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Abstract

The gut microbiota impact numerous aspects of human physiology, including the central nervous 

system (CNS). Emerging work is now focusing on the microbial factors underlying the bi-

directional communication network linking host and microbial systems within the gastrointestinal 

tract to the CNS, the “gut-brain axis”. Neurotransmitters are key coordinators of this network, and 

their dysregulation has been linked to numerous neurological disease states. As the bioavailability 

of neurotransmitters is modified by gut microbes, it is critical to unravel the influence of the 

microbiota on neurotransmitters in the context of the gut-brain axis. Here we review foundational 

studies that defined molecular relationships between the microbiota, neurotransmitters, and the 

gut-brain axis. We examine links between the gut microbiome, behavior, and neurological 

diseases, as well as microbial influences on neurotransmitter bioavailability and physiology. 

Finally, we review multi-omics technologies uniquely applicable to this area, including high-

throughput genetics, modern metabolomics, structure-guided metagenomics, targeted proteomics, 

and chemogenetics. Interdisciplinary studies will continue to drive the discovery of molecular 

mechanisms linking the gut microbiota to clinical manifestations of neurobiology.
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Introduction
While bacteria in the human gut encode roughly 200-fold more genes than the human 

genome, we are only beginning to understand the impact of the microbiota on human physiology.1 

Over the past decade, there has been an increased focus on unraveling the mechanisms by which 

individual microbes residing in the gut modify xenobiotic compounds. In the early 2010s, gut 

microbial enzymes were directly linked to chemotherapeutic efficacy and cardiovascular 

disease.2,3 The intestinal microbiota have since been shown to act on several other xenobiotics 

including industrial chemicals, dietary compounds, and numerous small-molecule 

pharmaceuticals.4,5,6,7,8,9,10,11 Such microbe-mediated chemical modifications directly influence the 

bioavailability of xenobiotic compounds, which in turn impact drug efficacy, treatment outcomes 

and even the risk of disease onset. The actions of intestinal microbial enzymes are not limited to 

xenobiotics, however. A growing body of research has implicated intestinal bacteria in modulating 

the structures, and therefore the bioavailability, of endobiotics including hormones and 

neurotransmitters.9,12,13,14,15,16 

The monoamine neurotransmitters serotonin (5-hydroxytryptamine; 5-HT) and dopamine 

(3,4-dihydroxyphenethylamine; DA) are key modulators within the central nervous system (CNS) 

that regulate behavior and neurological function.12,17,18,19,20,21,22 Strikingly, these monoamine 

neurotransmitters are abundant within the gastrointestinal (GI) tract as well, from which they also 

influence local and global physiology. There are as many 5-HT receptors in the gut as in the brain, 

and ninety-five percent of 5-HT in the body is stored within the gut and modulates motility, 

vasoconstriction, and fluid secretion (Figure 1).20,23 
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Similarly, DA receptors are abundant in the GI tract and nearly half of the DA in the human 

body is stored in the gut, where it modulates fluid absorption and, counter to 5-HT, inhibits GI 

motility (Figure 1).24,25 Beyond fluid balance and peristalsis, the 5-HT and DA neurotransmitters 

are critical to the “gut-brain-axis”, the bidirectional communication ongoing between the central 

(CNS) and the enteric (ENS) nervous systems.26 The intricacies of this network are poorly 

understood relative to the discrete local physiological roles ascribed to 5-HT and DA within the 

gut.

Neurotransmitter abundance varies substantially between germ-free (GF) and conventional 

mice, suggesting a role for the microbiota in modulating these levels though the gut microbial 

enzymes involved .27,28 While gut microbial sulfatases were recently shown to modulate the 

abundance of sulfate-conjugated neurotransmitters, such conjugates account for less than ten 

percent of the total 5-HT or DA residing in the gut.14,27,28,29 Overall, the actions of the microbiota 

on neurotransmitters and their derivatives are vastly understudied relative to our rapidly growing 

understanding of how the microbiota process xenobiotic compounds.30 

Global analyses of the intestinal microbiota’s influence on neurotransmitter bioavailability 

and on the gut-brain axis would appear to be critical given the impact gut-predominant 5-HT and 

DA have on physiological and neurological disease states. Here, we explore emerging and 

foundational studies that begin to unravel the relationships between the intestinal microbiota, 

neurotransmitters, and the gut-brain axis. We further review key technologies for investigating the 

gut microbiome, and we propose interdisciplinary approaches for unraveling the molecular 

mechanisms connecting the gut microbiota to neurological functions beyond local motility and 

fluid modulating effects in the GI tract.
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Gut Microbiota are Intrinsically Linked to Behavior and Neurological Disease

Recent studies have linked specific microbial taxa to behavior and neurological disease. 

More broadly, this foundational work has demonstrated that interactions between the intestinal 

microbiota and gut neurotransmitters fundamentally impact both host physiology and psychology.

The abundance of Lactobacilli have been connected in clinical studies to behavioral 

changes including the alleviation of anxiety and symptoms of depression (Figure 2).31,32,33 Animal 

models have also been employed to examine microbial influences on behavior and manifestations 

of disease. 12,34,35,36,37 For example, prolonged stress significantly reduced levels of gut Lactobacilli 

in mice compared to controls.38 When mice are treated with a combination of several strains of 

probiotic Lactobacilli, their memory and learning capabilities are improved compared to control 

mice, and there is an increased expression of genes regulating cognitive activity in the brain.39 

Microbes from the genes Bacteroides have also been linked to favorable behavioral outcomes in 

mice. For example, in a mouse model of Autism Spectrum Disorder (ASD), colonization with 

Bacteroides fragilis shifted both host- and microbiota-produced serum metabolites, including an 

increase serotonin, and corrected a wide range of behavioral deficits (Figure 2).40 Similarly, when 

mice were administered 4-ethylphenylsulfate (4-EPS), a compound linked to a variety of ASD-

like behaviors, colonization with B. fragilis reduced levels of 4-EPS and corrected many of these 

behavioral abnormalities.41 In both studies, these changes were linked to several metabolites 

thought to be produced by B. fragilis, although the enzymes involved were not specified.   

Such examples suggest that specific bacteria may directly or indirectly modulate behavior, 

perhaps in a diet-dependent mechanism. L. reuteri has been associated with alterations in diet, 

changes in gut microbial composition, and subsequent microbiota-dependent influences on host 
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psychology.42,43,44,45 A high-fat diet diminishes levels of L. reuteri in adult mice and, strikingly, a 

maternal high-fat diet was sufficient to reduce the abundance of L. reuteri in offspring.46,47 In both 

instances, lower levels of L. reuteri were accompanied by in deficits in social behavior that could 

be reversed through the direct administration of L. reuteri.46 Similarly, germ-free mice exhibit 

social deficits that can also be ameliorated by providing L. reuteri (Figure 2).46 Intestinal L. reuteri 

was also found in three separate mouse models of ASD to improve abnormalities in sociability and 

increase preferences for social novelty.48 Importantly, these behavioral changes were not a result 

of gut microbial shifts towards homeostasis; instead, the improvements appeared to be driven by 

increased synaptic plasticity, which were apparently promoted by direct interactions between the 

metabolites of L. reuteri and the vagus nerve.48

Commensal microbes can mediate host psychology by modulating the local and systemic 

bioavailability of endobiotics, including neurotransmitters.9,37,49,50,51,52 In addition, microbial 

enzymes that process neurotransmitters also interact with FDA-approved psychiatric medications. 

Selective serotonin reuptake inhibitors (SSRIs) and other psychotropics have been reported to have 

off-target interactions with gut microbial proteins that bind to and/or catalytically process 

neurotransmitters and other compounds in the gut, impacting drug efficacy.45,53,54 Indeed, drugs 

commonly prescribed for each of the seven most prevalent psychiatric disorders interact with the 

gut microbiota (Table 1),55 although the physiological and psychological consequences of these 

off-target effects are still largely undefined.11,49,50,54,55,56,57,58,59,60,61,62,63,64,65 One molecular 

mechanism that has been described involves the tetracyclic antidepressant amoxapine (brand name 

Asendin®), which is thought to alleviate major depressive episodes by potently inhibiting 

norepinephrine and serotonin reuptake receptors.54,59 Amoxapine was the first psychotropic drug 

shown to potently inhibit gut microbial β-glucuronidase (GUS) enzymes, which have the potential 
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to reactivate glucuronidated neurotransmitters in the GI tract.11,27,28,51,66 Additional SSRIs and 

related medications have since been found to inhibit these enzymes, suggesting that some benefits 

of these drugs may involve non-host targets.11,54,59 Comparable mechanisms may exist for a range 

of psychotropics (Table 1), and such interactions can be explored with the revolutionary advances 

in multi-omic studies developed over the past decade, as outlined 

below.11,49,50,54,55,56,57,58,59,60,61,62,63,64,65 

Microbial Modulation of Neurotransmitter Bioavailability
Intestinal bacteria indirectly promote neurotransmitter production within enterochromaffin 

(EC) cells.  For example, metabolites from spore-forming gut microbes induce EC cell 5-HT 

biosynthesis for delivery both to the gut lumen and to circulating platelets.37,67 Similarly, bacterial-

derived tryptophan metabolites induce 5-HT secretion in the small intestine, activating cholinergic 

neurons within ECs.68 Free 5-HT also promotes the proliferation of spore-forming microbes. One 

such genus, Turicibacter, expresses a sodium symporter-related protein homologous to the 

eukaryotic 5-HT transporter that enables it to acquire 5-HT.69 These findings suggest that spore-

forming microbes have co-evolved to induce host 5-HT production, and then to attain this 

compound toward a potential competitive advantage.69 The microbial production of short-chain 

fatty acids up-regulates the EC expression of tryptophan hydroxylase 1 (TPH1), which catalyzes 

the first and rate-limiting step in the synthesis of 5-HT.70 Furthermore, Clostridium sporogenes 

and Ruminococcus gnavus produce a tryptophan decarboxylase that converts tryptophan to 

tryptamine, which then induces the EC release of 5-HT.71,72,73 

While these studies highlight enzymes and specific metabolites that impact 

neurotransmitter regulation, others have shown that intact communities of gut microbiota influence 

the concentrations of intestinal catecholamine neurotransmitters.27 For example, the abundance of 
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DA and norepinephrine (NE) was ~24-fold higher in the gut lumen of specific pathogen-free (SPF) 

mice compared to GF mice.27 The same group then showed that the same holds true for 5-HT, with 

an increase in free intestinal 5-HT in SPF compared to GF mice.28 These results may be explained 

by the reactivation of inactive endobiotic conjugates, which are produced by host phase II 

metabolism and sent to the intestinal lumen for excretion.  However, a wide range of gut microbes 

encode genes for β-glucuronidase (GUS) enzymes that have the capability of reversing this 

conjugation and reactivating neurotransmitters in the GI tract.74  The complexity of these 

interactions highlights the roles multi-omics studies can play in defining molecular mechanisms. 

Gut-Derived Neurotransmitters Influence Local and Global Physiology

Since Edith Bulbring first demonstrated that increased gut intraluminal pressure triggers 

the release of 5-HT to initiate the peristaltic reflex and propulsive motility, it has been clear that 

neurotransmitters residing in the GI tract play a role in mediating local gut physiology.75,76,77 5-

HT has since been shown to regulate the maturation of the enteric nervous system (ENS),78 and 

catecholamine neurotransmitters have been demonstrated to promote GI motility, microbial 

biofilm formation, and bacterial virulence.79 Enteroendocrine cells synapse with vagal neurons, 

indicating that gut-derived neurotransmitters transduce signals to the brain via the vagus nerve.80 

Indeed, the intestinal lumen connects to the brainstem through a single synapse, enabling the brain 

to directly sense and respond to gut neurotransmitters within milliseconds.80 

The impact of intestinal catecholamine neurotransmitters are not limited to actions 

mediated by the vagus nerve as they are also trafficked systemically via circulating platelets.19 For 

example, platelet-derived 5-HT promotes the regeneration of liver tissue, reduces bone cell 

proliferation, and maintains glucose homeostasis.22,81,82 Mice deficient in platelet 5-HT exhibited 
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morphological and cellular aberrations that were indicative of ineffective erythropoiesis.83 Host 

transglutaminase enzymes also serotonylate intracellular proteins like GTPases by covalently 

linking platelet-derived 5-HT to glutamines in a process that facilitates platelet coagulation.84 In 

fact, many biological processes are mediated by serotonylation, including regulation of glucose 

homeostasis, insulin release, contraction of vascular smooth muscle cells, and proliferation of 

pulmonary artery smooth muscle cells.85,86,87 Thus, these studies highlight the impact gut 

neurotransmitters have on systemic physiology via the vagus nerve and circulating platelets.

Multi-omic Analyses of the Gut-Brain Axis

The following multi-omic advances are uniquely positioned to expand our understanding 

of the roles microbially modulated neurotransmitters play in the regulation of host behavior and 

physiology (Figure 3).

High-Throughput Genetics 
Drug-microbiome interactions have been examined toward defining their scope and the 

environmental requirements to facilitate them.88 Zimmerman and colleagues measured the ability 

of 76 distinct bacterial strains to metabolize 271 xenobiotic compounds.30 Surveying such a diverse 

“pool” of xenobiotics revealed 20,596 microbe-chemical interactions and that two-thirds were 

metabolized by at least one bacterial strain. Taxa clustering defined phylum-specific activities on 

individual drugs and xenobiotics, as well as common chemical modifications suggestive of 

underlying mechanisms.30 Then, high-throughput genetics were employed to systematically 

identify individual microbial gene products responsible for metabolic reactions, establishing links 

between microbial gene content and substrate modifications, and subsequently enabling the 

identification of products. Such endeavors could be readily applied towards drugs already linked 

to the microbiota, including those shown in Table 1. Alternatively, tailoring high-throughput 
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genetics to exploring neurotransmitter modifications would reduce the pool of substrates and 

improve the identification of the bacterial gene products acting on neurotransmitters.  Results from 

such studies could then be explored through techniques such as structural metagenomics or 

targeted metaproteomics. 

Modern Metabolomics 
Wikoff and colleagues were the first to apply mass-spectrometry (MS)-based 

metabolomics to assess the impact of the gut microbiome on the biochemical profile of serum 

metabolites.89 Using untargeted profiling, the metabolomes of GF and conventional mice revealed 

a range of compounds only present in the sera of animals with intact intestinal microbiota, and 

showed that >10% of endogenous metabolites varied in concentration by >50% between GF and 

conventional mice.89 Notably, 5-HT was nearly 3-fold higher in conventional mice while 

tryptophan was nearly 2-fold lower.89 Others have advanced upon this foundational work to further 

map the apparent ability of the gut microbiome to generate circulating metabolites. By combining 

a subject-specific culturing system with ex vivo metabolomics, Javdan et al. developed a screening 

platform enabling the identification and quantification of substrate-microbiome interactions 

unique to individuals.90 Linking their microbiome-derived metabolism (MDM) screen with 

functional metagenomics revealed microbiome-encoded genes responsible for specific metabolic 

actions that varied between individuals. While the approach of Javdan and colleagues explored 

metabolism of orally administered drugs, this approach could be further applied to analyze the 

metabolism of neurotransmitters by individual human gut microbiomes.90 Moreover, the structural 

motifs within the proteins exhibiting unique metabolism within a neurotransmitter-tailored MDM 

screen could inform the development of structure-oriented metagenomic analyses to explore 
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enzyme families. Once such proteins are defined across the human gut microbiome, subsequent 

MDM screens could further tailor the exploration of their actions in a high-throughput fashion.

Structure-Guided Metagenomics
Whole-genome metagenomic sequencing has generated a wealth of data on the abundance 

of microbial taxa and the genes they encode and has demonstrated that orthologs for a single 

enzyme family are often structurally and functionally diverse across the gut microbiome.52,74,91,92 

In turn, metagenomics is often not able to initially provide protein-level rationale for molecular 

processes key to microbial-mammalian interactions, including those involving the gut-brain axis. 

However, when metagenomic datasets are considered alongside protein structures resolved by 

crystallography or cryo-electron microscopy, structural motifs unique to specific bacterial clades 

but essential for differential activities with diverse substrates can be identified. Pollet et al. 

provided such an structural analysis on the β-glucuronidase (GUS) enzymes within the vast 

number of glycoside hydrolases (GH) present in the human gut microbiome.74 The group surveyed 

the Human Microbiome Project (HMP) stool sample database93 for protein sequences meeting an 

identity threshold and maintaining the full completement of amino acids that define a GUS,94 

identifying 279 unique GUS enzymes present in 139 individuals, and showing that these proteins 

can be organized by structure (primary to quaternary) in a manner that informs function.74,93 These 

approaches allow researchers to reduce the family of  > 250,000 GH orthologs into a defined set 

of GUS proteins. Furthermore, by filtering for specific amino acids at active sites defined by 

structural biology, improper annotations that have occurred can be corrected, for example by 

identifying GUS rather than beta-galactosidases.95,96 This approach has been termed structural 

metagenomics, and has since been used to identify 710 unique microbial GUS enzymes within the 

larger Integrated Gene Catalog that contains 9,816,533 total protein sequences.97,98  GUS enzymes 
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from different bacterial species have been shown to demonstrate unique substrate preferences 

based upon active site architecture.99,100,101  

This approach can pinpoint the specific proteins within microbial enzyme families that play 

broader roles in host metabolism.91,92,99,100,102,103,104 For example, 728 unique gut microbial 

sulfatases were identified from the HMP stool sample catalog. 14,93 These enzymes were shown to 

reactivate a variety of endobiotic compounds including the neurotransmitter DA, however activity 

efficiencies were dependent on structural features unique to only a subset of sulfatases across the 

microbiota.14,93 Once these structural features are identified, however, they can used to refine 

explorations towards functionally relevant members of an enzyme family. For example, the 

activity of a panel of enzymes from a given “atlas” of proteins could be reciprocally assessed with 

an MDM screen tailored to neurotransmitters, helping to concretely define the functional landscape 

of an enzyme family with a given substrate. Refining a structure-guided rubric for an enzyme 

family uniquely accounts for the structural and functional diversity across the microbiota and 

enables meta-analyses, such as targeted metaproteomics, to explore bacterial enzyme families with 

empirically driven certainty.

Targeted Metaproteomics
Recent advancements in activity-based probes (ABPs) and MS technologies have enabled 

the identification and quantification of individual proteins responsible for catalyzing specific 

reactions even from the complexity of human samples.105 Parasar and colleagues, the first to apply 

ABPs to the microbiome, profiled variation in activity of gut bacterial bile salt hydrolases 

(BSHs).106 Importantly, alterations in BSH activity between individuals were not found to correlate 

with changes in gene abundance in metagenomic sequencing, demonstrating that next-generation 

sequencing data alone is insufficient to define molecular pathways in gut microbial samples.106 
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This concept has since been improved upon by Adhikari and colleagues, who used structure-

activity relationship studies to optimize an ABP for BSH enzymes around the scaffold of a native 

bile salt substrate.107 Similarly, Jariwala and colleagues used ABPs to pinpoint the GUS enzymes 

responsible for distinct toxic drug reactivation activities between human fecal samples, results that 

may help to guide clinical treatment regimen.108,109 While untargeted proteomics can provide broad 

insight into the total collection of proteins produced by the microbiota, targeted metaproteomics 

amplifies the signal of the desired proteins to the level where they can be uniquely identified and 

quantified about the noise.  This is achieved by using chemical probes for enrichments, and recent 

computational advances in protein modeling and docking suites will likely facilitate future probe 

development.110 In the future, neurotransmitter-focused targeted proteomics could be integrated 

with behavioral studies in vivo to discretely define the gut microbe-mediated molecular pathways 

that impact host psychology.111

Chemogenetics
Chemogenetics has long been employed to define molecular pathways by engineering 

proteins to interact with small molecule actuators. In recent years, such approaches have advanced 

the definition of behavior-specific neural circuits and cellular signaling pathways within the 

brain.112,113 Bryan Roth and colleagues used the structure of human muscarinic acetylcholine 

receptors to engineer hippocampal G-protein coupled receptors (GPCRs) exclusively activated  by 

the inert exogenous ligand clozapine-N-oxide, creating Designer Receptors Exclusively Activated 

by Designer Drugs (DREADDs).114 DREADDs were then shown to alter neural activities within 

the mouse brain and to change behavior.115 Subsequent DREADDs have been developed to be 

activated by a range of inert small molecules to modulate a variety of distinct neural pathways, 

enabling researchers to assess the impact of additional proteins on behavior. Importantly, this 
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technology has been applied successfully to both excitatory and inhibitory neural pathways, 

enabling the identification of specific neural circuits underlying motor function, perception, and 

emotions.116 While DREADDs to date have only been applied to elucidate neural pathways in the 

brain, they could be turned to the enteric neurons, investigating, for example, enteric neural 

pathways in GF vs. mono-associated mice to study how individual microbes impact gut-brain axes 

communication. Similarly, DREADDs could be integrated with reciprocal MDM screens to 

explore specific neurotransmitter-metabolizing pathways and their interactions with enteric 

neuronal function, the brain, and systemic physiology.

Future Directions
Recent improvements in our understanding of the gut-brain axis generated by 

advancements in multi-omics will help to unravel the mechanisms by which specific proteins 

produced by individual bacterial species work to modulate the gut-brain axis.117 Understanding 

any level of intricacies at play in gut-brain axes of neuromodulation will likely facilitate the 

development of individualized approaches for using existing drugs to treat psychiatric disorders, 

and enhance utilization of  dietary pre- and/or probiotics118 or full diets tailored to promote specific 

bacterial consortiums that maintain optimal host homeostasis and cognitive function. Such 

breakthroughs will start with studies focused on unraveling the effects of the intestinal microbiome 

on xeno- and endobiotics that influence the gut-brain axis.
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Figure 1. The monoamine neurotransmitters serotonin (5-HT) and dopamine (DA) exert broad influences on both 

local and global physiology. 
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Figure 2. Individual gut microbial taxa have been linked to discrete behavioral and molecular changes, as shown 

here for Lactobacillus reuteri, Lactobacillus rhamnosus, and Bacteroides fragilis. 
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Table 1. Regularly prescribed psychotropics for the seven most common psychiatric disorders are directly linked to 

alterations in gut microbial composition and/or activity. 
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Figure 3. Multi-omic technologies positioned to be applied towards exploring neurotransmitter metabolism by the 

gut microbiota. 
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Psychiatric Disorder
Annual Prevalence

(% of US Population)

Major Depressive Episode 7.2

Major Depressive Episode 7.2

Schizophrenia < 1

Bipolar Disorder 2.8

Anxiety Disorders 19.1

Anxiety Disorders 19.1

Posttraumatic Stress Disorder 3.6

Obsessive Compulsive Disorder 1.2

Borderline Personality Disorder 1.4
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Prescription
Evidence of Relationship

to Microbiota

Amoxapine Inhibits bacterial β-glucuronidase
enzymes(Asendin®)

Vortioxetine Inhibits bacterial β-glucuronidase
enzymes(Trintillex®)

Risperidone Depresses resting metabolic rate;
Isoxazole scission of benzisoxazole

ring system(Risperidal®)

Lamotrigine Inhibits bacterial ribosomal
biosynthesis in E. coli; anti-microbial
against gram-positive prokaryotes(Lamictal®)

Clonazepam Bacterial nitroreductase-mediated
reduction to 7-amino metabolites(Klonopin®)

Nitrazepam Bacterial nitroreductase-mediated
reduction to 7-amino metabolites(Mogadon®)

Sertraline
Hypothesized to inhibit efflux pumps

in prokaryotes; affects fungal
virulence; broad-spectrum antibiotic

activity
(Zoloft ®)

Fluoxetine Inhibits 5-HT bacterial uptake;
Depletes bacteria that induce host 5-

HT synthesis(Prozac®)

Lithium Increases bacterial richness and
diversity(Eskalith®)

Page 30 of 31Molecular Omics



Citation

11, 54, 59

11

56, 57, 58

49, 50

60, 61

60, 61

62

63, 64

55, 65

Page 31 of 31 Molecular Omics


