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Exact polarization energy for clusters of contacting
dielectrics

Huada Lian,a∗ Jian Qinb∗

The induced surface charges appear to diverge when dielectric particles form close contacts. Resolving
this singularity numerically is prohibitively expensive because high spatial resolution is needed. We
show that the strength of this singularity is logarithmic in both inter-particle separation and dielectric
permittivity. A regularization scheme is proposed to isolate this singularity, and to calculate the exact
cohesive energy for clusters of contacting dielectric particles. The results indicate that polarization
energy stabilizes clusters of open configurations when permittivity is high, in agreement with the
behavior of conducting particles, but stabilizes the compact configurations when permittivity is low.

1 Introduction
The cohesive energy of particle clusters stabilized by electrostatic
interactions, 1–3 depends on the dielectric permittivities of both
the particles and the medium. Permittivity quantifies the density
of dipoles induced by externally applied electric fields, which is
proportional to polarization in the linear regime. When the per-
mittivity contrast between the particles and the medium is high,
as is often the case, the polarizations from the two sides of the
interface do not fully compensate each other, resulting in the ac-
cumulation of induced surface charges.

Resolving the surface charges is needed to evaluate the elec-
trostatic interactions among particles in close proximity, and is
challenging because polarization is intrinsically a many-body ef-
fect, depending on the positions of all particles. For instance,
careful measurements in colloidal suspensions have shown that
the inter-particle force is non-additive, which is at least partially
due to the polarization effect.4 In another set of experiments on
metallic nanoparticles, it has been found that the aggregation of
multiple particles surrounding a charged particle can be stabilized
by the polarization effect alone. 3,5 More dramatic demonstration
of such polarization effects is found in the so-called like-charge
attraction caused by the strong polarization effect, for particles of
large size or permittivity ratios. 6–8

Computational methods, such as the boundary element
method,9 the spectral methods 10,11 and the image method, 12

have been developed to account for this polarization effect. In
practice, these methods all need to evaluate the induced surface
charge densities in one form or another, and have been success-
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fully applied to study a wide range of problems involving the ag-
gregation of polarizable particles. 13–15 However, when particles
are in close proximity, the surface charge densities apparently di-
verge because the electric field in the narrow gap region is strong
even for a small difference in the electrostatic potentials of parti-
cles. This is analogous to the divergent lubrication force between
approaching solid particles in the Stokesian regime. 16 Resolving
these apparently diverging charge densities requires a high spatial
resolution or a large number of image charges that becomes com-
putationally prohibitive for nearly touching particles. 9,17 For con-
ductors like metalic particles, the functional form of the divergent
charge density has been identified, which was used to isolate the
singularity obscuring numerical calculations and obtain the exact
energy and force for contacting particles. 5 For dielectric particles,
the question remains unsolved.

2 Surface charges on two spheres near contact

In this section, we investigate the diverging behavior of the sur-
face charge densities on dielectrics separated by a small distance.
First, the origin of this divergence for the limiting case of con-
tacting conductors is briefly reviewed. Then, the analysis is gen-
eralized to dielectrics to demonstrate the role of both the small
separation and the dielectric permittivity.

2.1 Surface charges on contacting conductors

To reveal these singular surface charges, one may consider two
conducting particles separated by a small gap, as sketched in
Fig. 1. The points on the two surfaces separated by the minimum
distance, or gap distance h, are referred to as contact points. The
surface charge density is proportional to the strength of the nor-
mal component of electric field on surfaces, according to Gauss’s
law. When h is small, the electric field lines in the gap region
are nearly parallel to the line connecting the two contact points.
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Fig. 1 Surface charges between two particles separated by a small
distance h. The separation of two surfaces at a radial distance r

from the contact points can be approximated by h + r2/a, where
a ≡ 2/(a−1

1 + a−1
2 ). The permittivity of the medium is ϵout. Sur-

face of conducting particles are equipotential with potential set to V and
0. Surfaces of dielectric particles, with permittivities ϵ1 and ϵ2, have
different surface potential distributions ϕ1(r) and ϕ2(r), respectively.

The strength of the electrical field is, in turn, proportional to the
difference in the surface electrical potentials. This relation be-
tween the surface potential and the electrical field is analogous
to that between the longitudinal velocities of converging parti-
cles and the transverse velocity of squeezed fluid velocity in the
lubrication theory. 16

To calculate the surface charge density, both the surface poten-
tials and the vertical separations are needed. Since conductors
are equipotential, the surface potentials can be set to V and 0

respectively. The vertical separation depends on the radial dis-
tance r, and can be expressed within the Derjaguin approximation
as h+r2/a, where a is the harmonic average of radii of curvature
a1 and a2 at the two contact points, i.e., a−1 = (a−1

1 + a−1
2 )/2.

Here, the spherical apexes are assumed for simplicity, but more
general curvatures can be treated similarly. Consequently, the
field strength at radius r is E(r) = V/(h+ r2/a), and the charge
density σ(r) = 1

4π
ϵoutV/(h+r2/a) on the top surface, where ϵout

is the medium permittivity. Integrating σ(r) for r from 0 to R0,
where R0 is a cutoff of order a, results in the singular part of the
surface charge

Qs =
V ϵout
4π

ˆ R0

0

dr
2πr

h+ r2/a
≃ V ϵouta

4
ln

(a

h

)
. (1)

The unity in the logarithmic term is dropped because R0 ≃ a ≫
h. Further, the difference between R0 and a is neglected because
it only leads to a constant shift. Equation (1) shows how surface
charges of the upper surface become singular as the gap distance
decreases. That of the lower surface is also singular, but of oppo-
site sign. In the limit h → 0, the energy does not blow up because
the potential difference V vanishes once particles form contact.

The ratio of the singular charge Qs and the potential difference
V gives the singular part of the capacitance cs = ϵouta ln(a/h)/4,
which has been found previous for spherical dimers. 6,8 The above
analysis shows that this singular capacitance is local. Thus, the
same singularity applies to non-spherical particles, and for aggre-

gates of multiple particles. This fact has been employed to find
the exact energy for clusters of contacting, conducting particles. 5

In this work, the full capacitance array is first numerically calcu-
lated for an ensemble of conducting particles at finite but small
separations. The singular contribution is then subtracted, leaving
a regular part that can be extrapolated to h = 0. Finally, when
the singular and regular parts are pieced together, the variation
of energy with separation is obtained.

2.2 Surface charges on contacting dielectrics

For the dielectric case, a straightforward generalization of the
above treatment fails, because the particles are not equipotential.
The potential difference ∆V (r) needed to evaluate the charge
density in eq. (1) can not be fully specified by the potential differ-
ence between the contact points ∆V (0). The variation of ∆V (r)

with r in the gap region is expected to be quadratic, but the curva-
ture is unknown a priori. In an early and analogous work on the
thermal conduction of composite materials, Batchelor et al. 18 no-
ticed that the potential distribution, which determines the surface
charges, is itself dominated by the contribution from the surface
charges nearby, so that a self-consistent treatment is needed.

To illustrate this point, we consider the dielectric dimer case
in Fig. 1, Let the surface potentials of the two particles be ϕ1(r)

and ϕ2(r), and the surface charges be σ1(r) and σ2(r). although
the analysis can be applied to the cases with arbitrary source of
free charges and under external electrostatic fields. Let ϕ1(r) and
ϕ2(r) be the surface potentials of the two particles with dielec-
tric permittivity ϵ1 and ϵ2, respectively. The net surface charges
density, denoted by σi(r) with i = 1, 2, is the sum of the respec-
tive free charges density and the induced bound charges density.
The surface potential ϕi(r) can be calculated by integrating the
coulombic potential of the respective surface charges. Near the
contact point, we have

ϕi(r) = Ṽi +
1

2πϵi

ˆ ∞

0

dr′̂
2π

0

dθ′
r′σi(r

′)√
r2 + r′2 − 2rr′ cos θ′

. (2)

Here, Ṽi are the contributions to the surface potential from the
surface charge outside the contact region. The integral are those
from the surface charges in the contact region. The prefactor
is 1

2π
(instead of 1

4π
) because of the well-known jump condition

for surface potentials. 19 The distance at denominator is approx-
imated using that for the flat surface, which leads to negligible
error because only the contact region is of concern. The upper
bound is set to infinity for convenience; as we shall see below,
the singular surface charge density dies off rapidly outside the
contact region.

The surface charge density σi(r) in eq. (2) are related to the
potential difference, ∆V (r) ≡ ϕ1(r) − ϕ2(r). By analogy to the
conductor case, the electric field is approximately vertical and its
magnitude is ∆V (r)/(h + r2/a). Then applying Gauss’s law, we
get the charge density on the top surface

σ1(r) = ϵout
(
1− ϵ−1

r,1

) ∆V (r)

h+ r2/a
, ϵr,1 ≡ ϵ1

ϵout
, (3)

where ϵr,1 is the permittivity ratio between the particle and the
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medium. The charge density σ2 is given similarly, but with a neg-
ative sign. Substituting the charge densities to eq. (2) and taking
the difference gives an integral equation for ∆V (r). The depen-
dence on the unknown, Ṽ1 − Ṽ2, can be factored out by introduc-
ing an auxiliary, f(r) ≡ 1−∆V (r)/(Ṽ1 − Ṽ2), which satisfies

f(r) =
ϵ−1
r,1 + ϵ−1

r,2

2π

ˆ ∞

0

dr′
1− f(r′)

h+ r′2/a

4r′

r + r′
K(x). (4)

Here the integral over the azimuthal angle has been replaced
with the complete elliptic function of the first kind K(x), where
x ≡ 4rr′

(r+r′)2 . When ϵ1 = ϵ2, eq. (4) reduces to Batchelor’s orig-
inal result, eq. (4.5) in ref. 18. Since f(r) is proportional to
the contribution from the surface charges in the contact region,
we see that it is dominated by particles with lower permittivity.
When both permittivities approach infinity, we have f(r) = 0

and ∆V (r) = Ṽ1 − Ṽ2, which is identical to the expression for the
conductors discussed above. More general cases are discussed
below.

The solution to eq. (4) is uniquely determined by the nor-
malized distance h/a and the average permittivity ratio, ϵr ≡
2/(ϵ−1

r,1 + ϵ−1
r,2 ). As shown by Batchelor, 18 eq. (4) can be non-

dimensionalized to

f(ρ) =
1

π

ˆ ∞

0

dρ′
1− f(ρ′)

λ+ ρ′2
4ρ′

ρ+ ρ′
K(x) (5)

in which ρ ≡ rϵr/a and λ ≡ hϵ2r/a. The numerically solved f(ρ)

for a few representative λ values are shown in Fig. 2a. For large
gap distance, with λ ≫ 1, f(ρ) is nearly uniform, as expected. For
smaller λ values, f(ρ) decreases from f(0) with r monotonically.
The difference in electric potential at the contact points is pro-
portional to 1− f(0). The value of f(0) increases as h decreases,
and reaches unity at h = 0, ensuring that the surface potential is
continuous at the contact point. The variation of f(ρ) obtained
from the above local analysis is confirmed by directly solving the
full potential distribution for dielectric dimers (inset, Fig. 2a).

Similar to eq. (1) for the conductor case, the singular part of
surface charges on particle 1 is given, with R0 being the regular-
izing cutoff of order a, by

Qs,1 =
(Ṽ1 − Ṽ2)ϵout

4π

(
1− ϵ−1

r,1

) ˆ R0

0

dr
2πr [1− f(r)]

h+ r2/a
(6)

The dependence on the dielectric permittivity appears in the pref-
actor 1 − 1/ϵr,1 and in f(r). The singular surface charge Qs,2

on the particle 2 is given analogously, but with a negative sign.
However, because of the dependence on the dielectric permittiv-
ity, Qs,2 and Qs,1 do not add up to zero. The first term in the
square bracket gives the same ln(a/h) singular contributions as
eq. (1). The second term represents the correction due to dielec-
tric screening.

The singular capacitance defined by c1(h) ≡ Qs,1/(Ṽ1−Ṽ2) also
has these two contributions. In the non-dimensionalized form, it

● ●
●
●
●
●
●
●
●
●
●

●

Fig. 2 (a) Variation of surface potential f(ρ) along the radial direction for
λ = 0, 0.5, 1.0, 10.0 and 1000. The inset shows the normalized potential
difference for spherical dimer with a minimum separation h = 0.1a and
parameters (Qi, ϵi, ai): (1, 100, 1) and (−1, 10, 2). Dots are numerically
solved by a spectral method in bispherical coordinate11 and the solid line
is proportional to 1− f(r). (b) The singular capacitance c1 is presented
as a function of normalized gap distance h/a and relative permittivity ϵr.

reads

c1(h) =
1− ϵ−1

r,1

4
aϵout

(
ln

a

h
− P (λ)

)
,

P (λ) ≡
ˆ ∞

0

dρ
2ρ

λ+ ρ2
f(ρ).

(7)

In the last term, the upper bound is set to infinity because f(ρ) de-
cays rapidly (as ln ρ/ρ, ref. 18). The dielectric correction is con-
tained in the term P (λ), which depends on permittivity ϵr and rel-
ative gap distance h/a through the combination λ = hϵ2r/a. The
behavior of P (λ) is derived from that of f(ρ). For λ ≫ 1, P (λ) is
vanishingly small, so the capacitance is dominated by ln(a/h),
the characteristic behavior of conductors. On the other hand,
when λ → 0, the leading contribution to P (λ) is − lnλ, which
cancels exactly the ln(a/h) dependence, leaving a term 2 ln ϵr that
diverges instead with the average permittivity. Further, we note
that c1(h) approaches the conductor limit for ϵr ≫ 1.

The difference in contact charges between dielectric and con-
ductor cases is solely contained in P (λ). For intermediate sep-
aration, c1(h) shows a singular ln(a/h) dependence that is sim-
ilar to the conductor behavior. However, as long as ϵr is finite,
this logarithmic behavior will eventually be cut off by contribu-
tion from P (λ) at sufficiently small separation. Therefore, un-
like the conductor case, the contact capacitance for dielectrics is
finite at h = 0, and approaches a constant proportional to 2 ln ϵr.
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Physically, the logarithmic h-dependence originates from the ac-
cumulated polarization charges at the interface. It is cut off for
dielectrics because the potential difference, which gives rise to
the polarization charge, is self-consistently determined by the
latter. The weaker polarization effect for dielectrics eventually
can not keep up with the needed potential difference for produc-
ing the polarization charge. The variations of c1 with h and ϵr

are shown in Fig. 2b. The crossover can be estimated by setting
λ = hϵ2r/a = 1. The logarithmic divergence, although being cut
at small gap separation, still plagues numerical calculations in
practice. 20

This type of crossover behavior has been confirmed in a study
on dielectric spherical dimers using the image method. 21 The lim-
iting value of the capacitance 2 ln ϵr as well as the crossover is also
consistent with the analytically known result between a conduct-
ing sphere and a dielectric plane. 22 However, unlike these two
work on dimer particles, Batchelor’s result is strictly local, sug-
gesting that the same type of singularity as represented by eq. (7)
is applicable to all contact region in cluster of multiple dielectric
particles, irrespective of the particle shape. In the following, we
show that, the approach for treating the singularity arising from
the contact between two dielectrics can be used to obtain the en-
ergy of a cluster of dielectrics, yielding the exact contact energy
and distance-dependence with modest numerical cost.

3 Capacitance matrix of a cluster of dielectrics

To calculate the energy of a cluster of charged dielectrics, the
constitutive relation connecting particles’ net charges and mean
potentials by a capacitance matrix is investigated and analyzed in
the close contact condition.

We consider the cluster consisting of n dielectric spheres. Given
the free charge distribution ρ

f
(r), the potential ϕ is governed by

Poisson’s equation ∇ · ϵ(r)∇ϕ = −ρ
f
(r)/ϵout, where ϵout is the

medium permittivity. The (relative) material permittivity ϵ(r) is
set to ϵr ≡ ϵin/ϵout inside particles and unity in the medium. Al-
though the general charge distribution poses no added difficulty,
for simplicity, we focus on the case when only the uniform free
surface charges are present on particles’ surfaces. In such case,
the system energy can be written as surface integrals of the prod-
uct of the free surface charge and the surface potential over all
surfaces. Furthermore, when the surface charge distribution is
uniform, the energy reduces to the sum of the product of the total
charge and the average surface potential. Therefore, we denote
the set of net charges on particles by Q, i.e. the monopolar mo-
ment of ρ

f
(r) on each particle, and mean surface potentials by V.

The net charges and the mean potentials are linearly related, i.e.,

Q = CV, (8)

where C is an n×n “capacitance array”. In this notation, the total
energy can be expressed as E = 1

2
Q ·C−1 ·Q. For convenience,

the total energy E presented below is always normalized by the
self-energy of a single isolated sphere with the radius a and a net
charge q, q2/(8πϵouta). We note that this formulation applies to
arbitrary particle shapes and cluster configurations. If the surface
charge distribution is non-uniform or any external excitation ex-

ists, a multipole expansion of surface charge in terms of dipole,
quadrupole etc. is needed. The constitutive relation eq. (8) and
the quadratic expansion to energy can be generalized to include
the contribution from these higher multipoles and external elec-
tric fields. For the purpose of demonstrating how the contact sin-
gularity is isolated, we focus on the case of the uniform surface
charge distribution.

3.1 Singular capacitance from contacts

Our method for dielectrics is an extension to our earlier work
on conductors. 5 Because the conductors are equipotential, the
mean potential is also the surface potential at every point on the
surface. Since the capacitance C in eq. (8) contains two types
of contributions, one type dominated by close contacts between
neighboring particles, and the other type from the remaining in-
teractions from all particles, we decompose the capacitance C as
follows

Q = (csL+H)V. (9)

Here, cs(h) = aϵout
4

ln(a/h) is the singular capacitance for con-
ductors derived above (assuming that all gap distances are h).
Since cs becomes significant only for small gaps, the entries in the
array L are nonvanishing only for closely neighboring particles.
Specifically, if particle i and j form a close contact, we set the en-
tries Lij = Lji = −1. The diagonal entry Lii equals the number
of close neighbors of the particle i. All other entries of L are set
to zero. The singular capacitance L as defined here is the same as
the adjacency matrix representing the connectivity of clusters (see
ref. 5 for explicit examples). In practice, for a given cluster con-
figuration, we first numerically solve the full capacitance array C

at finite but small h values, then subtract from C the singular
term cs(h)L, to get the regular capacitance H. The h-dependence
of this regular capacitance is then fitted to a straight line when h

is small, allowing us to obtain the full h-dependence for the ca-
pacitance array C and, consequently, the full h-dependence of
energy, down to h = 0.

Generalizing eq. (9) to dielectrics requires two nontrivial mod-
ifications. First, the decomposition in eq. (9) is valid because the
potential of the conductors can be used to evaluate the contact
potential difference. But dielectrics are not equipotential, and the
surface potential at the contact points Ṽi generally differ from the
average potential Vi by a numerical factor that depends on the
dielectric permittivity and the cluster configuration. Its variation
with gap distance h is weak, and approaches a constant as h → 0.
So we generalize eq. (9) to

Q =
(
L̃+H

)
V, L̃ij ≡

1− ϵ−1
r,j

Vj

Ṽ
(i)
j cij , i ̸= j;∑N
k=1Ṽ

(k)
j cjk, i = j.

(10)
Above, the superscript ‘(i)’ in Ṽ

(i)
j indicates that the contact po-

tential is evaluated on the particle j at the contact formed with
the particle i. The singular capacitance cij is given from eq. (7) by

cij =
ϵoutaij

4

(
ln

aij

hij
− P (λij)

)
, which depends on the mean ra-

dius of curvature a, gap distance h, and λ value evaluated for the
particle pair i and j. From the definition, it is clear that L̃ is gen-
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erally not symmetric, which however reduces to the (symmetric)
form identical to eq. (9) in the conductor limit, since Ṽ

(i)
j = Vj

for all contacts on the particle j.

Second, it turns out that the contact potentials exhibit strong
dependence on the second order and more distant neighbors, be-
cause the dielectric screening is comparatively weak (see Fig. 4
below). Therefore, to ensure rapid convergence of the correct
contact potentials, our construction of the adjacency array L̃ con-
tains all pairs of particles. Fortunately, as we shall see below, this
construction requires no extra computation other than evaluating
the surface potentials at additional contact points.

3.2 Numerical determination of regular part H

In order to identify the regular part H using eq. (10), we nu-
merically compute the full capacitance matrix C(h) and all the
contact potentials Ṽ (i)

j , for a range of small but nonzero h values.
We used the boundary element method (BEM) implemented in
the package COPSS20 to solve Poisson’s equation. The solution is
expressed in terms of the induced bound (polarization) charges
σb, which satisfies the following boundary integral equation,

1 + ϵr
2

σb + (1− ϵr)ϵout (Eb +Ef) · n̂ =
1− ϵr

2
σf . (11)

Above, the electric field strength at the surface due to induced
bound charge σb and free charges σf are expressed as surface
integrals (α = b, f),

Eα =
1

4πϵout

ˆ
dS′ r− r′

|r− r′|3 σα(r
′). (12)

By our convention, the surface normal n̂ points outward. For
clusters of multiple particles, it is understood that different parti-
cles may have different values of permittivity ϵr. Equation (11) is
linear in σb and σf . After discretization, the bound charge is ob-
tained by inverting the coefficient array. The apparent divergent
diagonal entries while discretizing the surface integral eq. (12)
can be re-parameterized to reproduce the correct self-energy. Fur-
ther numerical details can be found in ref. 9. In all calculations
by BEM presented in this work (the dimer example used the exact
series expansion 11), we meshed each spherical surface into 17342

triangular patches such that mesh size is about 0.03 a.

In general, for a cluster of n particles, n separate numerical
calculations with n independent charge vectors Q are needed to
determine the full capacitance matrix C. The computational cost
can be reduced by imposing the symmetry of the cluster config-
uration. Subtracting from C the singular contribution L̃ is ex-
pected to give the h-dependence of the regular part H. However,
unlike the conductor case, where the coefficient to the logarithmic
term is exactly known, the singular capacitance L̃ for dielectrics
depends on the calculated contact potentials Ṽ

(i)
j , which is sus-

ceptible to the numerical precision and what is meant by ‘contact
point’ on a surface mesh. In practice, we vary the gap distance h

and compute a few trial values of contact potentials, then select
the one that ensures the difference Hij(h) = Cij − L̃ij converges
linearly with h as h → 0 for all the entries.

●●●●●●●●●●●●
●●

●
● ●

●
●
●●●●●●●●●●● ● ●

●

●

Fig. 3 Electrostatic energy of a pair of identical spheres. (a) and (b):
asymmetric charges Q = (q,−q). (c) and (d): symmetric charges
Q = (q, q). In (b) and (d), dots are numerical results obtained using
our proposed method, and curves are exact results obtained using the
tangent-sphere coordinate (SI†).

4 Results
The regularization scheme is illustrated in three examples to ob-
tain the energy of various clusters of dielectric particles. The na-
ture and the impact of the contact singularity in clusters of di-
electrics are investigated.

4.1 Dimer of identical dielectric spheres
The first example is a dimer of identical dielectric spheres. It
is the simplest example for demonstrating the effects of inter-
facial polarization.6,10,11,23 Except a study on the interaction be-
tween a conducting sphere and a dielectric plane, 22 very few past
work tried to evaluate the energy at small separation, presum-
ably due to the difficulty of resolving the aforementioned contact
singularity. Therefore, we analyzed the polarization effect for di-
electric dimers in close contact, verified the singular behavior in
eq. (7), and showed that eq. (10) yields the full h-dependence
of energy. We studied both symmetric (Q = (q, q)) and asym-
metric (Q = (q,−q)) cases, for a range of permittivity values
(1 ≤ ϵr ≤ 106). The energy at h = 0 is presented as a function of
relative permittivity, which agrees with the exact result (see SI†)
found using the tangent-sphere coordinate.

For the asymmetric case, interfacial polarization enhances the
inter-particle attraction. To illustrate this effect, we subtract the
energy of two isolated spheres from that of a dimer, then plot it
against the gap distance in Fig. 3, for three representative values
of ϵr: 10, 102 and 104. In absence of the polarization effect, the
energy curves would exhibit no dependence on ϵr, and appear flat
over this narrow range of h/a values. As ϵr is increased from 1, we
confirm the expected, stronger distance dependence, as h → 0. In
particular, for the case of ϵr = 104, an apparent logarithmic de-
pendence on h is seen in Fig. 3a, which is precisely the singularity
revealed in eq. (7) and is stronger for higher permittivity values.
On the other hand, when the permittivity ϵr is decreased, this log-
arithmic dependence is cut off at an increasingly larger separation
and becomes almost invisible when ϵr = 10.

The normalized energy difference, as shown in Fig. 3a, eval-
uated at h = 0, is show in Fig. 3b for different ϵr values. This
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contact energy represents the energy gain for bringing two parti-
cles from infinity to contact. In terms of the normalizing energy
unit, q2/(8πϵouta), its value is −1 without the polarization ef-
fect, and becomes more negative as ϵr increases, eventually reach-
ing −2 at ϵr = ∞. 5 The contribution from the polarization effect
for ϵr ≳ 100 is comparable to the coulombic attraction alone.
Moreover, we notice a slow convergence of contact energy for
permittivities ϵr ≳ 103, owing to the weak ln ϵ2r dependence in
the contact capacitance, i.e. eq. (7) at h = 0. Finally, we affirm
our results obtained from eq. (10), by comparing the contact en-
ergies to the exact analytical results (SI†).

For the symmetric case, the interfacial polarization weakens the
inter-particle repulsion, which is seen from the h-dependence of
dimer energy. However, by symmetry, the potential difference in
the gap region vanishes and thus no logarithmic behavior is ob-
served in Fig. 3c. The energy scales linearly with h and a straight-
forward extrapolation gives the contact energy for all permittiv-
ity values plotted in Fig. 3d. A much weaker polarization effect
is found. Even for the conductor case, only about 10% contact
energy can be attributed to polarization effects. The contact en-
ergies converge for ϵr ≳ 100, and reach 2(1/ ln 2 − 1) ≃ 0.88,
in agreement with Maxwell’s result 24 for the conducting dimers.
As for the asymmetric case, the full ϵr-dependence matches the
analytical calculation (SI†). To conclude this example, we note
that the symmetric case is a peculiar example where the contact
singularity is strictly absent. For all other charge ratios, using the
decomposition in eq. (10) to isolate the strong h-dependence is
necessary.

4.2 A cluster of 8 dielectric spheres

The second example concerns the energy of 8 identical spheres
placed at the vertices of a cube, which illustrates the importance
of the second order contact for dielectric clusters. As discussed
above, the singular capacitance L̃ in eq. (10) contains not only
contributions from the nearest neighbors, but also those from the
second-order and higher order neighbors. Therefore, a sphere at
a vertex of a cube forms a secondary contact with its 3 plane di-
agonal vertices, and a third order contact with the body diagonal
vertex. Even though the higher order contributions are minor,
because at such large separation, these contacts cease to be sin-
gular, keeping the second order contribution is essential for ob-
taining the correct linear scaling of the regular capacitance with
gap distance h shown in Fig. 4a.

As in the dimer case, these regularized capacitance allow us
to evaluate the energy at arbitrarily small gap distance. Figure 4b
shows the normalized energies when only one particle is charged,
for which all the energetic contributions come from the interfacial
polarization. Comparing the results from BEM and our regulariza-
tion schemes containing varying order of contact contributions,
it is clear that keeping the higher order singular contribution is
necessary for correctly evaluating the energy for h/a ≲ 0.05. In
contrast, no such terms are needed for the conducting case.

●
●

●
●

●
●

●

●

●●●●●●●

●

□
□

□
□

□
□

□

□

□

◇
◇

◇◇
◇

◇
◇

◇◇◇◇
◇◇◇◇◇◇◇

●
●

●
●

●
●

●

●
●●

●
●●●●●●●

□

●

◇

Fig. 4 (a) Variation of entry H11 in the regular capacitance array against
separation. The results for the other entries are provided in Fig. S3. (b)
Variation of electrostatic energy against separation for dielectric spheres
with ϵr = 100 placed on cubic vertices, where one sphere is charged.

4.3 Energetic stability of clusters of dielectric spheres
The third example is our main result on the energy of clusters,
from which the cohesive energy is obtained by subtracting the
self-energy of particles at infinite separation. We considered two
limiting configurations: the most extended one with all spheres
arranged along a straight line (string), and the most compact one
with all spheres posited at the vertices of the platonic solids (poly-
hedron). In our earlier work on the conducting spheres, 5 the
charges are allowed to flow freely between contacting spheres.
The energy of polyhedron packing is found to be lower than that
of the string packing at a finite separation. However, as the gap
distance decreases, the polarization effects due to contact singu-
larity become increasingly relevant, which ultimately makes the
string packing to be energetically more favorable than the polyhe-
dron packing. For the dielectric cases, we show that the weakened
contact singularity causes another crossover between the relative
stability of string-like and polyhedral packings.

As the previous example, to highlight the polarization effects,
a unit charge q is placed on one sphere. For symmetric polyhe-
dron packing, this charged sphere is arbitrarily chosen. For the
string packing, we considered two extreme placings: at one end
(string-1) and in the middle (string-2). For each particle con-
figuration and charge assignment, we considered two scenarios:
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Fig. 5 Size dependence of electrostatic energy E for string-like and
polyhedral configurations, with fixed total charge. (a) Charge trans-
fer is permitted. Dashed curve: E = (2/n)1/3/(2 ln 2), the en-
ergy for polyhedral configurations of conducting spheres.5 Solid curve:
E = ln(2na/r0)/[n ln 2 ln(2a/r0)], the energy for a conducting cylinder
of the same volume with length L = 2na and radius r0 = 0.816 a.25

(b) Charge transfer is prohibited. The total charge q resides on the mid-
dle particle of the string (string-2) and an arbitrary vertex of polyhedron
(polyhedron). Lines in (b) are guide for the eye.

charge transfer between contacting particles is permitted (Fig. 5a)
and prohibited (Fig. 5b).

When inter-particle charge transfer is permitted, while main-
taining uniform charge distribution on each individual particle,
the energy E can be calculated using Q ·C−1 ·Q/2.5 Minimizing
this energy subject to the constraint of constant total charge q,
the optimal charge assignment is found to be Qe = qC · u/Ce,
where u ≡ (1, 1, · · · , 1) and Ce ≡

∑n
i,j=1 Cij . This implies that

the optimal charge Qe produces identical average surface poten-
tials for all the particles, which generalizes the ‘equipotential’ con-
cept for conductors. Correspondingly, the minimized energy is
given by q2/(2Ce), where the mean capacitance Ce weakly de-
pends on the dielectric permittivity. In this scenario, there is no
need to differentiate string-1 and string-2 configurations. The en-
ergies of string and polyhedron configurations at h = 0 are plot-
ted in Fig. 5a, for ϵr = 10 and 500. For all configurations, the
energy decreases with the cluster size n monotonically since the
redistributed surface charges are further apart. The dependence
on permittivity is surprisingly weak, and the size-dependence is
nearly indistinguishable from that of the conductor case. 5 Two
curves are obtained by treating the cluster as a single conductor

respectively, whose capacitance scales with the length scale of the
cluster, i.e., n1/3 for the polyhedron packing and n/ ln(n) for the
string packing. 5 The extended string packing has a lower cohe-
sive energy because its effective capacitance is higher than that of
the compact polyhedron packing.

More interesting behavior is found (Fig. 5b) when charge trans-
fer is prohibited. The dependence on permittivity is evident for all
three cases: string-1, string-2, and polyhedron. To better visualize
energies of string-2 and polyhedron packing, energies of string-1
is presented in Fig. S4. The energy is lower for the cluster with
higher permittivity, because the polarization effect is stronger.
The energy of string-2 is lower than that of string-1 for identi-
cal n, because the charged particles in the middle of the string
can polarize the particles in two half strings. Further, the ener-
gies for both string-1 and string-2 configurations saturate as the
cluster size grows beyond n ≳ 12 because the polarization effect
is short-ranged, which contrasts the size-dependence of energy
in Fig. 5a. To assess the relative stability of compact or extended
configurations, we then only need to focus on the string-2 and the
polyhedron cases.

Our results indicate that the relative energetic stability depends
on the permittivity. For ϵr = 10, the energy of the polyhedron
packing is lower than the string-2 packing, which is opposite to
the characteristic result for conductors shown in Fig. 5a. There-
fore, we expect a crossover from a stable compact packing to a
stable open packing at intermediate permittivity values. This is
indeed the case shown for ϵr = 500, whereby the energies of com-
pact and open configurations closely trace each other, and the rel-
ative energetic stability changes at n = 4 and n = 8 respectively.
As ϵr is further increased, the energy curves of corresponding con-
figuration will converge to those in Fig. 5a, reversing the relative
stability of open and compact packings.

5 Conclusion
In summary, we generalized our previous work on conducting
particles, 5 and developed a scheme to resolve the singular contact
charges between touching dielectric spheres, which regularizes
the full capacitance array by isolating the singular contributions,
i.e., eq. (10). Using this scheme, we obtain the cohesive energies
for dielectric clusters at zero separation containing up to n = 20

particles, which is difficult to resolve with brutal force numerical
calculations. Our results show that the shape of stable clusters
formed from dielectric particles depends on the permittivity ratio
ϵr: open clusters is more stable for large ϵr, and compact clusters
is more stable for small ϵr.

Our scheme is applicable to systems with arbitrary charge dis-
tribution, packing geometry (including periodic lattices), and
asymmetric interfaces that have different permittivities and radii
of curvature on the contacting particles. Although the exam-
ples presented here all contain uniform free surface charges (i.e.,
monopolar particles), adapting the scheme to contacting dipo-
lar dielectric particles is straightforward. 26 The generalization to
multipolar particles will allow the study of the effect of charge
regulation 27 on contacting dielectrics. Therefore, our scheme
can be applied to study the thermodynamics and electrokinetics
of colloids, where the contact of charged particles is ubiquitous.
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However, for particles suspended in ionic solutions, more efforts
are needed to incorporate the effects of ionic screening and the
packing of polar solvents in the confined gap region. 28,29 In addi-
tion, the role of polarization in the stability of particulate aggre-
gates remains to be quantified experimentally. To put our results
into tests, it is advantageous to examine the aggregates formed
from particles with high permittivity, such as BaTiO3, suspended
in low permittivity liquids, such as apolar organic liquids. On the
theory side, at the heart of our scheme is the contact singular-
ity, which resembles those encountered in the study of thermal
conduction 18 and momentum transport across a narrow gap. 30
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