along +x direction. The above effect of the intrinsic curvature is
consistent with previous numerical simulations and the reverse
swimming at large κ0 is attributed to a closer alignment of the
propulsion force with the opposite direction38.

3.2 Segmental model

In the segmental model when the response torque at J2 is zero,
the motion is reciprocal and there is no net displacement over one
period, as shown by the beating patterns in Fig. 5a and the COM
location xc(t) in Fig. 5d (dark curve). With a linear torque, sym-
metric in both bending directions, the two-linked rigid segments
resemble a flexible filament of zero intrinsic curvature. The beat-
ing patterns become non-reciprocal (Fig. 5b) and the swimmer
translates toward the −x direction (blue curve). As a comparison,
the displacement of the elastic clamshell with the velocity-optimal
parameters is also shown (purple curve). Its backward displace-
ment along the +x direction during the recovery stroke is larger
than that of the linear-torque swimmer. With the limiting torque
and the rectified torque, the two-linked rigid segments resem-
ble a flexible filament with nonzero intrinsic curvature. During
the recovery stroke, the positive torque is limited by σp, which
is smaller than the torque applied by the torsional spring when
the relative deflection ∆θ > σp/K. This allows ∆θ to reach larger
values, and the orientation of segment 2 tends to align with its
direction of translation, as shown in Fig. 5c; therefore the viscous
drag is reduced. As a result, the swimmer displacement after a
full recovery stroke is smaller and even reversed toward the −x
direction, leading to a larger swimming speed. The beating pat-
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Fig. 5 Reciprocal and nonreciprocal motions of the clamshell swimmer
with γ = 0.5, α0 = 1.1, and c = 10.0. (a)–(c) Time lapse of the segmental
model for (a) zero σ , (b) linear σ with η = 0.8, and (c) limiting σ with
η = 0.8, σn = −1.0, and σp = 0.15. Blue: recovery stroke; red: power
stroke. Time goes from blue to red. Only half swimmer is shown due to
symmetry. In (a), recovery strokes overlap exactly with power strokes.
See supplemental videos showing motions of the segmental model with
different parameters. (d) The COM location xc/L1 as a function of time
for the segmental model with different forms of torques including the
three cases shown in (a)–(c), the rectified torque with η = 0.8 and K/K′ =
15, and the constraint torque with η = 1.0 and θm = 0. The elastic
clamshell is also shown with η = 2.5 and κ0 = 0. ‘HIs = 1/0’ corresponds
to with and without hydrodynamic interactions between filaments. The
initial time period is discarded with the positions at t = 1 shifted to the
origin.

terns of the swimmer with either the rectified torque or constraint
torque are similar to Fig. 5c. Below we mainly focus on the results
of the limiting torque.

The hydrodynamic interactions between filaments slightly en-
hance the swimming performance of the elastic clamshell, as
shown by the difference between the dark dotted line and the
purple line in Fig. 5d. This is due to the fact that the velocity of
each filament is opposite to the local induced velocity by other fil-
ament. When the clamshell opens, i.e., two filaments are moving
away from each other, the HIs between them resist their separa-
tion. This induces additional deformations in the filaments that
can reduce the viscous drag. However, in segmental model, the
effect of HIs is negligible (dark dashed line), since the filaments
are rigid and the torques due to HIs is small compared with the
applied torques at J2.

The time-averaged swimming speed of the segmental swim-
mer is given by 〈Uc〉 = γ ẋc

1 + (1− γ)ẋc
2, where ẋc

1 and ẋc
2 are the

x-component COM velocities of the two segments. Similar to the
definition in the previous work22, we define the swimming effi-
ciency as the ratio of the work needed to drag the swimmer with
a fixed configuration at the average swimming speed 〈Uc〉 to the

Fig. 6 Contour maps of |〈Uc〉| and ζ as functions of η and α0 for the
segmental swimmer with γ = 0.5 and c = 15.0. (a), (b) The linear torque.
(c), (d) The limiting torque.

Fig. 7 Effect of the segment length ratio γ on the swimming efficiency ζ

with η = 1.0 and c = 15.0 for linear torque (blue symbols), limiting torque
with σn = −1.0 and σp = 0.15 (red symbols), and rectified torque with
K/K′ = 15.0.

total work done by the displacements of the segments,

ζ =
D〈Uc〉∫ L1/2

−L1/2 f1 · ṙ1 ds1 +
∫ L2/2
−L2/2 f2 · ṙ2 ds2

, (16)

where D is the drag force experienced by the swimmer (without
HIs) when translating with the initial configuration, i.e, θ1 = θ2 =

α0, at the average speed 〈Uc〉. From Eq. (3), we obtain,

D = 4πc−1〈Uc〉
[
1+(c−2)(c+2)−1 sin2

α0

]
. (17)

As shown by the contour maps in Figs. 6a and 6b, for the linear-
torque swimmer, both |〈Uc〉| and ζ have optimal values with re-
spect to α0 and η . For γ = 0.5, the optimal efficiency is about 0.7%
at (η ,α0) = (1.6,0.64). For the swimmer with the limiting torque,
the swimming performance is significantly improved. The swim-
ming speed |〈Uc〉| has an optimal value in η but increases as α0

is increased until the segments intersect each other. The optimal
ζ is achieved at (η ,α0) = (1.2,0.82) and is more than 40% larger
than that of the linear-torque swimmer.
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Fig. 8 (a) Contour map of ζ of the segmental model with the limiting
torque as functions of σn and σp with γ = 0.5, α0 = 0.8, and η = 1.0. (b)
min(∆θ) as a function of σn for different values of η (see legend in (c))
with fixed σp = 0.2. (c) max(∆θ) as a function of σp for different values
of η with fixed σn =−0.5. (d) Effect of the threshold angle θm on ζ for
the constraint torque with η = 1.5, γ = 0.5, and α0 = 1.1.

The segment length ratio γ also has a strong effect on the swim-
ming performance. As shown in Fig. 7, optimal values of γ ex-
ist, which is expected since the swimmer approaches a reciprocal
scallop as γ → 0 and 1. For small γ, L1 < L2, and the amplitude
of motion at J2 is small due to small rotation radius around J1.
This is in analogy with the elastic clamshell of large η , in which
the actuation is confined around J1. For large γ, L1 > L2, the hy-
drodynamic torque upon segment 2 is small due to small segment
length, and so does the response torque σ(θ1,θ2), leading to small
deflection angle |∆θ |. This is in analogy with the elastic clamshell
of small η with small filament deformation.

We now look at the effect of the torque-bias parameters, σn

and σp, on the swimming efficiency ζ . As shown by the contour
plot in Fig. 8a, ζ has a maximum as a function of σn and σp at
(σn,σp) = (−0.3, 0.17). During each period, σn and σp control the
maximum and minimum deflections of segment 2 from segment
1, which can be measured by the maximum and minimum values
of ∆θ over one period. During the power stroke, as σn decreases,
the resistance for θ2 to be larger than θ1 increases; therefore
min(∆θ) increases (Fig. 8b) and segment 2 becomes more aligned
with segment 1. However, for sufficiently small σn, the hydro-
dynamic torque upon segment 2 may not reach σn and min(∆θ)

becomes independent of σn. The existence of optimal values of
σn suggests optimal configurations for the power stroke. When
η = 1.0 (orange triangles in Fig. 8b), the optimal min(∆θ)≈−0.6
at σn =−0.3, i.e., segment 2 is deflected about 34◦ counterclock-
wise relative to segment 1. Optimal power strokes are also ob-
served for the segmental model with constraint torque (Fig. 8d),
as min(∆θ) is controlled by the threshold angle θm. During the re-
covery stroke, as σp increases, the resistance for θ2 to be smaller
than θ1 increases; therefore max(∆θ) decreases (Fig. 8c). Similar
to the effect of σn, the existence of optimal values of σp indicates
optimal configurations for the recovery stroke. When η = 1.0 (or-

ange triangles in Fig. 8c), the optimal max(∆θ)≈ 1.7 at σp = 0.17,
i.e., segment 2 is deflected about 97◦ clockwise relative to seg-
ment 1, which is consistent with the observation from Fig. 5c.
Therefore, the controlled stroke patterns during power and recov-
ery strokes by σn and σp are the key for the improved swimming
performance. Figure 8b and 8c also reveal strong dependence
of min/max(∆θ) on η: for smaller values of η , min/max(∆θ) can
vary appreciably by changing σn or σp; but for sufficiently large
η (small K), they remain constant due to the domination of the
linear part in σ (Fig. 2b).

Finally, we report the sets of parameters that optimize the ef-
ficiency of the segmental model using the Nelder–Mead direct
search method implemented in the SciPy optimize.minimize()
routine45. For the limiting torque, the optimal parameters are
γ = 0.49(1), α0 = 0.82(1), σn = −0.29(1), σp = 0.16(1), and η =

0.99(1), with the optimized efficiency ζ = 1.10(1)%, where the
small uncertainties on the second decimal place are due to dif-
ferent initial guesses and indicate the convergence to a global
maximum. For the rectified torque, the optimal parameters are
γ = 0.48(0), α0 = 0.80(1), η = 1.10(1), and K/K′ = 5.17(2), with
the optimized ζ = 1.22%.

4 Conclusions
In this work, we have numerically studied the dynamics of a two-
arm clamshell swimmer at low Re with hydrodynamic interac-
tions, including an elastic clamshell constructed using flexible fil-
aments and a segmental model constructed using rigid segments.
Optimal elastoviscous numbers and included angles have been
identified. In the segmental model, rigid segments are connected
by mechanical joints with different response torques. The asym-
metric beating patterns induced by the biased response torques
significantly enhance the swimming performance. The effects of
various parameters on the swimming efficiency have been exten-
sively studied. Our results may be useful for the design and opti-
mization of synthetic low-Re swimmers.

The swimming performance may be further improved by opti-
mizing the stroke pattern30. The elastic clamshell may be op-
timized by considering varying stiffness along the filaments46.
Different from our coarse-grained model, a local curvature-
dependent elastic modulus that is distributed along the arc length
has been used in simulations to make the bending of a cilium eas-
ier towards one direction than the other and generate asymmetric
beating patterns5. Minimum models have been constructed using
rigid filaments and linear torsional springs for anchored bound-
ary conditions to capture the main dynamics40,47–49. A linear
torsional spring has also been used to generate localized elastic-
ity at the actuation point in an attempt to improve the propulsion
of a single boundary-driven filament, but has been found to un-
derperform compared to an elastic filament with distributed elas-
ticity46. The limbs of many crustaceans, like shrimp and crayfish,
consist of linked rigid segments and beat asymmetrically as our
segmental model. To mimic the asymmetric beating pattern, rigid
paddles are treated as impermeable during the power stroke and
permeable during the recovery stroke in simulations50. The effect
of hydrodynamic interactions on the dynamics of the segmental
model has been shown to be negligible, but may become impor-
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tant as the number of arms increases and the separations between
them decrease. Our work considers only Newtonian fluids as the
working medium, and the situation can be quite different and sur-
prising in non-Newtonian fluids. There, clamshell swimmers can
evade the scallop theorem by using time-asymmetric strokes51,52

and non-Newtonian rheology can interact variably with body elas-
ticity53.
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A Boundary conditions

First, at s =−L/2, we have,

θ(s =−L/2) = α(t), (A1)

Take a variational derivative of the filament energy with respect
to an arbitrary shape deformation δr,

δE =B(κp⊥−κ0p⊥) ·δrs
∣∣L/2
−L/2

− (Brsss +Bκ0κp−Tp) ·δr
∣∣L/2
−L/2

+
∫ L/2

−L/2
[Brssss +Bκ0 (κp)s− (Tp)s] ·δrds.

(A2)

With no constraints, the boundary conditions at s = L/2 can be
obtained from the first two terms on the r.h.s. of Eq. (A2),

θs = κ0, θss = 0, and T = 0, at s = L/2. (A3)

At s = −L/2, the y-component of the filament force is cancelled
due to the mirror symmetry, so we require the x-component force
to be zero,

2(−Brsss−Bκ0κp+Tp) · x̂ = 0, (A4)

which can be interpreted as a boundary condition for T ,

T =−Bθss tanθ −Bθ
2
s +Bκ0θs, at s =−L/2. (A5)

To keep the separation of the two filaments fixed, we enforce the
y-component velocity of the filament at s=−L/2 to be zero, yt(s=

−L/2) = 0, which generates a boundary condition for θ ,

θsss =(1+2c−1)−1
[
(5θsθss−2κ0θss−2c−1

θsθss

+2B−1Ts) tanθ +
8πµB−1c−1U · ŷ

cosθ

]
.

(A6)

B Numerical methods
We solve the system of governing equations using a finite dif-
ference method. Discretize the arc length with a uniform grid,
s j = j/N-1/2 with j = 0, 1, · · · , N, and denote the quantities at s j

with subscript j. The spatial derivatives are approximated using
a second-order scheme. We discretize time as tn = n∆t and denote
with superscript n the quantities at the current time step tn. Given
the filament position rn, filament tension T n, and θ

n+1
0 = αn+1,

we solve for θ n+1 and T n+1. The θ equation [Eq. (5)] is a fourth
order partial differential equation with a nonlinear boundary con-
dition [Eq. (A6)]. To avoid the strict fourth-order stability limit
for the time-step size, we treat θssss implicitly and use a second-
order backward differentiation formula for the time stepping. The
remaining terms such as lower order derivatives, tension, and the
nonlocal integrals [Eqs. (7) and (8)] are extrapolated from previ-
ous time steps. Schematically, we write,

θ
n+1 +βθ

n+1
ssss = pn,n−1, (B1)

where β is a constant depending on ∆t. We then split θ into two
terms,

θ
n+1 = (θ P)n+1 +(θsss)

n+1
0 θ

H , with (B2)

(θ P)n+1 +β (θ P
ssss)

n+1 = pn,n−1, and (B3)

θ
H +βθ

H
ssss = 0. (B4)

The boundary conditions of θ P and θ H can be inferred from
the boundary conditions of θ and are linear. With (θ P)n+1 and
θ H (only need to form once), we can form θ n+1 if (θsss)

n+1
0 is

known. Since both (θsss)0 and T0 are nonlinear functions of (θs)0

and (θss)0, we solve the tension equation [Eq. (6)] together with
Eqs. (A5) and (A6) for T n+1, (θs)

n+1
0 , and (θss)

n+1
0 using Newton’s

method. Let superscript k denote current solutions at the k-th
Newton’s iteration. We linearize the tension equation and obtain
a system of linear equations for the update δT ,

δTss +Mk
δT = Qk, with (B5)

δ (Ts)0 +mk
δT0 = qk and δTN = 0, (B6)

where Mk, Qk, mk, qk are functions of the current solutions. Solv-
ing for δT , updating Tk, (θs)

k
0, and (θss)

k
0, and iterating until con-

verge, we obtain T n+1 and θ n+1. The above numerical scheme is
second-order accurate both in space and time. For most of our
simulations, we use N = 101 and ∆t = 10−4–10−2.
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