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Amine-Directed Mizoroki-Heck Arylation of Free Allylamines 
Vinod G. Landge,*[a] Audrey L. Bonds,[a] Thandazile A. Mncwango,[a] Carolina B. Mather,[a] Yasaman 
Saleh,[a] Hunter L. Fields,[a] Frank Lee[a] and Michael C. Young*[a]

The transition metal-catalyzed Mizoroki−Heck reaction is a powerful method to synthesize C–C bonds, allowing access to 
several important pharmaceuticals. Traditionally free amines have not been compatible with these approaches due to 
oxidation of the amine by the transition metal or other side reactions. However, the functionalization of unprotected 
allylamines is particularly attractive due to their prevalence in various biologically active molecules. Herein we report the 
palladium-catalyzed selective monoarylation of free allylamines using aryl iodides. The strategy works on primary, 
secondary, and tertiary amines, making it very general. Our monoarylation method is scalable and works on aryl iodides with 
a variety of substituted arene or heterocycle motifs, including chromophoric substrates.

Introduction
Allylamines are a versatile building block in chemical synthesis, 
and are frequent synthetic targets which are found in various 
natural products and bioactive compounds.1 Notably, 
cinnamylamines (3-arylallylamines) and their respective 
derivatives are commonly-encountered therapeutic agents. 
Therefore, the one-step synthesis of cinnamylamines from 
allylamines via a Mizoroki-Heck reaction is an attractive method 
to access this medicinally-important class of compounds that 
complements other strategies, such as hydroamination.2 
However, the use of free allylamines as substrates for this 
reaction can be challenging: these substrates are sensitive to 
oxidation through β-hydride elimination,3 allylic deamination,4 
intramolecular cyclization,5 and N-arylation.6

To circumvent these difficulties in the case of allylamines, 
several methods have been reported for the arylation of 
protected allylamines (Scheme 1a). In many examples, the 
coordinating ability of the protecting group is key for the 
regioselectivity of the insertion to form the more favorable 6-
membered intermediate, while the subsequent β-hydride 
elimination favors the trans products.7 The directing ability of 
these protected amines can also lead to more challenging 
double insertion reactions.8 More strongly-coordinating 
protecting groups that coordinate through nitrogen can even 
direct a competing C–H activation pathway, which instead gives 
rise to the cis products formed through a 5-membered 
metallacycle (Scheme 1b).9 In the case of some weaker donors 
or catalysts that don’t coordinate, it is likely that the selectivity 
may be simply due to sterics, which typically favors reaction at 
the terminal alkene position to give the linear products.10
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Scheme 1. Considerations and Approaches for the Synthesis of Arylated Allylamines.

Considering the need to first protect and then deprotect the 
substrates under these reaction protocols to access the free 
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amines for subsequent biological screening or synthetic 
elaboration, we reasoned that there was still a need for a more 
step-economical approach utilizing either the free amine or a 
transient directing group.11 However, the presence of a strongly 
coordinating amine poses the challenge that the amine is not 
likely to direct a γ-selective insertion reaction, and should 
instead promote either or both the β-selective insertion 
reaction or the γ-selective C–H activation reaction, both of 
which would proceed through a more favorable 5-membered 
metallacycle (Scheme 1c).

Notably, we had previously targeted the free-amine 
directed γ-C(sp2)–H arylation of cinnamylamines.12 In that work 
we found that a mixture of γ-arylated products were formed, 
but arose through competing insertion and C–H activation 
pathways. Despite the use of CO2, which served as an in situ-
protecting group for the amine substrates,13 we rationalized 
that the selectivity for the insertion reaction came from a 
nanoparticle-catalyzed insertion that obviated the challenge of 
forming a 4-membered metallacycle that would be expected 
from a mononuclear catalyst.14 Inspired by the ability to achieve 
γ-insertion reactions to form trisubstituted alkenes, we also 
demonstrated that we could perform symmetrical diarylation of 
terminal olefins in one step.

At the time we could not determine conditions to achieve 
the selective monoarylation reaction of the terminal 
allylamines, which as mentioned would give rise to the 
important class of cinnamylamines. In addition, while we had a 
good handle on the competing mechanisms for the arylation of 
cinnamylamines to form the 3,3-diarylallylamines, we lacked a 
similar understanding of how the first arylation occurred – did 
it also come from a competition between C–H activation 
(followed by possible isomerization)15 and γ-selective Mizoroki-
Heck coupling, or could the terminal alkene be directly arylated 
without the involvement of the amine, which under acidic 
conditions would be protonated.16 The goal of this work was 
therefore to determine conditions that would allow us to access 
cinnamylamines directly, and to address some of the 
outstanding questions regarding the mechanism of the first 
arylation.

Results and Discussion
We began our study on the monoselective Mizoroki−Heck 
reaction of unprotected allylamines using a slight excess of 
allylamine and 3-Iodobenzotrifluoride as model substrates (see 
ESI for complete optimization details). In the presence of 
Pd(OAc)2, AgOAc, CO2, and TFA at 50 °C for 14 h, product 1a was 
obtained in 88% yield. Surprisingly (based on our previous 
report),12 we did not observe any diarylation product under the 
optimized conditions for the monoarylation. The increased 
monoselectivity is most likely due to the significantly different 
ratio of aryl iodide:amine substrate (the amine is now in slight 
excess) as well as using generally milder reaction temperatures. 
While trace Pd (a.k.a. dirty stir bars) could lead to trace 
product,17 we only found product formation with Pd salts, and 
not other metals relevant to alkene functionalization such as 
Ni,18 Co,19 Mn,20 Ir,21 Re,22 or W.23 The use of acid was 

postulated to help protect the amine from degradation,16 
though we also found a small but reproducible affect from 
adding CO2. On the basis of our previous work, we suggest that 
the ability to form transient carbamates during the reaction 
further slows degradation of the amine substrates.12
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Table 1. Substrate Scope for Aryl Iodides. Reaction conditions: 
allylamine (0.36 mmol), aryl iodide (0.3 mmol), Pd(OAc)2 (10 
mol%), AgOAc (0.3 mmol), CO2 (7 eq.) and TFA (1 mL), heated at 
50 °C for 14 h and isolated as HCl salt. Reactions performed in 
triplicate and the average yield reported. [a] AcOH at 70 °C. [b] 
Isolated as the Bz protected product.

With our optimized reaction conditions in hand, we next 
investigated the scope of the mono γ-arylation of allylamine 

Page 2 of 7Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

with various iodoarenes (Table 1). Notably, while pursuing this 
study we found that many of the cinnamylamine products, most 
of which are oils, would rapidly solidify after aqueous work-up, 
purification, and isolation. These solids were generally insoluble 
in CDCl3, but upon redissolution in aqueous mineral acid, 
freebasing, and re-extraction returned the cinnamylamine oils. 
Solidification was completely inhibited when the products were 
stored in a desiccator. On the basis of these observations and 
the spectral data (see ESI), we propose that these solids are a 
mixture of ammonium carbonate/bicarbonate/carbamate 
species which are formed from the reaction with ambient water 
and CO2. As a result, we opted to isolate many of the arylated 
allylamines as their HCl salts (or in limited cases as the Bz-
protected amides) to facilitate handling and storage.

Fluorine-functionalized iodoarenes were viable substrates 
under the reaction conditions (1a – 1h). While an ortho-fluoro 
substituent was tolerated (1d), other groups such as methyl, 
methoxy, and flanking nitro and carboxylate groups were 
unreactive (see ESI). Simple iodobenzene also worked well 
under the optimized TFA conditions (1i). However, we found 
that the majority of non-fluorinated aryl iodides were not as 
effectively coupled using these conditions. Modified conditions 
using AcOH as solvent at 70 °C, worked better for disubstituted 
iodoarenes containing weak electron donors (1k and 1l), still 
with complete E-selectivity. 4-Iodothioanisole was effectively 
coupled with allylamine without any oxidation at sulphur, and 
afforded the corresponding product 1m in 65% yield.
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Table 2. Substrate Scope for Amines. Reaction conditions: 
allylamine (0.36 mmol), aryl iodide (0.3 mmol), Pd(OAc)2 (10 
mol%), AgOAc (0.3 mmol), CO2 (7 eq.) and TFA (1 mL), heated at 
70 °C for 14 h.

The revised reaction conditions were also compatible with 
ethereal groups (1n and 1o). Reactions with moderate-to-
strongly electron withdrawing groups such as ketone, ester, and 
nitro groups on the aryl iodide also proceeded in good yields (1p 
– 1u). To our delight, thiophenes and pyridines also successfully 
gave product under the reaction conditions in moderate to 

good yields (1v – 1x), despite the challenges that these types of 
substrates typically present in Pd catalysis.24 Gratifyingly, 2-
iodostrychnine was readily coupled with allylamine, affording 
the product 1y in 51% yield despite the presence of amide, 
allylic ether, and tertiary amine functional groups. Finally, a 
mentholate ester was also tolerated under the reaction 
conditions (1z).

Next, we focused on exploring the scope of the reaction for 
secondary and tertiary amines (Table 2) using 1-iodo-3,5-
bis(trifluoromethyl)benzene as the coupling partner. The 
reaction works with benzylic and carbocyclic substrates (2a – 
2c). Apart from monoarylation, no sp2 C–H arylation products 
were observed via C–H activation pathways.25 A terpenoid-
functionalized allylamine showed complete regioselectivity for 
the terminal olefin, albeit in fair yield (2d). -Methyl cinnamyl 
substrates have been observed to undergo diarylation through 
a chain walking mechanism,26 and we wondered if we could 
achieve selective monoarylation in the presence of these 
functional groups. In this case monoarylation was observed 
exclusively at the terminal olefin to give the product in 
moderate yield (2e). To expand the reaction scope, we next 
carried out a reaction with a tertiary amine substrate, which 
afforded the monoarylated product in good yield (2f). In this 
reaction, we observed the same yield of product in the 
presence/absence of CO2, presumably because tertiary amines 
do not react directly with CO2. Surprisingly, no reaction was 
observed with a β-methylallylamine, although using our 
previously published conditions the expected γ,γ’-diarylation 
product could be determined (see ESI).26a Meanwhile, a 
sterically hindered α,α-disubstituted amine could participate in 
the reaction, albeit with relatively low yield (2g), with 46% 
recovery of the starting amine material.
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Table 3. Substrate Scope for Amines. Reaction conditions: 
allylamine (0.36 mmol), aryl iodide (0.3 mmol), Pd(OAc)2 (10 
mol%), AgOAc (0.3 mmol), and 9:1 dioxane and TFA (1 mL), 
heated at 90 °C for 14 h. [a] CO2 (7 eq.) were added during the 
reaction.
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We next hoped to demonstrate the applicability of this 
method towards the synthesis of chromophore-labelled 
molecules. Chromophoric and fluorophoric molecules are 
important probes in in vivo biological applications27 and 
chemical sensing.28 The major challenge to coupling organic 
molecules to chromophores via organometallic processes is the 
sensitive nature of the coupling partners under sometimes 
harsh conditions.29 Considering that our methodology works on 
otherwise sensitive free amine substrates, we believed that our 
method should be able to overcome this limitation. However, 
under our optimized conditions, none of our dye coupling 
partners worked. After screening several different conditions, 
we eventually settled on a 9:1 mixture of 1,4-dioxanes and TFA 
at 90 °C as a suitable solvent mixture (Table 3). A BODIPY was 
easily coupled with a secondary amine in fair yield (3a). Notably, 
the fluorescence was retained in the coupled product, despite 
containing a free amine. We could also take a derivative of 
malachite green and couple it to generate a green 
chromophoric amine (3b). Regrettably, we were unable to find 
conditions during this study for the conjugation of these dye 
molecules to simple allylamine.

Given the potential utility of this reaction for the 
straightforward manufacture of cinnamylamine derivatives for 
therapeutic applications, we have also studied the scalability of 
this catalytic protocol (Scheme 2). The present palladium-
catalyzed monoarylation was performed for the model reaction 
at ten times the scale. We were delighted to find that the 
product 1a was obtained in 78% isolated yield. Notably, no 
diarylated product was observed under the scaled-up 
conditions either, obviating potentially challenging purification.

3 mmol Scale (10 x Scale-Up)

H

HH2N

H

H2N+

I
Pd(OAc)2

CO2 (7 eq.)

(10 mol%)
AgOAc (1 eq.)

TFA, 50 °C, 24 h
CF3

CF3

1a, 78%

Scheme 2. Scale-Up Reaction conditions: allylamine (3.6 mmol), 
3-iodobenzotrifluoride (3 mmol), Pd(OAc)2 (10 mol%), AgOAc (3 
mmol), CO2 (7 eq.) and TFA (1 mL), heated at 50 °C for 24 h.

Considering that under the present conditions perhaps no 
Pd nanoparticles were forming, we attempted to determine if a 
mononuclear or nanoparticle catalyst system was responsible 
for the monoarylation (note: the second arylation was already 
confirmed to be due to in situ-formed nanoparticles).12 Our first 
piece of evidence that nanoparticles were forming came when 
we attempted to perform kinetics reactions, and found the 
initial rates to be variable. When we performed a mercury drop 
test, the reaction progress halted. Taken together, this still 
implied in situ-formation of the active Pd catalyst, which would 
be expected to facilitate formation of the terminal-
functionalized product even if the amine is directing the 
reaction.

To further address the role of the amine, we considered that 
while trifluoroacetic acid or acetic acid solvents would lead to 
significant protonation of the amine, there would be expected 
a small equilibrium to the free amine which could then be 

providing a directing effect.30 However, a stronger acid added 
would be expected to further drive the equilibrium of free 
amine down, which should inhibit the reaction if the amine is 
involved.31 We therefore ran the reaction with varied 
concentrations of trifluoromethylsulfonic (triflic) acid (Scheme 
3a). As may be expected for an amine-directed reaction, as the 
concentration of triflic acid was increased, the overall efficiency 
of the reaction decreased.
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Scheme 3. Interrogating the Directing Ability of Free Amines. A) 
Affect of Added Strong Acid on Reaction Efficiency: Allylamine 
(0.36 mmol), iodobenzene (0.3 mmol), Pd(OAc)2 (10 mol%), 
AgOAc (0.3 mmol), CO2 (7 eq.), HOTf (0, 1, or 5 eq.), and TFA (1 
mL), heated at 50 °C for 14 h. B) Functionalization of a 
Quarternary Allylammonium Substrate: N-allylquinuclidinium 
bromide (0.36 mmol), 3-iodobenzotrifluoride (0.3 mmol), 
Pd(OAc)2 (10 mol%), AgOAc (0.3 mmol), CO2 (7 eq.) and TFA (1 
mL), heated at 50 °C for 14 h.

We simultaneously explored a covalent strategy for tying up 
the amine by preparing several protected amines with various 
directing abilities, including some in situ-formed transient 
directing groups,32 and found that the yields were either 
decreased, the selectivity was decreased, or both (see ESI for 
details). One notable exception is when we prepared N-
allylquinuclidinium bromide and subjected it to the reaction 
conditions. Perhaps surprisingly considering the previous 
experiments, under these conditions the arylated product was 
formed in 42% NMR yield with complete selectivity for γ-
monoarylation, and 12% recovery of starting material (Scheme 
3b). From these experiments we conclude that while the 
reaction may not require the amine as a directing group, the 
free amine can accelerate the reaction in this system.

Conclusions
We have disclosed a versatile and efficient method for selective 
monoarylation of allylamines employing a palladium catalyst. 
The present methodology has a broad substrate scope for 
amines and iodoarenes. The present strategy is highly selective 
and can easily be scaled up. The current approach has been 
utilized to effectively synthesize amines incorporating 
fluorophore/chromophores for potential biological 
applications.
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