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Abstract: 

Quantification of environmental impacts through life cycle assessment is essential when evaluating 

bioenergy systems as potential replacements for fossil-based energy systems. Bioenergy systems 

employing localized fast pyrolysis combined with electrocatalytic hydrogenation followed by 

centralized hydroprocessing (Py-ECH) can have higher carbon and energy efficiencies than 

traditional cellulosic biorefineries. A cradle-to-grave life cycle assessment was performed to 

compare the performance of Py-ECH versus cellulosic fermentation in three environmental impact 

categories: climate change, water scarcity, and eutrophication. Liquid hydrocarbon production 

using Py-ECH was found to have much lower eutrophication potential and water scarcity footprint 

than cellulosic ethanol production. Greater amounts of renewable electricity led to lower 

greenhouse gas emissions for the Py-ECH processing. When the renewable fraction of grid 

electricity is higher than 87%, liquid hydrocarbon production using Py-ECH has lower greenhouse 

gas emissions than cellulosic ethanol production. A sensitivity analysis illustrates the major role 

of annual soil carbon sequestration in determining system-wide net greenhouse gas emissions. 

 

1. Introduction 

Production and combustion of fossil fuels, such as liquid fuels derived from crude oil, are 

significant contributors to air and water pollution and contribute to global warming. Such fuels are 

non-renewable as the rate of replenishment is much slower than the rate of depletion. There is a 

need to look for alternative energy production systems that are renewable and less polluting. The 
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U.S. Energy Independence and Security Act (EISA),1 passed in 2007, aims to increase the 

production of cleaner renewable fuels, as part of the overall mission of improving energy security. 

The EISA promotes the production of biofuels as a cleaner and renewable alternative to fossil fuels 

by requiring the use of at least 21 billion gallons of advanced biofuels (with 16 billion gallons of 

cellulosic biofuels) by the year 2022. In accordance with EISA, these advanced biofuels must 

provide at least a 50% reduction in greenhouse gas emissions compared to the baseline established 

in 2005.    

     Fermentation of lignocellulose-derived sugars into ethanol is the most studied advanced biofuel 

system.2-5 The process has been commercially implemented in different countries around the 

world.6, 7 One such example is the recently inaugurated Clariant plant in Romania that is set to 

produce 50,000 tons of bioethanol from wheat straw annually.8 However, traditional cellulosic 

ethanol systems are inherently carbon and energy inefficient as one-third of the biomass carbon is 

lost as carbon dioxide and the process typically does not convert the lignin (accounting for 40% 

of biomass energy)9 into liquid fuel. These inefficiencies are significant opportunities for improved 

biofuel yield.10 Furthermore, significant challenges remain that hinder the widespread 

commercialization of the technology.6, 7 While biomass is a considerable energy resource in the 

U.S., the future demand for biobased energy will be greater10 and will require optimal use of 

renewable resources. This was the motivation for our previous work in which we discussed the 

concept of a bioenergy system with decentralized pyrolysis and electrocatalytic hydrogenation and 

centralized hydroprocessing (Py-ECH) and established its advantages in carbon and energy 

efficiency when compared to traditional cellulosic fermentation to ethanol.11 Research and 

development has been conducted to support the commercialization of biomass fast pyrolysis to 

produce bio-oil.12 The Py-ECH system combines localized fast pyrolysis and subsequent 

electrocatalytic hydrogenation (ECH)13-21 with centralized petroleum refinery-style 

hydroprocessing to produce “drop-in” liquid hydrocarbon fuels. While fast pyrolysis deconstructs 

the biomass to liquid bio-oil, solid biochar, and non-condensable gases, ECH employs mild 

conditions to hydrogenate and upgrade the energy content of the bio-oil so that it is stable for 

storage and transport to a central refinery. At the refinery, the stable bio-oil is subjected to high 

temperatures and pressures in the presence of hydrogen gas to produce liquid gasoline and/or 

diesel-range hydrocarbons.22 In the Py-ECH system, this hydrogen gas is generated from 

electrolysis at the refinery. Corn stover was selected as the feedstock for the analysis, allowing 
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comparison with the cellulosic ethanol (CE) process as documented by Humbird et al. in a National 

Renewable Energy Laboratory (NREL) study.2 Technoeconomic analysis showed a minimum fuel 

selling price (MFSP) of $3.62/gge23 (in 2018$, for a fixed internal rate of return of 10%) for Py-

ECH compared to $3.70/gge for CE.2 However, with improvements in technology, the MFSP for 

the Py-ECH system could drop to approximately $3/gge.23  

     Though many life cycle assessments (LCAs) have already been conducted for CE using 

different biomass feedstocks,24-31 this exercise was repeated here while maintaining consistent 

assumptions for the two systems under consideration. Our primary goal is to compare the two 

technologies under study, namely, Py-ECH and CE, by conducting a full cradle-to-grave analysis, 

including corn cultivation through end-use fuel combustion in vehicles. Previous LCA studies have 

demonstrated the environmental advantages of CE systems over fossil fuel systems. Greenhouse 

gas emissions for CE are 14-16% of the emissions attributed to gasoline from crude oil.32 Life 

cycle analyses have also previously been performed for biomass pyrolysis (followed by upgrading 

using hydrogen gas from different sources) and compared to fossil fuel systems.33, 34 Similarly, a 

recent life cycle analysis on a depot-based bioenergy system has shown a pathway to carbon 

negative cellulosic biofuels.35 The Py-ECH system, however, integrates decentralized biomass 

pyrolysis and electrocatalytic hydrogenation with centralized hydroprocessing and refining. 

Building upon our previous assessments of energy and carbon yield11 and economics,23 we present 

here the LCA environmental impacts of corn stover conversion to hydrocarbon fuels using Py-

ECH compared to cellulosic fermentation to ethanol.  For consistency with our economic study23 

we consider a decentralized system with densification of biomass to bio-oil and stabilization via 

ECH at localized (near the biomass) depots. The bio-oil is sufficiently stable to be transported over 

long distances to a petroleum-style “central” refinery for final upgrading via hydroprocessing. 

 

2. Methodology 

A comparative “cradle-to-grave” life cycle assessment (LCA) was conducted for the Py-ECH and 

the CE processes for three environmental impact categories: climate change, water scarcity, and 

eutrophication. Additionally, the energy return on investment for the two systems was determined 

to compare their fossil energy footprint. The life cycle inventory was built using data from our 

previous work11, Argonne National Laboratory’s (ANL) GREET36 and CCLUB37 models, and a 

NREL report on cellulosic ethanol.2 
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2.1. Functional Unit 

Since the primary function of the two bioenergy systems is to produce liquid fuel, the functional 

unit chosen for the study was 1 MJ of liquid fuel energy to be consumed by an on-road vehicle.  

 

2.2. Life Cycle Impact Categories 

 

Climate Change/Greenhouse Gas Emissions 

Climate change resulting from anthropogenic emissions primarily of carbon dioxide, but also of 

methane, nitrous oxide, and halocarbons, is a pressing global sustainability issue. Greenhouse gas 

(GHG) emissions were determined by calculating the total direct and indirect emissions of carbon 

dioxide, methane, and nitrous oxide, resulting from all component processes in the scope of study. 

GHGs were evaluated in units of g CO2e/MJ of liquid fuel energy. The emission factors of methane 

and nitrous oxide were chosen to be 25 and 298 respectively, in accordance with the 100-year time 

horizon global warming potentials, used in most national and international climate agreements to 

convert emissions of methane and nitrous oxide into CO2 equivalents.38 

Water Scarcity 

Bioenergy systems are inherently water intensive and therefore, water consumption is an important 

parameter. Bayart et al. define freshwater depletion as the “net reduction in the amount/availability 

of freshwater in a watershed or/and fossil groundwater stock. Depletion occurs when freshwater 

consumptive use exceeds the renewability rate of the resource over a significant time period.”39 

Boulay et al. developed characterization factors for water use in LCA based on the amount of water 

remaining in a given watershed per unit area relative to the global average after all human and 

ecosystem demands have been met.40 These characterization factors are known as “AWARE” 

(available water remaining) factors. The Water Scarcity Footprint (WSF) is calculated by 

multiplying water inventory data with AWARE factors to quantify the potential for depriving 

another user of water, which is proportional to the water use and inversely proportional to the water 

availability. The characterization factors range from 0.1 to 100, with 1 for the world average, 0.1 

for areas where 10 times more water is available, and 100 for areas with the greatest water scarcity. 

The average AWARE characterization factors in the United States for agricultural use and non-

agricultural use are 36.5 and 9.5, respectively.41 In the present analysis we used the average 
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AWARE characterization factors (CFAWARE) for the major corn producing states in the Midwest 

(Minnesota, Wisconsin, North Dakota, South Dakota, Nebraska, and Iowa). These states were 

chosen for geographical consistency with the Midwest Reliability Organization-West (MROW) e-

GRID subregion electrical grid. The average AWARE factors for these states for agricultural and 

non-agricultural use are 10.2 and 9.6 respectively. Equations 1-3 are used in evaluating the Water 

Scarcity Footprint (WSF): 

𝑊𝑆𝐹 = 𝑤𝑖. 𝐶𝐹𝐴𝑊𝐴𝑅𝐸    Eq. 1 

𝐶𝐹𝐴𝑊𝐴𝑅𝐸 =
1/𝐴𝑀𝐷𝑖

1/𝐴𝑀𝐷𝑤𝑜𝑟𝑙𝑑 𝑎𝑣𝑔
=

𝐴𝑀𝐷𝑤𝑜𝑟𝑙𝑑 𝑎𝑣𝑔

𝐴𝑀𝐷𝑖
 Eq. 2 

𝐴𝑀𝐷𝑖 =
(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑡𝑦−𝐻𝑊𝐶−𝐸𝑊𝑅)

𝐴𝑟𝑒𝑎
  Eq. 3 

where AMD is availability minus demand (m3), HWC is the human water consumption (m3), 

EWR is the environmental water requirement (m3), and wi is the total inventory of substance i 

(m3). 

Eutrophication  

Biomass production, which is an integral part of all bioenergy systems, depends on the use of 

fertilizers containing nitrogen, phosphorous, and potassium. These fertilizers are a major source 

for eutrophication in aquatic systems, which is defined as excess nutrient availability leading to 

exponential algal and cyanobacteria growth that harms marine sytems.42 The eutrophication 

potentials for the two systems were estimated using the TRACI Model43 for 100 year timespans, 

again in accordance with international climate agreements such as the Paris Agreement and Kyoto 

Protocol. The TRACI characterization factor for estimating Eutrophication Potential is a 

combination of a nutrient potency factor and a transport factor.44 While the potency factor is a 

measure of the effect of a particular nutrient, the transport factor accounts for the release of 

emissions into different media (e.g., air, water), ultimately reaching aquatic systems. Equation 4 

is used to evaluate the Eutrophication Potential (EUP): 

 

𝐸𝑈𝑃𝑖 = Σ (𝑒𝑖. 𝐶𝐹𝑖,𝑗)  Eq. 4 
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where CFi,j is the TRACI characterization factor for substance i in medium j (e.g., air and water), 

and ei is the inventory data of substance i (kg). 

2.3. System Definition 

The results of a life-cycle analysis can vary greatly depending on the establishment of system 

boundaries. The Py-ECH and CE system boundaries were defined by the cultivation of the corn 

plant (for generation of stover) in the beginning and by the combustion of the produced 

hydrocarbon fuel at the end as shown in Figures 1 (a) and (b).  The major system components 

include the feedstock supply, processing at refineries or depots, transport, and fuel combustion. A 

more detailed Py-ECH system flow diagram is presented in the Supplementary Information of our 

previous article.11 For the CE system, similar detailed flow diagrams may be found in the Humbird 

et al. report.2 

 

Figure 1 (a): System boundaries for the Py-ECH bioenergy system 
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Figure 1 (b): System boundaries for the CE bioenergy system 

 

2.4. Time Horizon 

 

A time horizon of 20 years was selected for the LCA to accommodate the transient response of the 

soil organic matter deposition. Soil organic matter is a measure of soil carbon sequestration, which 

can serve to off-set greenhouse gas emissions, and may significantly affect the results. Twenty 

years is sufficient time to account for microbial decomposition and respiration in the soil. Also, a 

20-year time horizon aligns with equipment service lifetimes, as employed in technoeconomic 

analyses.  

3. Life Cycle Inventory (LCI) 

The process flow data for the Py-ECH system were adopted from our previous work, which 

includes the water, energy, and material consumption data for each unit process as reported in the 

Supplementary Information of that work.11 For the CE system, all data were extracted from 

Humbird et al.2 Other key LCI data were taken from GREET and CCLUB models. To qualify the 

collected inventory, data quality indicators (DQI) were assigned using the modified Weidema 

method.45 Originally Weidema et al. suggested five parameters to evaluate data quality: reliability, 

completeness, temporal correlation, geographical correlation, and technological correlation. Toffel 

et al. replaced the completeness parameter with ‘representativeness’ and the temporal correlation 

parameter with ‘data age’. They also split the reliability parameter into the acquisition method and 

independence of data supplier parameters to better characterize the data reliability.46 This modified 

Weidema method has been applied in the current study. Table S1 summarizes these parameters 
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and describes the meaning of the scores assigned to the data on a scale of 1 to 5.47 All life cycle 

data used in this study are listed, with their data quality indicators, in Table S2. Key data and 

assumptions are discussed below for the two bioenergy systems for each of four major areas: 

feedstock supply, processing, transport, and combustion.  

 

3.1. Feedstock Supply  

Corn Cultivation  

     Data pertaining to the cultivation of corn were obtained from GREET.36, 37 We assumed that 

corn is cultivated in a continuous corn cropping system with no tillage. The corn cropland was 

assumed to be previously used for crops or pasture. It was assumed that 60 wt.% of the generated 

corn stover was removed from the fields48 GREET provides two options for stover removal, 60% 

and 30% by weight. The 60 wt.% stover removal option was selected for high stover yield 

recognizing that retaining a minimum of 30% corn stover on the field decreases wind erosion (by 

70% compared to bare soil).49 GREET was used for fertilizer data, including emissions from 

production and soil application. The soil carbon sequestration rate was assumed to be 0.174 Mg 

C/ha/yr for 60% stover removal (derived from 0.273 Mg C/ha/yr for 30% stover removal in the 

CCLUB model, 0 Mg C/ha/yr for 100% stover removal,50 and assuming a linear dependence on 

stover removal). Carbon sequestration rate is the net accumulation of soil carbon over the selected 

time horizon, and it accounts for the translocation of photosynthetic carbon, the carbon in root 

exudates, the carbon deposited in soil organic matter pools, and the carbon liberated as carbon 

dioxide due to soil respiration and microbial decomposition. Alvarez51 showed that the rate of soil 

carbon sequestration is a function of soil texture, rainfall, tillage, stover removal, soil depth 

measured, crop rotation system, and geographical location. Sequestration rates reported for no-till 

corn cultivation vary from 0.1 Mg C/ha/yr to about 5 Mg C/ha/yr, depending on these factors.50, 

52-58 Given this wide range, a sensitivity analysis was performed to determine the effect of carbon 

sequestration rate on GHG emissions.  

     Figure 2 shows the carbon flow for the CE and Py-ECH systems, assuming 60% stover removal. 

The carbon flows for both systems are identical, starting with photosynthetic carbon, and only 

differ in the fate of the processed corn stover.  As reported previously,11 the Py-ECH system directs 

2.4 times more biomass carbon to fuel products than the CE system and produces a significant 

amount of biochar.  In the cellulosic ethanol process, less than a third of the corn stover carbon 
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ends up in the ethanol product, with the remainder lost as CO2 during fermentation and lignin 

combustion.   

 

 

Figure 2: Carbon flow of the (a) Py-ECH and (b) CE systems. All values are percentages of total 

photosynthetic carbon. 

 

Parameters for amount of water required for cultivation was taken from GREET. Water can be 

separated into three categories: blue (surface water and ground water), green (water associated 

with precipitation) and grey (water required to incorporate pollutants being discharged into 

freshwater bodies).59 For crop cultivation, GREET only includes blue water consumption, where 
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consumption is defined as the amount of  freshwater used by the process for anthropogenic 

purposes and not returned due to evapotranspiration or reduced quality.60 Green water 

consumption in cultivation may be neglected because it does not affect blue water use,61-64 

assuming that green water consumption does not change due to crop cultivation.62, 64 Grey water 

was not considered because its environmental consequences overlap with eutrophication, which is 

already included in the present study. Atmospheric eutrophication emissions of nitrogen oxides 

(NOx, contributing to eutrophication potential) in the cultivation stage due to fertilizer application 

and production were extracted from GREET. Ammonia emissions due to volatilization of a 

fraction of the applied fertilizers were estimated from IPCC data.65, 66 All three fertilizer nutrients 

(N, P, K) were considered. Emissions due to N and P fertilizer runoff to water resources were 

obtained from a comprehensive report published by NREL in 2005,66 which investigated the 

environmental impacts of fertilizer usage for corn, soybean, and stover. Nitrogen runoff to surface 

water was included, but runoff reaching groundwater was assumed negligible due to geographic 

assumptions. The value for N surface runoff (as nitrates) was fixed at 24% of total fertilizer N 

added, as assumed in GREET.66 Phosphorus is assumed to contribute to surface water pollution 

via runoff. There are negligible quantities of P in the atmosphere67 and groundwater pollution is 

assumed negligible due to strong sorption of P to soil minerals. The P runoff (as phosphates) to 

surface water was assumed to be 7% of the total phosphorus added as fertilizer, based on reported 

values varying from 1% to 14%.66 Potassium has minimal contribution to water eutrophication. 

 

Collection of Stover 

The three basic operations associated with stover harvesting are windrowing, baling, and 

collection.68 A stalk chopper/windrower is used to avoid collecting foreign material with the stover 

feedstock, baling facilitates collection and transportation, thereby reducing transportation costs.69, 

70 Harvesting equipment (tractors, balers, combines, swathers, sprayers, tillers etc.)71 consume 3.58 

gallons of diesel fuel per acre for full harvest of stover, excluding grain. The emissions associated 

with diesel combustion were taken from GREET. Stover storage, transportation, and farm handling 

losses are 8.4%, 2%, and 2% of dry stover, respectively.36 Emissions from decomposition of lost 

biomass are dependent on temperature and moisture content72 and were estimated to be between 

2.3 and 8.4 g CO2 e/MJ of fuel produced for the cellulosic ethanol processes.73 Based on the ratio 

of carbon present in the feedstock biomass (on a produced fuel energy basis) an average of 5.35 g 
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CO2 e/MJ was computed for the CE system, while a value of 2.3 g CO2 e/MJ fuel produced was 

calculated for Py-ECH. These emissions are equal for both processes on a per kg feedstock basis. 

 

3.2. Processing 

 

     LCI data for electricity and carbon sequestration were obtained from our Py-ECH system model 

that is based on mass and energy balances.11 Similarly, data for the CE system were obtained from 

the Humbird et al. report on cellulosic sugar fermentation to ethanol.2 For both models, the 

emissions from electricity generation were estimated using the MROW electrical grid data, which 

includes the states of Minnesota, Iowa, West Wisconsin, North Dakota, South Dakota, and 

Nebraska. To estimate the carbon credit from biochar application (for the Py-ECH system only), 

the biochar was assumed to be 82.5% carbon, based on literature values in the range of 65-100 

wt.%.74, 75 Biochar application has additional soil benefits including decreased fertilizer 

requirement, reduced NOx emissions, and decreased leaching of soil nutrients76, 77 that leads to 

decreased emissions. However, these benefits are difficult to estimate and were not considered in 

this analysis.  

     Supplemental process heat is required at the central refinery in the Py-ECH system. This heat 

was assumed to be provided from natural gas with a net heating value of 52.2 MJ/kg. Carbon 

dioxide emissions from natural gas combustion at the Py-ECH refinery were computed 

stoichiometrically and associated NOx emissions were estimated from GREET. No external heat 

and power are required by the CE system as it burns the biomass lignin and the wastewater 

treatment sludge to provide heat and electricity for all plant utilities. Excess electricity is produced 

and assumed to be sold to the grid, resulting in associated credits for the CE system. The Py-ECH 

depots are self-sufficient in heat and power requirements owing to combustion of the non-

condensable gases (NCG) generated during pyrolysis. NOx emissions from burning lignin and 

sludge for CE, and CNG for Py-ECH, were assumed to be 0.31 kg/MWhr of fuel net heating value.2  

     Regarding water consumption in the CE system, most of the water is recycled by treating 

wastewater, though well water is consumed to make up for the cooling tower evaporative losses 

(about 1.2 million cubic meters per year).2 The Py-ECH system utilizes water predominantly in 

the ECH and electrolysis units, with a combined total of about 0.2 million cubic meters per year.11 

While most emissions from the processing stages of CE and the Py-ECH are atmospheric in nature, 
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there is one liquid waste stream (the treated 50% brine solution from the wastewater treatment 

plant) in the CE system.2 However, with recent advances in membrane-based and thermal-based 

technologies for brine treatment, the concept of zero-liquid-discharge systems is fast emerging.78 

Therefore, no liquid discharge stream was assumed in the present analysis. Consequently, no grey 

water consumption or water eutrophication was considered for the processing stage of either 

system. 

 

3.3. Transport 

To model the transportation of corn stover, trailer trucks (53 ft long, 8.5 ft wide, 13.5 ft high) were 

assumed.68, 79 The 80,000-lb vehicle weight limit for roadways in Iowa served as a constraint. 

Assuming the average dry weight of a 3 ft x 5 ft x 8 ft bale to be 950 lbs, the average wet weight 

for a similarly sized bale with 20% moisture is approximately 1,200 lb.79 If the weight of the trailer 

is assumed to be 30,000 lbs, then a maximum of 50,000 lb (48 bales) can be transported per trip. 

Volume constraints would allow up to 63 bales per trip, hence weight limitation is the limiting 

constraint. The average corn stover collection radius from the fields to the biorefinery in the CE 

system is assumed to be 50 miles (80 km) for the assumed biorefinery size.48 For the Py-ECH 

system, the modeled distance between the corn fields and upgrading depots is 7 miles (11.5 km) 

based on an optimization for the lowest cost of finished fuel.80 This is consistent with literature 

predictions of distances between 9 and 55 km for optimal transport distance.81 Similarly, the mean 

distance from depots to the central refinery was determined as approximately 51 km, by 

minimizing the final fuel price. The mean distance for transporting the finished fuels from the 

refinery to distribution terminals and then to pumps is assumed to be 110 miles82 and is the same 

for the Py-ECH and CE systems. Diesel truck fuel economy (assumed to be 5 miles/gallon) and 

emissions were obtained from GREET. 

 

3.4. Combustion 

 

Greenhouse gas emissions for complete combustion of finished fuels were calculated for both 

processes. NOx emissions, contributing to eutrophication potential, were estimated using GREET 

for gasoline and ethanol for Py-ECH and CE systems, respectively. 
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3.5. Allocation of Agricultural Activities 

 

     Corn cultivation yields both corn grain and stover, thus the burdens and benefits due to 

cultivation, including below-ground carbon sequestration, must be allocated. Allocation is a 

challenging and important topic in LCA as it can lead to drastically differing results depending on 

how it is performed. LCA methodologies in the literature describe different ways to avoid 

allocation in multifunctional processes, including process subdivision or system expansion.83, 84 If 

allocation cannot be avoided then burdens should be allocated based on some biological, physical, 

or chemical relationships that link the system functions to process inputs or outputs. If such a 

physical relationship cannot be established, then the allocation can be based on other factors such 

as economic value.  

     In the present analysis, allocation is only necessary in the cultivation stage of the two systems. 

Two allocation approaches were considered, (a) allocation method 1 with no allocation to stover 

(b) allocation method 2 with mass-based allocation. In Method 1, allocation was avoided based on 

the rationale that the corn stover is a waste product of corn grain production.85 This assumption 

makes it possible to neglect any cultivation emissions or benefits that were shared with the corn 

grain, such as soil carbon sequestration.  The only emissions attributed to stover cultivation in this 

method are from the production and application of additional fertilizers to offset nutrients removed 

with the harvested corn stover. In Method 2, mass-based allocation was performed when 

subdivision was not possible. The grain-to-stover mass ratio in a corn plant is approximately 1:1.86 

However, since only 60% of the corn stover is harvested and 40% is left on the fields, the mass-

based stover allocation percentage was calculated as 34%, consistent with the value reported in 

GREET. Accordingly, 34% of the total fertilizer emissions and net soil carbon sequestration were 

allocated to stover in Method 2. The second-pass harvest emissions for stover (from GREET) were 

fully allocated to stover for both methods. Apart from cultivation, emissions from all other stages 

were the same in the two methods.  

 

4. Results and Discussion 

 

4.1. Life Cycle Impact Assessment (LCIA) 
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The LCIA phase of the LCA quantifies the environmental impacts of the various emissions that 

were compiled in the life cycle inventory phase. In this study, the LCIA was completed for three 

impact categories:  greenhouse gas emissions (GHG), eutrophication potential (EUP), and water 

scarcity footprint (WSF). The total GHG emissions, EUP, and WSF for the Py-ECH and CE 

processes, employing both allocation procedures, are summarized in Tables S6 and S7 (in the 

Supplemental Information), respectively.  

 

4.2. Contribution Analyses 

 

GHG Emissions: 

     GHG emissions were calculated and compared for each system and allocation method. Figure 

3 shows the contributions of different system components of the two systems for both allocation 

methods. For the Py-ECH system, electricity for upgrading during ECH and hydroprocessing is 

assumed to come from either the MROW 2020 grid or a fully renewable source. When renewable 

electricity is used, the Py-ECH system performs slightly better than the CE system in terms of 

GHGs for the chosen functional unit of 1 MJ of fuel energy. However, if grid electricity is used 

for Py-ECH, the Py-ECH system has higher GHG emissions. This highlights the importance of 

low-carbon electricity in the Py-ECH system owing to the large amount of electricity utilized for 

fuel upgrading.  

     The amount of biomass feedstock (green bars) required is another significant different between 

both processes. The CE system has a lower liquid fuel energy yield than Py-ECH, i.e., it requires 

more biomass feedstock to make the same amount of fuel energy (in this analysis the functional 

unit is 1 MJ). As a result, the CE system has a greater benefit from biogenic carbon fixation per 

unit of fuel produced. It must be noted here that the fixed feedstock carbon is eventually emitted 

when combusting the liquid fuel (for Py-ECH/CE systems), during electricity and process heat 

generation, and CO2 fermentation (exclusively for the CE system). Though there are increased 

emissions from harvesting, fertilizer application and fertilizer production to support a larger 

biomass input in the CE system, these emissions are very small relative to the amount of feedstock 

carbon being fixed. Additionally, there is more soil carbon sequestration (cyan colored bar) 

associated with generating larger quantities of corn stover to make the functional unit of 1 MJ of 

CE fuel energy.  
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     The GHG contribution of the processing components for the two systems was subdivided into 

four sub-components: heat and power generation from biomass, electricity to/from the grid, 

fermentation CO2, and co-products. The contribution to heat and power generation from biomass 

(dark blue bars) is much greater for the CE system because of lignin and wastewater sludge 

combustion, while for the Py-ECH, these emissions are from heat production needed for pyrolysis. 

Also, for Py-ECH, the grid electricity (orange bars) required is the largest GHG emission when 

using the MRO grid. CO2 generated by fermentation of holocellulose sugars (light blue bar) is an 

emission from the CE system that is not present in the Py-ECH system. The final sub-component 

is associated with co-products, which are excess electricity (renewable electricity that displaces 

fossil fuels in the grid electricity mix) sold to the grid for the CE system and biochar, which is 

land-applied for the Py-ECH system. As biochar sequesters carbon when land-applied, it has a 

negative value on Figure 3 (black bar). The biochar carbon reported is the net carbon sequestered 

(65 wt.% of total biochar carbon) after accounting for the carbon fraction eventually liberated as 

CO2. The combined emissions from the feedstock and fuel transport stages for both processes are 

negligible and are not visible in Figure 3. The emissions from fuel combustion, although not 

negligible, are nearly equal for both systems. The emissions associated with corn stover losses 

during harvesting, transport, and storage, are also minimal. Finally, there is little difference using 

different allocation methods within a single system as only a slight increase in all values results 

when using mass allocation (method 2) vs. treating stover as a waste (method 1).  

     Several LCAs involving pyrolysis, but without ECH, have been reported in the literature.  In a 

study by Steele et al.,87 the total GHG emissions in a cradle-to-grave analysis of forest residue into 

bio-oil for combustion to make electricity are about 32 g CO2/MJ. Though this is 63% less than 

our result for Py-ECH using grid electricity, the bio-oil is only combusted in boilers and not 

upgraded to transportation fuel. A second analysis in the same study for making residual fuel oil 

results in 107 g CO2/MJ, higher than the GHG emissions of Py-ECH even when using grid 

electricity. In a review of upgrading pyrolysis bio-oils by Sorunmu et al.,34 with only one 

exception, all upgrading thermochemical processes have GHG emissions ranging between 5 and 

60 g CO2/MJ. Only one scenario reported by Winjobi et al.88 has GHG emissions as high as those 

of gasoline/diesel at about 93 g CO2/MJ. While most of these comparative processes have GHG 

emissions less than the Py-ECH system (using grid electricity), most upgrade bio-oil with either 

purchased hydrogen gas or syngas from the steam gasification of biochar. Finally, these previous 
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LCAs of biomass pyrolysis are for centralized bioenergy systems, characterized by locating all 

conversion equipment in a single large refinery. Py-ECH in this LCA was performed for a 

decentralized process, which uses ECH as a mild upgrading step at small-scale depots.  The 

stabilized bio-oil is then transported and upgraded at a central facility that uses hydrogen made by 

wind- or solar-powered water electrolysis.  While using grid electricity leads to GHG emissions 

towards higher values reported by Sorunmu et al.,34 when using renewable electricity, Py-ECH has 

lower GHG emissions than all of these processes. 

 

Figure 3: GHG results for cellulosic ethanol (CE) and pyrolysis electrocatalytic hydrogenation 

(Py-ECH) systems, without (subscript 1) and with (subscript 2) allocation of burdens to stover, 

using either 2020 MRO electrical grid which includes 70.8% fossil electricity (F) or fully 

renewable power (R). Diamond markers represent the net emissions. 

 

Eutrophication Potential (EUP) 

The EUP contribution analyses are shown in Figure 4 for both systems, both allocation methods, 

and both Py-ECH electricity cases. As seen from Figure 4a, the cultivation-related components in 
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the two systems dominate EUP. The major cultivation contributors are the P and N runoff values.  

As for feedstock carbon fixation, the lower liquid fuel yield for CE results in greater nutrient runoff 

(per fuel energy produced) relative to Py-ECH. Fertilizer-related atmospheric emissions of NOx 

and NH3 have negligible contributions. The contributions related to fuel production (denoted by 

blue and orange bars) for both systems are minimal, and not observable for the Py-ECH system. 

Fuel transport and combustion EUP are also negligible. To investigate the relative contributions 

of fuel production, transport, and fuel combustion, Figure 4b was constructed excluding the EUP 

contributions from cultivation. The CE refinery component has a high EUP in part because of 

greater NOx emissions from the boiler-combustor, which combusts a relatively large amount of 

fuel (lignin and wastewater sludge), considerably more than the combustors in the Py-ECH system 

(mixture of non-condensable gases (NCG) like CO, CO2 and H2 in depots and natural gas in 

refineries). Although the Py-ECH has additional emissions from utilization of grid electricity, the 

rate of NOx emissions is not nearly as high. The CE system also has atmospheric NH3 emissions 

from its wastewater treatment plant. Fuel combustion EUP values are similar for both systems and 

allocation methods. Finally, the fuel transport emissions are negligible. Allocation assumptions, 

affecting only feedstock cultivation, have a larger impact on EUP values than on GHG emissions. 

For both allocation methods, Py-ECH has lower EUP than CE. 

 

Figure 4: (a) EUP contribution analysis (b) EUP contribution analysis excluding cultivation and 

harvesting, for cellulosic ethanol (CE) and pyrolysis electrocatalytic hydrogenation (Py-ECH) 

systems, without (subscript 1) and with (subscript 2) allocation of burdens to stover, using either 
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2020 MRO electrical grid which includes 70.8% fossil electricity (F) or fully renewable power 

(R). Diamond markers represent the net emissions. 

Water Scarcity Footprint (WSF) 

The WSF results are shown in Figure 5 for both systems, both allocation methods, and both 

electricity-supply scenarios for Py-ECH. WSF is only relevant in two components of the two 

systems, feedstock cultivation and fuel production. There is no WSF contribution from fuel and 

biomass transportation and fuel combustion. The biggest contributor to WSF for both processes is 

cultivation (green bar), which includes freshwater consumption for agriculture but not 

precipitation, as discussed before. The water demand for cultivation for the CE system is much 

more than for the Py-ECH system, owing to the larger amount of biomass required to produce the 

same amount of fuel energy. Py-ECH requires water for ECH and electrolysis, however, the 

cooling tower make-up water requirement for the CE system is much larger (blue bars). When 

powered by grid electricity, the Py-ECH system consumes water because of water used at thermal 

power plants. The CE system has a small benefit due to excess electricity exported to the grid, thus 

reducing water consumption at thermal power plants. When Py-ECH is powered by grid electricity, 

its WSF is nearly the same as CE for the allocation method 1 assumptions (stover as waste).  WSF 

is lower when the Py-ECH system uses only renewable electricity as water consumption for solar 

and wind power is much lower than in thermal power plants, as shown in Figure 5 (Py-ECH1—

renewable electricity). Finally, the on-farm water consumption, which is the largest contributor, 

does not appear when using allocation method 1, which allocates all water consumption to corn 

grain, as stover is considered a waste product.  
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Figure 5: Water scarcity footprints cellulosic ethanol (CE) and pyrolysis electrocatalytic 

hydrogenation (Py-ECH) systems, without (subscript 1) and with (subscript 2) allocation of 

burdens to stover, using either 2020 MRO electrical grid which includes 70.8% fossil electricity 

(F) or fully renewable power (R). Diamond markers represent the net emissions. 

 

4.3. Sensitivity Analyses 

 

The contribution analyses reveal that the Py-ECH system is sensitive to the carbon intensity of 

the electricity used in the Py-ECH depots and central refinery. When using 2020 MROW grid 

electricity, which is 29% renewable, the GHG emissions for the Py-ECH system cannot match 

those of the CE system, which primarily uses renewable biomass for energy. However, when 

100% renewable electricity is used, the Py-ECH system has lower life cycle GHG emissions. 

Figure 6 shows the dependence of GHG emissions on the renewable content of the grid 

electricity for both systems, using mass-based allocation.  In contrast, the CE system, a net 

electricity producer, exhibits an increase in GHG emissions with grid electricity because less 

fossil electricity is displaced.  Comparing the slopes in Figure 6, it is apparent that the Py-ECH 

system is more sensitive to the carbon intensity of the grid than the CE system.  For the system 

Page 19 of 31 Sustainable Energy & Fuels



20 

 

assumptions with mass-based allocation, the CE system performs better than the Py-ECH system 

when the renewable content in the electrical grid is below 87%. While the U.S. electrical grid is 

currently 20% renewable89, there are continued efforts to increase the deployment of renewable 

power sources.90-93 The sensitivity analysis using “stover as waste” allocation, yields similar 

results. 

 

Figure 6: Sensitivity of lifecycle GHG emissions to the assumed % renewable content in grid 

electricity for allocation method 2. The 2020 MROW electricity grid has 29% renewable content, 

100% is the completely renewable grid case, 87% is the crossover point where the two systems 

have equal GHG emissions. 

 

Soil carbon sequestration during corn cultivation varies with soil texture, rainfall, tillage, stover 

removal, measured soil depth, crop rotation system, and geographical location.  To investigate the 

sensitivity of total GHG emissions to soil carbon sequestration assumptions, the soil carbon 

sequestration was varied from 0 to 2.5 Mg C/ha/yr for the assumed continuous corn system, with 

no tillage, and 60% stover harvest. The limits were chosen to encompass the range of most 

literature estimates.52-58 Figure 7, for the mass-based allocation method, shows that the CE system 

GHGs are more sensitive to the sequestration rate assumption than the Py-ECH system because 

more biomass feedstock is required per unit of fuel energy, resulting in greater sequestration.  The 
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Py-ECH system with 2020 MROW grid electricity never has lower GHG emissions than the CE 

system, no matter what the annual C sequestration rate assumption. For reference, two 

sequestration values from the literature, indicated by red dashed lines, have been plotted in Figure 

7. The first is from GREET and is used as the baseline value in the present analysis. The second is 

from Follett et al.,94 who determined 1.3 Mg C/ha/yr for no-till corn stover when 50% is removed. 

Follet et al. measured soil carbon to depths of 150 cm, in contrast to most measurements that only 

sample to 30 cm. This is approximately equal to 1.1 Mg C/ha/yr for 60% removal, assuming a 

linear dependence and ignoring sequestration associated with root mass. Carbon sequestration 

rates above 0.4 yield fuels with net negative GHG emissions for both the CE and Py-ECH with 

renewable grid systems.  For allocation method 1, with stover assumed to be a waste material, 

there is no sensitivity to sequestration rate, because all of the sequestration benefits accrue to the 

non-waste materials. 

 

Because Py-ECH requires substantially less biomass and cultivation land area per unit of fuel 

produced, additional opportunities for GHG emission reductions are possible with the unused land 

(the incremental land area that would be required to produce the same amount of CE fuel).  For 

example, if this incremental land could become natural forest and was included in the Py-ECH 

system boundary to equalize land area with the CE system, then Py-ECH (using renewable 

electricity) GHG emissions would be far lower than CE, as shown in Figures S2 and S3 in 

Supplementary Information. This would be true for all assumed values for carbon sequestration 

rate.  
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Figure 7: Sensitivity of GHG emissions to annual C sequestration rate for mass-based allocation. 

 

4.4. Energy Ratio 

 

To compare energy efficiency of the two processes, five energy metrics were investigated to 

quantify the different aspects of energy efficiency of the Py-ECH and CE pathways.83 The 

calculated ratio values, along with their descriptions are presented in Table 1. 

 

Table 1: Energy ratios, along with their description,83 for the CE and Py-ECH systems.  

Energy Ratio Abbreviation Description CE Py-ECH 

(F) 

Py-ECH 

(R) 

Total Energy 

Ratio 

ERt Total usable energy output/ 

Total energy input 
0.44 0.70 0.70 

Energy Yield Ey Fuel energy/Feedstock energy 0.42 0.91 0.91 

Energy Return 

on Investment 

EROI Total energy of fuel and co-

products/Total energy input 

except feedstock 

10.43 1.85 1.85 
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Renewability 

Factor 

RF Fuel energy output/ Fossil 

energy input 
9.66 1.98 8.22 

Fossil Energy 

Ratio 

ERf Total energy of fuel and co-

products/ Fossil energy input 
10.40 2.42 10.03 

 

     While the Total Energy Ratio (ERt) is a measure of the total efficiency of the system and 

accounts for both product and co-product energy, the Energy Yield (Ey) only calculates the fraction 

of the feedstock energy residing in the primary fuel product. Therefore, the ERt includes the energy 

associated with excess hydrogen gas in the Py-ECH system and the excess electricity in the CE 

system. Biochar in the Py-ECH system is not considered an energy co-product since it is land 

applied to sequester carbon. As shown in Table 4, both of these ratios are higher for the Py-ECH 

system since it has a higher overall and fuel energy efficiency. There is no difference between the 

renewable and fossil electricity scenarios because these energy metrics do not differentiate 

between fossil and renewable energy. 

     EROI is similarly defined as ERt, with the exception that it does not include the energy 

associated with the biomass feedstock input. It accounts for the additional energy inputs to the 

process that are essential for manufacturing the fuel and the co-products. Table 4 shows that the 

EROI for the CE system is much higher as the majority of the energy input for the CE system 

comes from the biomass feedstock, which is not included in the denominator. The EROI does not 

distinguish between the renewability of energy sources and thus shows no difference in the two 

Py-ECH scenarios.  

To determine the renewability of a system, energy parameters such as Energy Renewability 

Efficiency (ERf)
83 and Renewability Factor (RF) offer valuable insight. RF is the ratio of the 

energy of the primary product (the fuel in this case) and all non-renewable energy inputs. The 

higher the RF, the greater is the renewability of the system. ERf is the ratio of all energy products 

(fuel and co-products) and all fossil energy inputs. Therefore, the only difference between RF and 

ERf is that the former only accounts for the primary product whereas the latter accounts for co-

products as well. It can be seen from Table 4 that the RF and ERf of the CE system is greater than 

for the Py-ECH system. This is because the CE system manufactures its own heat and power by 

combusting some of its biomass feed, thereby greatly reducing non-renewable inputs resulting in 

a larger RF and ERf. When renewable electricity is used for Py-ECH, RF and ERf increase 
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substantially due to lower fossil energy inputs. However, RF and ERf for Py-ECH remain lower 

than the CE system because of the natural gas used to supply heat at the central refinery, which 

could be overcome if renewable heat is used (provided by burning additional biomass at the 

refinery).  Figure 8 shows the fraction of renewable grid electricity needed for the renewability of 

the Py-ECH system to match the CE system under such a scenario. With completely renewable 

heat, the electricity grid must be 85-87% renewable for Py-ECH to match CE in terms of RF and 

ERf.  Similarly, if the electricity source is 100% renewable, the refinery’s heat source would have 

to be at least 25% renewable (RF) and 5% renewable (ERf) for the Py-ECH system to match that 

of the CE system. The variation of the RF and ERf with percentage renewable heat at the central 

refinery has been provided in the Supplementary Information. 

 

Figure 8: Sensitivity of system RF and ERf to % renewable electricity. Fossil or renewable heat 

indicate that heat at central refinery is provided either from fossil (natural gas) or renewable 

sources. 

 

4.5. Alternative Functional Unit 

     A major takeaway from the present comparative life cycle assessment is the importance of 

renewable electricity used in the Py-ECH system. The GHGs from Py-ECH are greater or lower 

than those from the CE system depending upon the percentage renewability of the electrical grid.   
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     Another key feature of this analysis is the selection of the functional unit. The “per MJ of fuel 

energy” basis, as assumed in this study, disadvantages the Py-ECH system in terms of the GHG 

emissions because its greater energy yield results in less biomass required than the CE system and 

consequently lower biogenic carbon fixation benefits. On the other hand, Py-ECH has lower 

eutrophication potential and water use, due to reduced corn stover cultivation and fertilizer use.  

By changing the functional unit to “kg corn stover processed,” the cultivation stages of the Py-

ECH and the CE processes become identical.  This functional unit results in greater fuel production 

in the Py-ECH system, owing to a greater fuel yield. GHG emissions for the two systems are 

greatly affected, which can be seen by comparing the results in Figure 9 for the stover-based 

functional unit to those of the fuel-based functional unit in Figure 3.  Total biogenic carbon 

(feedstock carbon for CE and feedstock and biochar carbon for Py-ECH) is equal for both systems 

for the stover-based functional unit. When 100% renewable grid electricity is employed, the Py-

ECH system has negative net GHG emissions because electricity usage is the primary contributor.   
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Figure 9: GHG results for cellulosic ethanol (CE) and pyrolysis electrocatalytic hydrogenation 

(Py-ECH) systems, without (subscript 1) and with (subscript 2) allocation of burdens to stover, 

using either 2020 MROW electrical grid which includes 70.8% fossil electricity (F) or fully 

renewable power (R). Diamond markers represent the net emissions. 

5. Conclusion 

We have previously shown that compared to microbial bioconversion via the CE system, 

the Py-ECH system enables significantly higher yields of renewable hydrocarbon fuels and 

potentially offers a large-scale mechanism for chemical storage of renewable but intermittently 

generated electrical energy as transportation fuel.11 The climate change, eutrophication, and water 

scarcity impacts of liquid biofuels produced using the CE and Py-ECH systems are assessed here.  

Both CE and Py-ECH liquid biofuels have lower GHG emissions than gasoline from crude oil. 

GHG emissions for CE are 14-16% of gasoline, while emissions for liquid hydrocarbons using Py-

ECH with existing grid electricity or 100% renewable electricity are 87-93% or 3-8% those of 

gasoline. The breakeven relative to CE occurs at ~87% renewable electricity, above which Py-

ECH outperforms CE.  In terms of water scarcity, Py-ECH performs similarly to CE using current 

grid electricity and considerably better when renewable electricity is used. The eutrophication 

potential for Py-ECH is lower than for CE for both electricity assumptions.  

While the CE system is more energy intensive than the Py-ECH system on an overall basis, 

the fossil energy footprint is currently greater for the Py-ECH system. This is primarily due to the 

high dependence of the Py-ECH system on grid electricity, which is only 29% renewable (MROW  

electricity grid). Sensitivity analyses revealed that using completely renewable heat at the central 

refinery and ~87% renewable grid electricity lowers the fossil energy footprint of Py-ECH to 

below the CE process.  
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