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Facile Synthesis of Diverse Hetero Polyaromatic Hydrocarbons 
(PAHs) via Styryl Diels-Alder Reaction of Conjugated Diynes
Jingwen Wei,a Mengjia Liu,a Xiaohan Ye,a Shuyao Zhang,a Elaine Sun,a Chuan Shan,a Lukasz Wojtas,a 
Xiaodong Shi*a 

The styryl dehydro-Diels-Alder reaction with a conjugated diyne is reported. While typical alkyne-styrene condensation 
required elevated temperatures (>160 oC), the application of a conjugated diyne allowed for effective transformation under 
a milder condition (80 oC).  Thermally stable triazole-gold (TA-Au) catalyst further improved the reaction yields (up to 95%), 
producing the desired alkynyl-naphthalene in a singular step with molecular oxygen as the oxidant.  Sequential alkyne 
activation resulted in various polyaromatic hydro-carbons (PAHs) in excellent yields, highlighting the efficiency of this new 
strategy for the preparation of PAHs with good functional group tolerability and structural diversity.

Introduction
With the continuously uncovering interesting photo and 

electronic properties, the polyaromatic hydrocarbons (PAHs) 
have received increasing attention over the past decade from 
both the chemistry and material research communities.1  The 
conjugated π-contact property of PAHs allows charge carrier 
migration on stacked discotic molecules, and it is being widely 
used in organic electronic devices, field effect transistors 
(OFETs), organic light- emitting diodes (OLEDs), and 
photovoltaic devices(OPVs).2  The need for new conjugated 
arene skeletons from simple starting materials calls for the 
development of new synthetic strategies to achieve various 
PAHs with higher efficiency and better functional group 
diversity.3  Alkynes, as readily available building blocks that 
contain high thermal energy and are easy to functionalize, are 
potentially good starting materials to facilitate new PAHs 
synthesis.4  The challenge lies in the high activation barrier 
associated with the C-C triple bond, which results in the 
requirement of harsh reaction conditions and often limits this 
application in synthesis.  One example is the intramolecular 
styryl dehydro-Diels-Alder (ISDDA) reactions.5  As shown in 
Scheme 1A, cycloaddition between styrene and alkyne could 
produce the rapid construction of polyaromatic hydrocarbons 
as a potentially efficient strategy for the preparation of PAHs.  
However, styrene dearomatization combined with low alkyne 
reactivity leads to the high activation energy, resulting in the 
requirement of harsh conditions.6  Additionally, the formation 
of interconvertible intermediates (A and B) and the problematic 

dehydrogenation (formation of C) further complicates the 
overall transformations, giving the desired ISDDA products in 
low yields, poor selectivity (B and C) with limited substrate 
scope.7
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Scheme 1. Achieving polycyclic hydrocarbons via ISDDA.

Despite these challenges, the overall high efficiency of this 
ISDDA in the construction of polyaromatic hydrocarbon 
skeletons continues to draw good attention from researchers 
around the world, with the intent of pursuing a new practical 
solution for the optimization of this process.8  According to 
literatures, one typical strategy to achieve this transformation 

a.Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, 
Tampa, Florida 33620, USA. E-mail: xmshi@usf.edu

† Electronic Supplementary Information (ESI) available: Experimental section, NMR 
spectra, ESI-MS spectra and crystallographic data. CCDC 2161058, 2161059, 
2161060, 2161061. For ESI and crystallographic data in CIF or other electronic 
format see DOI: 10.1039/x0xx00000x

Page 1 of 7 Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ARTICLE Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

is the application of electro-withdrawing group (EWG) modified 
alkynes.9  However, harsh conditions (> 150 oC and microwave 
irradiation MW) are required with modest overall yields.10  
Thus, the development of a new strategy allowing this 
transformation under mild conditions is highly desirable.

Over the past decade, our group has been working on 
developing new transformations through gold catalyzed alkyne 
activation.11  Considering that EWG modified alkynes gave 
improved reactivity, our initial hypothesis was to determine if 
this challenging transformation could also be optimized via gold 
catalyzed alkyne activation (Scheme 1B).  While typical [L-Au]+ 
catalysts gave rapid decomposition at high temperatures(>80 
oC), the 1,2,3-triazole gold catalyst (TA-Au) developed in our lab 
was able to tolerate high temperature without decomposition 
at 80 oC for more than 24 hours.12  The significantly improved 
thermal stability of TA-Au could potentially assist the reaction 
when heating is inevitable.  After exploring various substituted 
alkynes, herein, we report the first example of ISDDA reaction 
with conjugated diyne.  While thermal conditions (80 oC) gave 
the cycloaddition product in 55% yields, the addition of TA-Au 
catalyst further improved the yield to 95%.  Sequential alkyne 
transformations highlighted this new method as a promising 
strategy for the construction of diverse PAHs with high 
efficiency (Scheme 1C).

Results and discussion
To achieve cycloaddition of unactivated alkyne (no EWG) 

substrate 1a, high temperature (160 oC) and a long reaction 
time (Figure 1A, Condition A) are needed.13  Notably, under this 
condition, the dehydrogenation product 1ab was minor product 
and only achieved in 14% yield with the dialin 1aa separated as 
the major product.  Reducing the temperature to 80 oC gave no 
conversion.  We wonder if gold catalysis can assist cycloaddition 
of 1a at low temperature (80 oC).  However, it is known in 
literatures that gold catalyzed enyne cyclization isomerization 
can occur under mild conditions.14  As shown in Figure 1A, 
treating substrate 1a under gold catalyzed conditions 
(Condition C) produced cyclopropane 1ac even at room 
temperature.  Clearly, to evaluate if gold catalyst could promote 
styryl-DA, a modified alkene substrate is needed to avoid the 
enyne cyclization (accessing styrene reactivity).  An enone 
substrate 2a was prepared with the assumption that gold-
catalyzed enyne cyclization would not occur when introducing 
a carbonyl group linked with styrene.  As expected, the 
conducting substrate 2a under various gold catalyzed 
conditions gave no enyne cyclization.  We continued to explore 
various gold catalyzed conditions with substrate 2a, hoping to 
promote ISDDA reaction under more practical and milder 
conditions.  Firstly, while TA-Au could survive high 
temperatures, no reaction occurred at 80 oC after 48 hours.  
Raising temperatures to 100 oC led to the TA-Au decomposition 
over time with no desired product observed.  Clearly, the high 
activation energy required for non-activated alkyne 2a led to 
this reaction temperature outside of the practical range for TA-
Au catalysis.  To our surprise, treating styrene-yne 2a at high 
temperature (160 oC) gave the desired dehydrogenation 
cycloaddition product 2ab with 45% yield, and no dialin 2aa was 

observed.  This result indicated the introduction of carbonyl 
group provided a more efficient dehydrogenation pathway to 
the expected naphthalene. 
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Figure 1. Investigations styryl-yne ISDDA under gold catalysis

 In order to solve the high temperature problem, we 
decided to explore the alkyne substitutions effect. To improve 
alkyne reactivity, multiple alkyne derivatives (2a-2e, 3a) were 
prepared (Figure 1B).  Surprisingly, the 1,3-diyne 3a showed 
excellent reactivity in the ISDDA reaction.  The simple thermal 
condition at 80 oC have 100% conversion and produced the 
naphthalene 4a in 55% yield. Substrates (2a-2d) with other 
substituation groups (Ph, H, Me, Br) had no conversions 
observed under 80 oC. Substrate 2e with EWG(COPh) had 
slower kietic speed with 58% coversion.  We assume that both 
conjugated π system and less stereo hinderance are important 
in the ISDDA reaction. And conjugated diyne is a good motif that 
fit both factors. This observation is also consistent with previous 
reported HDDA works that conjugated diyne can improve the 
reactivity.15 

Table 1. Optimization of the reaction conditions.a,b

entry variation from “standard conditions” yield of 4a (%)
1 none 95
2 room temperature 0
3 60 oC 26
4 no [TA-Au], no [Cu] 55
5 only [TA-Au], no [Cu] 84
6 only [Cu], no [TA-Au] 46
7 5% [TA-Au], 5% [Cu] 75
8 [Au]: LAuCl+AgSbF6 <50
9 [Au]: [LAu(MeCN)]SbF6 <20
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10 [Au]: [LAu(TA)]SbF6 (L=PPh3, XPhos etc.) <75
11 other LA than [Cu]: Ga, Zn, Ag etc. <77
12 other solvents: DCE, DMF, DMSO, CH3CN <67
13c under argon 27
14 under light 88

aStandard reaction conditions: 3a (0.2mmol),  toluene (10 mL), 10% 
JohnPhosAu(TA-H)SbF6, 10% Cu(OTf)2 ,80 oC, 12 h, air, dark. bYields are 
determined by 1H NMR with 1,3,5-trimethoxybenzene as an internal 
standard. creaction performed in glove-box.

This result was exciting as it suggested that: 1) the 
conjugated diyne is an effective moiety for ISDDA reaction 
under milder conditions and 2) it is plausible to use gold 
activation in this concerted cycloaddition process.  To further 
optimize the reaction conditions, various gold catalyzed 
systems were applied (see details in SI).  The TA-Au and Cu 
cocatalysts were identified as the optimal conditions. The 
comparison of representative alternative conditions is 
summarized in Table 1.

As shown in Table 1, under the optimal conditions, 
comprising of 10% JohnPhos(TA-H)AuSbF6 with 10% Cu(OTf)2 
under 80 oC for 12 h, the diyne substrate 3a completely 
converted to the product 4a in 95% yield (entry 1).  There was 
no conversion at room temperature (entry 2).  Notably, at a 
lower temperature (60 oC), the reaction can still occur with 30% 
conversion and 26% yield in 12 h (entry 3).  The gold catalyst 
itself could promote this transformation with 84% yield (entry 
4,5). In our group prevous work, the Cu(OTf)2 can serve as a 
Lewis acid to promote the triazole gold catalyst reactivity. The 
triazole on the gold catalyst served as a dynamic L-ligand and 
Lewis acid can dissociate the triazole ligand to yield active gold 
cation for catalysis.16 The copper co-catalyst itself resulted in a 
decreased yield of 46%, which indicated this reaction is not 
catalyzed by Lewis acids (entry 4,6).  Lowering gold catalyst 
loading to 5% caused the reduced yield (entry 7). The 
combination of gold chloride with AgSbF6 or other cationic gold 
species would give lower yields, likely due to gold 
decomposition and diyne hydration (entry 8-9).  The primary 
ligand on gold is also critical.  Johnphos was observed as the 
optimal ligand for this reaction (entry 10).  Among Lewis acids 
(Ga, Zn, Fe and Ag) tested, Cu(OTf)2 was proved to be the best 
co-catalyst for TA-Au activation in this case (entry 11).  Toluene 
was found to be the optimal solvent (entry 12).  The formation 
of arene 4a involves oxidation, which could be achieved through 
either direct de-hydrogenation or oxidation (such as by O2).  To 
explore this process, this reaction was performed under argon 
protection.  As shown in entry 13, significantly reduced yield 
was observed (27%).  This result clearly ruled-out the 
dehydrogentaiton pathway.  Notably, although it is clear that 
molecular O2 could be used as the effective oxidant, some 
product was formed under O2-free condition.  In this case, the 
oxidation was likely achieved with the in-situ formed diene, 
though with lower efficiency and atom economy.  Silghtly lower 
yield was received while conduting the reaction under day light 
(entry 14, 88%), which is likely associated with the photo 
initiated styrene decomposition/polymerization. With the 
optimized reaction conditions developed, we investigated the 
reaction scopes.  The results are summarized in Table 2. 

Table 2. Substrate Scope for ISDDA reactiona,b

aStandard reaction conditions: substrate (0.2mmol), toluene (10 mL), 
10% JohnPhosAu(TA-H)SbF6, 10% Cu(OTf)2,  80 oC ,12 h, dark. bIsolated 
yield. cno [Au], 80 oC, 12h. dno [Au], 80 oC, 6 h.e10% JohnPhosAu(TA-
H)SbF6, 100 oC, 72 h. 

To scrutinize the substituent effect of conjugated diynes, 
substrates with either electron-donating or electron-
withdrawing groups were prepared, obtaining the 
corresponding products in excellent yields (4a-4d).  Aliphatic 
and silyl substituted diynes 4e, 4f were also amenable, which 
suggested the good functional group tolerability on the diynes.  
The substrate scopes of the styryl part were also explored. The 
2-OMe, 4-OMe and 2-F substituted arenes and disubstituted 
arenes all worked well, giving desired products 4g-4k in good 
yields.  Notably, the X-ray crystal structure of 4j showed an 
interesting stereo repulsion between the alkyne and the bromo 
at the peri position.  Impressively, furan and thiophen modified 
substrates also work in this transformation, giving benzofuran 
4l, benzothiophenes (4m, 4n) and phenanthrenes (4o, 4p) in 
one step, which highlights the good efficiency of this method in 
the construction of various PAHs framework.

The styrene-diyne linkers were also explored.  As discussed 
above, amine-linked substrates gave mixtures of naphthalene 
and dialin under the thermal conditions (no gold) with low yield 
(4q:4qa=1.2:1, 4q is the dehydrogenation product, total 40% 
yield).  Similarly, ether-linked substrate gave 4r 
(dehydrogenation product), and 4ra (7:1) in 32% yield with full 
conversion in 6 h.  Both results suggested the important role of 
gold catalysis in this transformation over alternative thermal 
conditions.  The ester linked substrate gave a slow reaction (4s) 
at 80 oC.  In addition, Cu(OTf)2 caused product decomposition.  
Conducting the reaction at 100 oC with long reaction time (72 h) 
using only TA-Au gave the optimal results with 75% yield.  
Carbon-linker and longer linkages showed significantly reduced 
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reactivity with no conversions observed (4t,4u), indicating the 
importance of the linkers for this transformation.

Table 3. Phenanthrene benzotriazole H-PAHs synthesis scope

aStandard reaction conditions: substrate (0.2mmol), DMSO (2 mL), NaN3  

(0.4 mmol),  120 oC ,12 h. bStandard reaction conditions: triazole 
substrate (0.2 mmol), THF (2 mL), ArB(OH)2 (0.4 mmol), pyridine (0.4 
mmol), Cu(OAc)2 (0.02 mmol), 63 oC, O2, 12 h.

With the ability to incorporate diynes in this ISDDA reaction, 
the resulting alkyne can be applied for the sequential 
heteroatom-containing polyaromatic hydrocarbons (H-PAHs).  
Three H-PAHs synthesis are summarized in Table 3 and Table 4 
(phenanthrene benzotriazole, azaphenalene, and isoquinoline), 
which can be achieved based on this practical method.  First, 
the phenanthrene benzotriazole derivatives can be readily 
prepared in two steps (Table 3) through treatment 4o with 
NaN3 and sequential N-2 selected triazole arylation.  Notably, 
our group first reported that N-2-aryl-1,2,3-triazole (NAT) is a 
good fluorophore with strong FL emissions.17  Integration of 
NAT with PAHs will likely lead to the discovery of new H-PAHs 
with interesting photo and electronic properties, which is 
currently under investigation in our lab.

Second, under gold catalyzed alkyne activation conditions, 
azaphenalene could also be readily prepared with modified 

arene substrates.  As shown in Table 4, the application of 1,3-
di-amide substituted styrene-diyne 3v gave 6a in one-pot with 
excellent yield (83%).  The structure of 6a was confirmed by X-
ray crystallography.  This result confirmed the feasibility of the 
cascade sequence for gold catalyzed ISDDA and alkyne 
activation when proper nucleophiles are present.  Finally, while 
the reaction is rather sensitive to the linkages, the optimal 5-
member amide linker provided a potential N-nucleophile for 
sequential alkyne addition to construct isoquinoline H-PAHs.  A 
two-step sequence was developed through gold catalyzed 
alkyne addition, followed by tosyl elimination, giving the 
desired isoquinoline with high efficiency (Table 4).  Notably, all 
these H-PAHs give excellent FL emission, suggesting the 
promising applications of these new types of compounds.

Conclusions
In summary, the ISDDA reaction with conjugated diynes is being 

reported for the first time and the sequential alkyne activation allows 
easy construction of various PAHs with high efficiency.  Compared to 
simple alkynes, diyne substrates showed significantly improved 
reactivity, allowing the reaction to proceed at a lower temperature.  
The application of thermally stable TA-Au catalyst further improved 

the performance of this transformation, giving the desired products 
in excellent yields.  The resulting alkyne of the ISDDA products 
allowed for easy transformations into various H-PAHs with high 
efficiency and interesting photo properties.  Application of this 
method for the preparation of new H-PAHs cores in natural product 
synthesis and material development is expected and currently under 
investigation in our lab.
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