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Abstract
This perspective describes Auto-QChem, an automatic, high-throughput and end-to-end DFT calculation workflow that 

computes chemical descriptors for organic molecules. Tailored toward users without extensive programming experience, 
Auto-QChem has facilitated more than 38,000 DFT calculations for 17,000 molecules as of January 2022. Starting from 
string representations of molecules, Auto-QChem automatically (a) generates conformational ensembles, (b) submits and 
manages DFT calculations on a high-performance computing (HPC) cluster, (c) extracts production-ready features that are 
suitable for statistical analysis and machine learning model development, and (d) stores resulting calculations in a cloud-
hosted and web-accessible database. We describe in detail the design and implementation of Auto-QChem, as well as its 
current functionalities. We also review three case studies where Auto-QChem was applied to our recent efforts in 
combining data science approaches in organic chemistry methodology development: (a) the design of a diverse and 
unbiased aryl bromide substrate scope for a Ni/photoredox catalyzed alkylation reaction, (b) mechanistic studies on the 
effect of bioxazoline (BiOx) and biimidazoline (BiIm) ligands on enantioselectivity in a Ni/photoredox catalyzed cross-
electrophile coupling of epoxides and aryl iodides, (c) the development of a reaction condition optimization framework 
using Bayesian optimization. In addition, we discuss limitations and future directions of Auto-QChem and similar 
automated DFT calculation systems. 

Introduction 
Data-driven synthetic chemistry has witnessed rapid growth in recent years owing to advances in computing power, 

software, and algorithms, coupled with an increase in data availability from experiment and computation. The recent 
resurgence of interest in machine learning and other data-driven approaches in organic chemistry has demonstrated their 
potential as complementary and quantitative approaches for reactivity and selectivity predictions,1,2 synthesis planning3 
and mechanistic studies.4 Importantly, the application of machine learning models in organic chemistry requires effective 
representations of chemical structures.5 Compared to molecular fingerprints and various learned representations,6-10 
machine learning models trained with chemical descriptors often offer enhanced interpretability. In particular, features 
derived from density function theory (DFT) calculations are more closely associated with physical and chemical attributes 
of molecules, thus enabling improved mechanistic understandings. Therefore, these features serve as good candidates for 
building statistical and machine learning models. However, DFT calculations often require vast computing resources and 
proficiency in the operation of various software tools, which presents a significant barrier to experimental chemists. These 
problems are exacerbated by the number of DFT calculations required to featurize datasets that are sufficient for modern 
machine learning models. An automatic, high-throughput DFT calculation framework has the potential to accelerate the 
workflow and facilitate the computation of chemical descriptors by non-experts. 

Many tools have been developed to automate high-throughput DFT calculations, such as AFLOW,11 pymatgen,12 MAST,13 

Atomate,14 QMflows,15 Nexus,16 and AiiDA17,18. However, most of these tools are designed to facilitate material science 
research and are not well-suited for small organic molecules. Downstream applications in machine learning models also 
require a framework to extract and store a large amount of information from DFT calculation results. Databases containing 
DFT-calculated properties of materials and small molecules19-22 have also been developed, usually with an underlying high-
throughput workflow clearly defined. For example, the open-access VERDE materials database22 provides numerous 
calculated photophysical properties of π-conjugated organic molecules. Such databases usually provide exceptional data 
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access through APIs and web interfaces, but end users often do not have direct access to the calculation pipelines. Beyond 
functionalities, the simplicity and ease of use for non-experts is also an important consideration. The objectives and 
limitations of current systems prompted us to implement a framework specifically designed for usage requirements of 
synthetic organic chemists. 

A successful and robust high-throughput DFT calculation framework requires several key functionalities: (a) the ability 
to generate input files with user specifications for selected quantum chemistry software, (b) an interface with high 
performance computing (HPC) clusters for the submission and retrieval of jobs with error correction mechanisms, and (c) 
an analysis workflow to automatically extract information from calculation results. More specifically, we are interested in 
an end-to-end framework that can generate DFT-derived features directly from string representations (such as SMILES23) 
of organic molecules in a high-throughput fashion, as well as provide storage and convenient access to processed data. 

With these goals in mind, we developed Auto-QChem, an automated software package that streamlines DFT 
calculations for organic molecules. Starting from string representations of molecules, Auto-QChem performs initial 
conformational searches, manages DFT calculations on local HPC cluster, and facilitates cloud data storage and access via 
a web interface.

In this perspective, we first describe the implementation and detailed workflow of Auto-QChem, followed by a 
technical description of the software architecture. Next, we showcase the applications of Auto-QChem by reviewing three 
research projects from our group where Auto-QChem has facilitated the calculations of DFT-derived features and 
downstream model development in organic chemistry. We conclude the paper by discussing some limitations and 
potential future directions for Auto-QChem and similar automated DFT calculation systems. 

Fig. 1 Computational workflow of Auto-QChem.

Implementation technologies
The Auto-QChem framework is written in Python 3;24 DFT calculations are performed with Gaussian 16;25 the database 

is powered by MongoDB;26 and the database web interface is written in Python Dash web framework.27 Both the database 
and the web interface are hosted on a common Amazon cloud server.28 The code base is publicly hosted on a GitHub 
repository (https://github.com/PrincetonUniversity/auto-qchem) together with its functional documentation 
(https://princetonuniversity.github.io/auto-qchem). The database web interface is publicly available at 
https://autoqchem.org. The framework is modularized such that all operations can be performed from a single Jupyter 
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notebook.29 A handful of usage examples are also provided in the GitHub repository.

Computational workflow
The workflow of Auto-QChem (Fig. 1) starts with a set of molecules represented as SMILES strings. Each SMILES string 

is first converted to a RDKit30 molecule object. With a user-defined limit on the maximum number of conformers generated, 
Auto-QChem performs a conformational search for each molecule using one of the following configurable force field 
methods: (a) a genetic algorithm for stochastic conformer search implemented in OpenBabel,31 (b) ETKDG distance 
geometry algorithm32 implemented in RDKit.

By default, the following calculation workflow is applied: (a) geometry optimization; (b) frequency and thermochemical 
analysis, including vibrational frequency, molecular volume, natural population analysis (NPA) and nuclear magnetic 
resonance (NMR) calculations; and (c) a time dependent DFT calculation for vertical excited state transitions. DFT 
calculation parameters such as functionals, basis sets and solvation models can be specified by the user. For each 
conformer, an input file with calculation specifications and atomic coordinates is generated and submitted to a Slurm 
scheduler33 for DFT calculation with Gaussian on a local computer cluster. If a calculation runs out of time or memory, it 
can be resubmitted with a higher time or resource limit using the last geometry checkpoint. Calculations with unspecified 
error will be ignored.

Upon successful completion of the DFT calculations, duplicate conformers are removed from the ensemble with a co-
nfigurable root-mean-square deviation (RMSD) threshold (0.35 Å by default). For each unique conformer, numeric 
descriptors (Table S1) are extracted from Gaussian output files. These numeric descriptors and Gaussian output files are 
then uploaded to the Auto-QChem database. 

Fig. 2 Collection schema of Auto-QChem database.

Database
Data is organized into 5 collections (tables) to support queries and retrieval of the data (Fig. 2):
 molecules: master collection that stores information of individual molecules, such as string representations 

(SMILES, InChI, InChIKey), atomic coordinates, charges, and connectivity matrices.
 metadata: one-to-one auxiliary collection that stores the configuration of calculation for each molecule.
 log_files: many-to-one collection of raw output files of the calculations (one per conformer). 
 qchem_descriptors: many-to-one collection of extracted numeric descriptors (one per conformer).
 tags: many-to-one collection that stores individual project name tags for easier retrieval and better organization 

of data. 
Molecules are indexed such that a particular molecule along with its metadata must be unique, thus disallowing 
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repeated calculations of one molecule with the same calculation configurations. However, calculations of the same 
molecule with a different configuration (e.g., different solvents, different basis sets) are allowed. Prior to generation of 
DFT jobs, Auto-QChem warns users if the requested calculation has already been performed and exists in the database. 

Fig. 3 Query view (left) and the molecule view (right) of the web interface. The molecule view is a snapshot while viewing 
the second lowest energy conformation in 3D.

Queries and data retrieval
Data can be viewed and retrieved from the web interface hosted at https://autoqchem.org. There are two views 

available:
 query view: a view that allows for web queries of the database and downloads of descriptor sets. The query form 

contains the following filters: dataset name tags, solvents, functionals, basis sets, SMARTS substructure and 
SMILES strings.

 molecule view: an interactive display of the structures of all calculated conformers for one molecule, as well as 
tabulated numeric descriptors (an example is shown in Fig. 3). 

After a successful query, a selection of numeric descriptor sets can be downloaded with the following configurations:
 global: molecular descriptors, such as HOMO/LUMO energy, dipole moment and molecular weight. 
 Substructure atomic: atomic descriptors from substructure searches. When a substructure is used for the query, 

atoms from substructure matches are identified in a consistent order and their atomic descriptors (e.g., NMR 
shifts, partial charges, buried volume) are extracted. 

 common core atomic: atomic descriptors for the maximum common substructure within a dataset of molecules. 
The common core is determined using the FMCS (Find Maximum Common Substructure) algorithm34 implemented 
in RDKit.35

 min max atomic: minimum and maximum for each atomic descriptor over all atoms.
 transitions: top 10 excited state transitions ordered by oscillation strength.

By default, Boltzmann-weighted average of all conformers is calculated for each numeric descriptor and treated as 
feature vectors for each molecule. Different weighting options can be specified when exporting descriptors, for example, 
arithmetic average, lowest energy conformer only, or highest energy conformer only. 

Use case 1: substrate scope design in Ni/photoredox methodology development
In a recent example,36 we developed a Ni/photoredox catalyzed alkylation reaction of aryl halides using acetals as 

alcohol-derived aliphatic radical sources.37 To evaluate the generalizability of this methodology, we designed a 
representative, diverse, and unbiased aryl bromide substrate scope through an unsupervised learning approach with DFT-
derived featurization. An initial set of aryl bromides (molecular weight < 400) was generated through a Reaxys search, 
which yielded around 290,000 candidates. After applying additional filters, such as commercial availability, spectroscopic 
data availability and functional group compatibility, we selected 2683 aryl bromides for DFT calculation. Our preliminary 

Page 4 of 10Reaction Chemistry & Engineering

https://autoqchem.org


studies suggest that common featurization approaches, such as molecular fingerprints and cheminformatics descriptors, 
are often insufficient to represent electronic and steric features of substrates relevant to reactivity sites, necessitating the 
use of DFT-derived featurization. With Auto-QChem, low-energy conformers were generated from SMILES strings for all 
aryl bromides. Gaussian jobs of generated conformers were then submitted to a connected HPC cluster. Successful 
calculations were logged and uploaded to the Auto-QChem database, along with 168 electronic and steric features 
(HOMO/LUMO energy, dipole moments, atomic volume, etc.) extracted from Gaussian log files. It is worth noting that, 
using Auto-QChem, DFT calculations of this size can be completed within a few days with minimal human intervention. 

After feature preprocessing,45 we used the remaining 95 features for hierarchical clustering to generate 15 clusters44 
and chose the molecules closest to the center of each cluster as our substrate scope (Fig. 4b). The final substrate scope 
includes a wide array of functional groups (such as esters, nitriles, chlorides), substitution patterns (mono-, di- and tri-
substitution) and steric features (ortho-, meta- and para-substitution). We also surveyed 116 Ni/photoredox methodology 
papers and compiled a complete set of 50 aryl bromide substrates used in this literature. By comparing substrates from 
Ni/photoredox literature with our selected substrate scope, we discovered that most aryl bromides substrates from 
literature examples are only present in a few clusters, while others (primarily clusters possessing multi-substituted aryl 
bromides) are significantly unexplored (Fig 4a). This approach allows for study of chemical space coverage in the literature 
and identification of areas where high versus low yields are generally obtained. Unlike traditional substrate scopes in the 
literature, where selection usually happens in an arbitrary and subjective fashion, our machine learning-designed substrate 
scope is better suited for evaluating the generality of a reaction without human bias (Fig. 4c). A systematic selection of 
substrates also enabled us to train regression models without selection bias and formulate predictive generalizations from 
DFT-derived features. We discovered that electronegativity of the aryl bromides was highly correlated with yield. Using 
electronegativity as a predictive feature, a generalized additive model (GAM) was trained with 15 aryl bromides and 
validated with 37 additional substrates. Similar models trained with 22 literature substrates were less accurate and did not 
generalize well during validation.38 This analysis demonstrated that a systematically designed substrate scope can 
effectively evaluate the generality of a reaction, as well as reveal reactivity trends for a larger population of substrates. 
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Fig. 4 Use case 1: substrate scope design in a Ni/photoredox methodology development.
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Use case 2: ligand parametrization and enantioselectivity prediction in nickel catalysis 
In another example, we developed a Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of aryl 

iodides and styrene oxides.39 The optimal ligand, a chiral biimidazoline (BiIm) ligand, was discovered only after extensive 
screening of common chiral amine bidentate ligands. Bioxazoline (BiOx) ligands previously used in our asymmetric 
reductive coupling of aziridines40 resulted in good enantioselectivity but low to moderate yield of the product. To 
understand the key features of BiIm ligands that affect reactivity and enantioselectivity of this reaction, we sought to use 
statistical modeling with physical and chemical descriptors from DFT calculations.

We selected a total of 20 BiOx and 9 BiIm ligands and collected enantioselectivity data under standard reaction 
condition with a model substrate (Fig 5a). Under the hypothesis that ligand environments will likely affect the computed 
features, we performed DFT calculations for all the ligands under three different environments: free ligand, ligand bound 
to a tetrahedral nickel difluoride complexes and ligand bound to a square planar nickel oxidative addition complex (Fig. 
5b). As a potential limitation, Auto-QChem (and most conformer-generating software) cannot reliably generate 
conformers for transition metal complexes,46 especially for group 10 metals like nickel. As a result, all the initial conformers 
for nickel-bound ligand were manually generated and submitted for DFT calculation. Auto-QChem was still used to extract 
electronic and atomic volume features from output files. Importantly, our multivariate linear regression analysis showed 
that, although they give a worse fit for the data, features derived from free ligands were sufficient for a descriptive linear 
regression model. From our regression model, NBOC4, NBON1

47 and polarizability independently affect G‡, suggesting 
that electronic, rather than steric attributes of BiIm ligands govern the enantioselectivity of this reaction (Figure 5c). This 
study demonstrated how insights from regression modeling with DFT-derived features can afford a mechanistic probe of 
complex catalytic reactions. 

Fig. 5 Use case 2: ligand parametrization and enantioselectivity prediction in nickel catalysis.

Use case 3: reaction condition optimization via Bayesian optimization
The optimization of reaction conditions is often tedious and time-consuming in methodology development campaigns. 

In the pursuit of conditions that provide the highest yield for reactions of interest, chemists often rely on empirical 
knowledge and qualitative understandings of the current optimization progress to design the next experiment. Typical 
approaches include the adoption of known conditions from literature, design of experiments (DoE), or more time- and 
resource-intensive methods such as high-throughput experimentations (HTE) and in-depth mechanistic studies. For 
individual reaction components, the lack of quantitative assessment of their effects on reaction yield usually requires 
running many combinations of the conditions, which in turn limits the size of chemical space explored during optimization. 

In our recent study,41 we demonstrated the application of Bayesian optimization, a sequential design algorithm for 
global optimization of black-box functions, in efficient reaction condition optimization. We developed a software 

Page 6 of 10Reaction Chemistry & Engineering



framework, EDBO (Experimental Design via Bayesian Optimization), where a Bayesian optimization algorithm was 
integrated into real-time laboratory experimentations (Fig. 6). After a reaction space is defined, initial experiments are 
selected via clustering or other sampling approaches. Chemists run the suggested reactions in lab, analyze the results when 
reactions finish and input reaction yield into the system. Bayesian optimization algorithms use new results to update the 
prior and form a new posterior distribution over the objective function. An acquisition function is constructed with the 
new posterior to determine new query points (new reactions to run). This optimization loop is repeated until the desired 
yield or resource limit is reached.  

During the development of the Bayesian optimization framework, we evaluated its performance by comparing 
simulation results to human decision-making benchmarks obtained with large HTE reaction datasets. Bayesian 
optimization requires each reaction component to be translated into a suitable numeric representation. We tested the 
effects of different featurizations (DFT-derived features, molecular descriptors such as Mordred,42 and one-hot encoding) 
on optimization convergence. DFT calculations for hundreds of molecules contained in these reaction datasets were 
completed with an early version of Auto-QChem,43 which greatly simplified our workflow. Compared to other 
featurizations, DFT features offer improved learning curves and more consistent performance in terms of worst-case loss. 

To statistically test the performance of our framework in a new reaction space, we collected reactivity data for a 
palladium-catalyzed C-H arylation reaction. Using high-throughput experimentation, we evaluated this reaction with 12 
phosphine ligands, 4 bases, 4 solvents, 3 temperatures and 3 concentrations (1728 possible conditions in total). Through 
a web game which simulates the process of choosing conditions and running reactions, we established a human decision-
making baseline by inviting 50 expert chemists to optimize this reaction and recording their optimization progress within 
an imaginary experimental budget (100 experiments). Using DFT-derived features, our Bayesian optimization framework 
(simulated 50 times) achieved a higher average performance within the first 15 experiments even with random 
initialization and found conditions with >99% yield 100% of the time. Most human chemists either ended the optimization 
prematurely or failed to identify the highest-yielding conditions, which had not been previously reported for this type of 
reaction. The performance benefits obtained with DFT-derived features further validate the necessity of high-throughput 
DFT featurization frameworks like Auto-QChem. 

Fig. 6 Use case 3: reaction condition optimization via Bayesian optimization.

Limitations and future directions
We would also like to highlight some limitations of Auto-QChem at the present stage and outline some future directions. 

First, as mentioned in use case 2, Auto-QChem lacks the ability to generate accurate conformers for transition metal 
complexes and molecules with non-canonical bonds. Such problems are not unique to Auto-QChem as we leverage 
external programs such as RDKit to handle conformational searches. We are actively seeking improvement and experiment 
with other conformational search software that can alleviate such problems.
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Another important functionality of Auto-QChem is the ability to manage jobs on HPC clusters. Currently, Auto-QChem 
only supports Slurm scheduler. Integration of other cluster job schedulers will require significant modifications to existing 
code. We plan to support Univa Grid Engine (UGE) in the near future, and we welcome experienced users to integrate 
Auto-QChem into their own HPC clusters.

We also plan to expand certain functionalities of Auto-QChem. For example, we will include external packages and 
automate the calculation of additional electronic and steric features that are not currently supported by Auto-QChem. 
Barring any quality control issues, we also intend to invite other users to upload data to Auto-QChem. With enough data 
on hand, we would also like to train machine learning models with existing data to predict DFT-level features for similar 
molecules, which will address the speed bottleneck of DFT calculations in our workflow.

Conclusions
Herein, we reported Auto-QChem, an automated, high-throughput and end-to-end DFT calculation workflow. The 

implementation and workflow of Auto-QChem are discussed in detail. Designed to facilitate the increasing applications of 
machine learning models in organic chemistry, Auto-QChem generates DFT-derived molecular and atomic features starting 
from simple string representations of the molecules. After initial conformational searches, each conformer is submitted to 
a local computer cluster for DFT calculations with user-specified configurations. Cluster jobs are managed directly through 
Auto-QChem with error-correcting mechanisms. Successful calculation results and extracted DFT features are then 
uploaded to a database. A web interface (https://autoqchem.org) is also available for convenient data access. We also 
present three distinct studies from our group where Auto-QChem was used to featurize a large set of molecules and greatly 
simplified the workflow. Current limitations and potential areas of improvement are also discussed to provide an outlook 
for the future of Auto-QChem. 

Data Availability
The code and usage examples for Auto-QChem can be found at: https://github.com/PrincetonUniversity/auto-qchem. 

API and functional documentation for Auto-QChem can be found at: https://princetonuniversity.github.io/auto-qchem. 
The web interface and data currently deposited in Auto-QChem can be accessed at: https://autoqchem.org. 
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