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Abstract
Understanding controlling factors is important for the development of the bifunctional 

outer-sphere C=C hydrogenations.  A dominant view is that the polarization of C=C bonds 

is imperative for these reactions.  However, the present comparative DFT study suggests 

that the polarization of C=C bonds is not the controlling factor.  Instead, the “push-pull” 

type π-conjugative effect can decrease activation barriers and contribute to the outer-sphere 

bifunctional C=C bond hydrogenations.  What is more, this study shows the feasibility of 

the asymmetric bifunctional outer-sphere C=C hydrogenation.  
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1. Introduction

Transition-metal-catalyzed alkene hydrogenation is one of the most impactful 

reactions, and widely applied in the pharmaceutical, agrochemical, and commodity 

chemical industries.1  Much of alkene hydrogenations rely on single-site precious metal 

catalysts involving formal metal ±2 redox steps, such as Wilkinson’s catalyst2, the 

Schrock-Osborn catalyst3, and Crabtree’s catalyst4.  The alkene substrates coordinate 

with metals, and the activations of C=C bonds can be controlled by the d→π* back-

bonding interactions according to Dewar-Chatt model.5  Due to the high cost, toxicity, 

and potential depletion of precious metals, increased focus has been given to developing 

catalysts using earth-abundant first-row transition metals.6  The challenge is the 

propensity of the late 3d metals to undergo single-electron processes,7 and several 

strategies have been proposed to overcome this issue.8  Hanson reported a Co catalyst 

featuring a reactive pincer ligand for catalytic alkene hydrogenations, and proposed a 

nonbifunctional inner-sphere alkene hydrogenation mechanism, as shown in Scheme 1a.9
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Scheme 1. The nonbifunctional inner-sphere and bifunctional outer-sphere mechanisms 
for alkene hydrogenations by metal pincer complexes.
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In 2016, Jones and coworkers reported bifunctional stepwise outer-sphere 

hydrogenations of various styrene derivates with the Fe pincer catalyst 

(PNHPiPr)Fe(H)2(CO) (Scheme 1b),10 and the Fe center remains the +2 oxidation state in 

the catalytic cycle.  This state-of-the-art C=C bond hydrogenation process took a great 

step toward earth-abundant metals facilitated alkene hydrogenations, and has attracted 

wide attentions.6c, 11  What is more, Jones and coworkers proposed that the polarization 

of C=C bonds was imperative for the stepwise outer-sphere C=C hydrogenation process.  

Nevertheless, the atomic charges of carbons in the compared C=C bonds are not clear, 

and the activation barriers in non-polar solvent benzene (ε = 2.27) were reported to be 

less than those in the polar solvent THF (ε = 7.43).  Although the bifunctional outer-

sphere mechanism is well established in the hydrogenations of polar C=O and C=N 

bonds,12 the effect of C=C bond polarization on the outer-sphere C=C hydrogenation is 

worth reconsidering.  

Shedding light on the controlling factor for the bifunctional outer-sphere C=C bond 

hydrogenation will also be important for developing new alkene hydrogenation reactions 

based on earth-abundant metals, especially the asymmetric alkene hydrogenations.  In 

this work, we theoretically investigate the metal catalyzed bifunctional outer-sphere C=C 

hydrogenations to provide clear answers to the above-noted questions.  

2. Computational Methods
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In accordance with our previous theoretical studies on homogeneous catalytic 

reactions,13 all computations in this study were carried out by the DFT method with the 

ωB97X-D14 functional using the Gaussian 09 program.15  Geometries were optimized in 

toluene solution using the BS-I basis sets, where the 6-311+G(d, p) basis sets were used for 

nonmetal atoms, and the SDD basis sets with effective core potentials were used for Mn.16  

The single-point energy refinements were further performed with the BS-II basis sets, 

where the 6-311++G(2df, 2pd) basis sets were used for nonmetal atoms, and the SDD basis 

sets with effective core potentials were used for Mn atoms.17  Thermal corrections and 

entropy contribution to the Gibbs free energies were obtained with the ωB97X-D/BS-I 

method.  The solvent effect was evaluated using the SMD (solution model based on density) 

solvation model.18  Harmonic frequency analysis was performed to verify the optimized 

geometries to be minima (no imaginary frequency) or transition states (TSs, having unique 

one imaginary frequency).  All transition states were verified by employing the intrinsic 

reaction coordinate (IRC) procedure.19  Natural bond orbital (NBO) analyses were 

performed using the NBO 7.0 program.20  The Cartesian coordinates of all optimized 

structures are presented in the Supporting Information. 

3. Results and Discussion

The effects of the C=C bond polarization are first evaluated.  As shown in Figure 1, 

the alkene substrates are modulated by varying the substituents, and the phenyl derived 
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substituents (-Ph-OCH3, -Ph, -Ph-NO2) were introduced in Jones’s work.10  Partial 

atomic charges provide the most widely used model for molecular polarization, and have 

been used to measure the polarity of double bonds by Truhlar et al.21  The partial atomic 

charge differences (ACD) between two carbons in C(1)=C(2) bonds are computed via 

the Natural Bond Orbital (NBO) method22 to measure the degree of bond polarization.  

The C(2) atoms adjacent to the substituents are suggested to be more positive than the 

C(1) atoms.  The Mn pincer complex A1, which can medicate the hydrogenation of C=C 

bond in enone molecules,23 is selected as the catalyst model.  The entire pathways for 

catalytic bifunctional alkene hydrogenations by the Mn pincer complex are shown in 

Figure S1 in the SI, and two pathways over the transition state TS1 or TS2 exist for the 

hydride transfer as shown in Figure 1.  As for the optimized geometric structures of TS1 

and TS2 (Figure 2), the N-H bond lengths are elongated slightly (within 0.06 Å), but the 

Mn-H bond lengths are significantly elongated by ca. 0.2 Å compared by the pincer 

complex A1.  Therefore, the structures of both TS1 and TS2 are in close proximity to a 

hydride transferring transition state.  After the hydride transfer, the amine proton will 

transfer to the other carbon atom spontaneously without a transition state or require 

another transition state.  The controlling factor for the stepwise or concerted bifunctional 

hydrogenation mechanism is described in Figure S1 in the SI.  The hydride transfer step 

is rate-determining in the outer-sphere bifunctional hydride/hydrogen addition processes, 

and will be compared as described in Figure 3. 
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Figure 1. The selected Mn pincer catalyst model and alkene models for the catalytic 
bifunctional outer-sphere C=C bond hydrogenations.  ACD stands for the partial atomic 
charge difference between two carbons in C=C bonds.
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Figure 2. The optimized geometric structures of transition states TS1 and TS2.  The 
benzene groups on the phosphine ligands of Mn compounds are omitted for clarity, and 
distances are in Å.
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Figure 3. The Gibbs free energy barriers (ΔG‡ in kcal/mol) for the transition states TS1 
(blue line) and TS2  (red line).

The nonpolar ethylene molecule is selected as the reference, and predicted to own 

a Gibbs free energy barrier (ΔG‡) of 23.4 kcal/mol for the transition state TS1 (or TS2).  

For the alkene derivates with -NH2, -OH, -CH3 and -F substituents, the energy barriers 

for TS2 are lower than those of TS1, suggesting that the hydride in A1 prefers attacking 

the more positive internal C(2) atom in the C(1)=C(2) bonds.  This agrees with the fact 

that the hydride attacks the positive carbonylic carbon atom in bifunctional C=O 
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hydrogenations.  However, the polarization of C=C bonds does not decrease the energy 

barriers compared with the nonpolar ethylene molecule.  The -CH3 and -F substituents 

can induce the C=C bond polarization with ACD being 0.23 e, but the corresponding Δ

G‡ values of TS2 increase to 23.7~27.6 kcal/mol.  When C=C bonds are further polarized 

by the -NH2 and -OH substituents (0.55 and 0.67 e for ACD), the corresponding ΔG‡ 

values of TS2 increase to 29.1~31.3 kcal/mol.  Therefore, the polarization of C=C bonds 

could not be the controlling factor for the outer-sphere bifunctional C=C bond 

hydrogenations.

Next we turn to the alkene derivates with conjugated -SH, -Ph-OCH3, -CH=CH2, -Ph, 

-C≡CH, -Ph-NO2 and -CHO substituents, and their C=C bonds are polarized a little with 

low ACD values (within 0.2 e).  Interestingly, the blue line falls below the red line on the 

right side of Figure 2, and suggests the negative hydride ligand in A1 prefers attacking the 

negative terminal C(1) atoms via TS1 rather than the positive C(2) atoms via TS2.  This 

provides robust evidence that the polarization of C=C bonds is not the controlling factor 

for the outer-sphere bifunctional C=C bond hydrogenations.  Since the energy barriers of 

TS1 can be decreased by these conjugated substituents, the facile bifunctional outer-sphere 

C=C hydrogenation could be achieved, and the factors determining the energy barriers of 

TS1 are investigated as shown below.

The energy barriers of transition states TS1 could be controlled by the “push-pull” 

effect which is a nickname for describing the enhancement of π-conjugation in the donor-
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(π-linker)-acceptor compounds where the electron-donating and the electron-accepting 

moieties are linked by a conjugate system.24  The “push-pull” strategy has been reported to 

be effective in stabilizing unstable intermediates by us25 and transition states by Herrera et 

al26.  Recently, the “push-pull” strategy has been used in stabilizing solar cells.27  For the 

transition state TS1, the electron-withdrawing substituents (e.g. -CHO) provide the “pull” 

effects, and the moving hydrides provide the “push” effects as shown in Figure 4a.  As a 

result, such “push-pull” effects will strengthen the π-conjugations between C=C bonds and 

substituents of alkene derivative moieties in TS1, and the length of C(2)-C(3) bond 

decreases from 1.540 Å in free enone molecule to 1.432 Å in TS1.  Therefore, transition 

state TS1 is stabilized by “push-pull” effect with leading to low energy barriers.  In contrast, 

the electron-donating substituents (e.g. -NH2) provide the “push” effects as shown in Figure 

4b, and the resulting “push-push” effects will weaken the π-conjugations between C=C 

bonds and substituents of alkene derivative moieties in TS1.  The length of C(2)-N bond 

increases from 1.384 Å in free ethenamine molecule to 1.448 Å in TS1.  Therefore, 

transition state TS1 is destabilized by “push-push” effect with leading to high energy 

barriers. 

Page 10 of 18Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

H
H

H
HH

H2N

N Mn
PPh2

P

CO

CO

H
H

H
H

H

OHC

N Mn
PPh2

P

CO

CO

"Push-Push" effect in TS1"Push-Pull" effect in TS1
(a) (b)

pull

push push

push

Ph2
Ph2

C(2)

C(3)

C(2)

Figure 4. The “push-pull” and “push-push” effects present in the transition states TS1.

The red and blue lines in Figure 3 become separated after the dot for ethylene, which 

could also be accounted by the “push-pull” effects.  The π-conjugative stabilization effect 

between C=C bond and substituent does not exist when the hydride moves to the internal 

C(2) atom through TS2, in which the N-H bond is not elongated significantly and the amine 

proton is far from the substrate.  As a result, the alkene derivatives with -NH2 or -OH have 

low π-conjugative stabilizations in both TS1 and TS2, and the differences of ΔG‡ values 

are small with the red dots being near to the blue dots in Figure 3.  In contrast, the alkene 

derivate with the -CHO substituent displays high π-conjugative stabilization in TS1 but 

low π-conjugative stabilization in TS2; therefore, the differences of ΔG‡ values are large 

with the red dots being far from the blue dots in Figure 3. 
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Figure 5. The energy profiles for the designed asymmetric outer-sphere bifunctional C=C 
bond hydrogenations catalyzed by the chiral Mn pincer complex B1.  The relative Gibbs 
free energies (ΔG) are in kcal/mol.

The metal facilitated asymmetric bifunctional outer-sphere bifunctional C=O 

hydrogenations have been well established, such as the Noyori type catalysts.28  To our 

knowledge, the metal catalyzed asymmetric outer-sphere bifunctional C=C hydrogenations 

have not been reported.  Since the DFT method has been widely used in designing 

asymmetric catalytic reactions,29 we explore the possibility of this reaction.  The new Mn 

pincer catalyst B1 featuring stereogenic phosphorous centers is adopted, and the prochiral 
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(1-fluorovinyl)benzene is selected as substrate model (Figure 5).  Through the concerted 

outer-sphere bifunctional hydride/hydrogen transfer, the C=C bonds are reduced with 

forming two stereoisomeric products, and four possible transition states exist for the 

process.  The generated B2 undergoes the hydrogen addition to regenerate the starting 

species B1 through the transition state TSB3-1 with an energy barrier of 15.3 kcal/mol.  

The chiral-determining transition state TSB1-2_a has a Gibbs free energy barrier of 19.8 

kcal/mol, which is 2.5 kcal/mol (ΔΔG‡) lower than that of the second-lowest transition 

state TSB1-2_b.  According to the computed Δ G‡ and Δ Δ G‡ values, the designed 

asymmetric outer-sphere bifunctional C=C bond hydrogenations could have both high 

activities and enantioselectivities.  This study is the first to report the asymmetric outer-

sphere bifunctional C=C bond hydrogenation, and lays out a much-needed mechanistic 

foundation that should guide the continuing development of these reactions in the industry 

and academic research. 

Conclusions

A comparative study is performed on Mn pincer complex facilitated alkene 

hydrogenations, and suggests that the polarization of C=C bonds is not the controlling 

factor for the outer-sphere bifunctional C=C bond hydrogenations.  Further, it is suggested 

the “push-pull” π-conjugative stabilization effect can contribute to outer-sphere 

bifunctional C=C bond hydrogenations by decreasing the activation barriers of TS1, but 

Page 13 of 18 Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

the “push-push” effects disfavor the process with increasing activation barriers.  

Asymmetric outer-sphere bifunctional C=C bond hydrogenations catalyzed by the chiral 

pincer complex B1 are further designed, and predicted to have both high activities and 

enantioselectivities.  
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