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Thermoelectric devices offer great opportunities in solid-state conversion of waste heat into 
electricity and refrigeration with no moving parts or environmental emission from refrigerants. 
To realize its broad applications in energy harvesting and cooling, significant advances are 
required to not only increase thermoelectric figure of merit zT but also improve the mechanical 
flexibility and reduce the manufacturing time and cost. While nanoscale materials offer 
opportunities to enhance zT by tailoring the electron and phonon transport, challenges still 
remain to process these nanoscale materials into high-performance and low-cost devices. Here 
we demonstrate a machine learning assisted high-throughput and ultrafast (< 1 second) photonic 
flash processing method that sinters silver-selenide nanoparticles into flexible films with room 
temperature zT > 1, which is among the highest in flexible thermoelectric materials. Bayesian 
optimization was applied to accelerate the discovery of the optimum manufacturing conditions 
using less than 40 experiments, despite the complexity of photonic flash sintering processes. The 
successful integration of high-throughput photonic flash processing and machine learning can be 
generalized to highly scalable and low-cost manufacturing of a broad range of energy and 
electronic materials.
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1. Abstract

Flexible thermoelectric generators (TEGs) have shown immense potential for serving as a power 

source for wearable electronics and Internet of Things. A key challenge preventing large-scale 

applications of TEG lies with the lack of high-throughput processing method which can sinter 

thermoelectric (TE) materials rapidly while maintaining their high thermoelectric properties. 

Herein, we integrate high-throughput experimentation and Bayesian optimization (BO) to 

accelerate the discovery of the optimum sintering conditions of silver-selenide TE films using an 

ultrafast intense pulsed light (flash) sintering technique. Due to the nature of high-dimension 
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optimization problem of flash sintering processes, a Gaussian Process Regression (GPR) machine 

learning model is established to rapidly recommend the optimum flash sintering variables based 

on Bayesian expected improvement. For the first time, an ultrahigh power factor flexible TE film 

(power factor of 2205 μW/mK2 with zT of 1.1 at 300 K) is demonstrated with a sintering time less 

than 1.0 second, which is several orders of magnitude shorter than conventional thermal sintering 

techniques. The films also show excellent flexibility with 92% retention of the power factor (PF) 

after 103 bending cycles with a 5 mm bending radius. In addition, a wearable thermoelectric 

generator based on the flash sintered films generates a very competitive power density of 0.5 

mW/cm2 at a temperature difference of 10 K. This work not only shows tremendous potential of 

high-performance and flexible silver-selenide TEGs, but also demonstrates a machine learning-

assisted flash sintering strategy that could be used for ultrafast, high-throughput and scalable 

processing of functional materials for a broad range of energy and electronic applications.
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2. Introduction

Flexible Thermoelectric Generators (TEGs) are promising candidates for developing self-powered 

wearable devices and industrial Internet of Things.1–5 Flexible TEGs are lightweight, compact, and 

maintenance-free solid-state energy convertors with no moving parts that directly convert heat into 

electricity, and they can easily conform to a variety of heat sources with curved surfaces (e.g., 

body heat). The efficiency of thermoelectric (TE) materials largely depends on the dimensionless 

figure of merit (zT) defined as  where S, σ, κ, and T denote the Seebeck coefficient, 𝑧𝑇 =
𝜎𝑆2

𝜅 𝑇

electrical conductivity, thermal conductivity, and absolute temperature, respectively.6–8 Despite 

the significant progress in thermoelectric materials to date, Bi2Te3-based alloys remain as 

dominant materials for thermoelectric applications near room temperature, and the zT for n-type 

TE materials still remains below or around unity at room temperature.6,9,10 In addition, the scarcity 

of tellurium (Te) necessitates the development of new tellurium-free thermoelectric materials for 

use in widespread industrial and wearable applications. Silver-selenide (Ag2Se) is a narrow band 

gap n-type chalcogenide and an ideal candidate for room temperature applications owing to its 

high power factor (PF) and low intrinsic thermal conductivity.11–20 

Sintering is an essential step in materials processing to improve transport properties. Sintering 

transforms TE particles into a dense structure with improved thermoelectric properties. 

Conventional thermal sintering requires hours of processing time at elevated temperatures which 

hinders the widespread development of flexible TEGs on organic substrates of low melting point 

(e.g., polymers, fabrics). In addition, it hampers the high-throughput discovery and energy-

efficient manufacturing of high-performance TE materials with optimized compositions. 

Substantial effort has been devoted to the development of innovative sintering methods, such as 
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microwave-assisted sintering, spark plasma sintering (SPS), chemical sintering, and intense pulsed 

light (flash) sintering.21–29 Among these techniques, flash sintering using intense pulsed light is 

uniquely advantageous. For example, it is ultrafast, energy-efficient, and can sinter the TE films 

at elevated temperatures on low melting point substrates without damaging the underneath 

substrate. Although flash sintering has been used for a variety of conductive materials such as 

silver, copper, and graphene, it remains relatively underexplored on semiconducting 

nanomaterials, particularly TE materials.28–32 Sintering of TE nanoparticles constitutes a complex 

process involving solvent evaporation, decomposition of organic ingredients, formation of inter-

particle conduction pathways, and densification which highlights the imperative role of optimized 

flash sintering variables on the resulted TE properties. 

Previous efforts to discover the optimum flash sintering variables relied on expert-driven 

Edisonian trial-and-error search which is time and labor intensive.32 Enabled by recent advances 

in machine learning, data-driven approaches such as Bayesian optimization (BO) have rapidly 

permeated many fields including TE materials,33–35 smart manufacturing,36–38 and molecular 

modeling of chemical products.39,40 Novel artificial intelligence (AI) systems enable automated 

prediction and optimization of materials and additive manufacturing processes.33,36–38 Moreover, 

machine learning algorithms can both help intelligently maximize specific performance metrics as 

well as aid the revealing of the underlying physical mechanisms. While classical statistical design 

of experiments (e.g., full/partial factor design, response surface methods, ANOVA analysis) has 

been used to improve TE materials and manufacturing,41–43 these approaches require experimental 

designs to be fixed at the beginning of an optimization iteration and the experimental design cannot 

be updated as new data become available during the optimization iteration. This is inefficient and 
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requires many experiments to optimize multiple factors simultaneously. BO overcomes these 

limitations by adaptively determining a sequence of experiments without assuming a parametric 

model for the data. In BO, the non-parametric GPR model is updated after each experiment is 

completed such that decisions are made based on all of the available data. For this reason, BO is 

replacing response surface design of experiments methods as the state-of-the-art for statistical 

optimization of laboratory experiments.44,45  

Despite the renewed interest and recent success of AI and machine learning, there are often 

significant barriers in translating these methods into new application domains. In this work, we 

integrate, for the first time, flash sintering with a Gaussian Process Regression (GPR) machine 

learning model and BO to predict the optimum flash sintering variables for n-type silver-selenide 

TE films that leads to maximum PF at room temperature. The proposed methodology successfully 

optimized four sintering variables – voltage, pulse duration, number of pulses, and pulse delay 

time – resulting in a PF of 2205 μW/mK2, and a corresponding zT of 1.1 at room temperature 

(among the highest in the reported flexible TE films) with a sintering time less than 1.0 second 

after only 32 experiment-machine learning iterations. This methodology could be easily 

generalized to ultrafast and high-throughput flash sintering of a diverse range of energy and 

electronic materials, as well as other manufacturing processes in general. 

3. Results and Discussion

Figure 1 depicts our machine learning-assisted workflow to find the optimum flash sintering 

variables for silver-selenide TE films fabricated using vacuum-assisted filtration technique. The 

aim of the framework is to find a set of variables including voltage, pulse duration, number of 
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pulses, and pulse delay that yields the maximum power factor with a minimum number of 

experimental iterations. The workflow starts by flash sintering of silver-selenide films, then 

measuring the power factor of the films (Figure 1). The sintering variables and measured power 

factor is then used as an input for BO to predict the next set of variables to test.

Figure 1. Schematic workflow of the machine learning-assisted flash sintering of silver-selenide TE films. 
(ⅰ) Intense pulsed light (flash) sintering. (ⅱ) Thermoelectric properties measurement of the sintered film 
including the electrical conductivity, and the Seebeck coefficient. (ⅲ) Bayesian optimization algorithm for 
the evaluation and suggestion of new sintering variables (voltage, pulse duration, number of pulses, and 
pulse delay) to test. 

The preparation of silver-selenide nanostructures was based on the process reported in previous 

works.11,20 Details of the synthesis is provided in the Materials and Methods section and Figure 

S1. The as-prepared products were dispersed in ethanol by sonication, and then deposited on a 

flexible porous filtration membrane with an average pore diameter of 0.22 μm (Tisch Scientific) 

by vacuum filtration. The as-prepared films were dried in vacuum and then cold-pressed at 25 MPa 
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for 15 min prior to flash sintering (Figure S2). During the fabrication process, the film thicknesses 

were controlled by the silver-selenide particle concentration (Figure S3). The structure and phase 

composition of the as-prepared silver-selenide powder was characterized by X-ray diffraction 

(XRD). Figure S4(a) displays the XRD pattern of the synthesized silver-selenide nanostructures 

before flash sintering. All the peaks in the pattern can be indexed to orthorhombic silver-selenide 

(JCPDF 24-1041), indicating there is no obvious impurities.46 Figure S4(b-c) shows surface SEM 

images of the fabricated film before sintering, exhibiting a porous microstructure with randomly 

distributed silver-selenide nanostructures with diameters in the range of  50-200 nm. 

Figure 2 shows the TE properties, and microstructure of the films under different sintering 

conditions listed in Table S1. Details of the TE properties measurement process is described in 

the Materials and Methods section. Overall, 37 experiments with unique set of sintering variables 

were tested, and three films were sintered under each condition to ensure the reproducibility of the 

results. The SEM-EDS map of element distribution of unsintered silver-selenide film confirms the 

Ag/Se molar ratio of 1.9:1 (see Figure S5 and Table S2). A previous study has shown that adding 

small excess of anion (Se) to the stoichiometric composition leads to significant increase in power 

factor over stoichiometric Ag2Se.47 This extra Se significantly enhances carrier mobility and 

inhibits the formation of the metastable structure. Thus, we synthesized silver-selenide 

nanostructures with ~5% excess in selenium (Ag1.9Se) to maximize the power factor. The silver-

selenide films were fabricated in eight different thicknesses (16.5 μm, 14.3 μm, 13.3 μm, 9.0 μm, 

3.8 μm, 2.7 μm, 2.4 μm, and 2.3 μm) and were classified in two general groups. Experiments 1 to 

22 and 23 to 37 were conducted with films with average general thicknesses of 12.5 ± 3.2 μm, and 

2.6 ± 0.5 μm, respectively (Table S1). 
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The typical light emission from the flash lamp (Xenon, type C) is within 200-700 nm. Room 

temperature in-plane TE properties of the sintered films are shown in Figures 2(a)-(b). Sintered 

films under the BO optimized variables in experiment 32 (2.3 kV, 1.5 ms pulse time, 4 pulses, and 

293 ms pulse delay) led to the Seebeck coefficient, and electrical conductivity of -161.7 μV/K, 

8.4×104 S/m respectively with a maximum PF of 2205 ± 73.1 μW/mK2 at room temperature which 

is among the highest in the reported flexible TE films and comparable to that of the bulk 

Ag2Se.16,48–50 It is worth noting that the total sintering time was less than a second where 

conventional thermal sintering usually takes 30 min or more (Table 1).
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Figure 2. Room temperature in-plane TE properties of flash sintered silver-selenide TE films under 
different sintering conditions (details of each experiment and sintering variables are summarized in Table 
S1). (a) The electrical conductivity, and the Seebeck coefficient. (b) Power factor. Surface SEM images 
showing (c) unsintered silver-selenide film, (d) flash sintered film under non-optimum sintering variables 
(experiment 24) (e) flash sintered film under optimized sintering variables (experiment 32). Scale bars are 
500 nm. Cross-sectional SEM images of (f) unsintered film. Scale bar is 5 μm. (g) The film with 14.3 μm 
thickness (experiment 6). Scale bar is 5 μm. (h) The film with 2.3 μm thickness (experiment 28). Scale bar 
is 2 μm. 

Figures 2(c)-(e) demonstrate the surface SEM images of unsintered film, and flash sintered films 

with a representative non-optimum (experiment 24), and the optimum (experiment 32) variables. 

As shown in Figure 2(c) unsintered silver-selenide nanostructures are randomly distributed with 

a porous microstructure and limited carrier mobility which result in very low PF of 101.3 μW/mK2. 

A single pulse with a deposited energy of ~1 J (experiment 24) on the film causes coarsening and 

grain size growth leading to an improved PF of 813.9 μW/mK2 (Figure 2(d)). With optimized 

sintering variables and input energy (experiment 32), the grain size grows, and porosity decreases, 

which results in the maximum PF and almost 22-fold enhancement compared to the unsintered 

film (Figure 2(e)). It is worth mentioning that the thickness of silver-selenide films in experiments 

32 and 24 is 2.4 μm and 2.3 μm, respectively; however, the optimal input energy in experiment 32 

is 6.9 J which is almost 7-fold higher compared to experiment 24 (Table S1). This highlights the 

impact of optimal sintering conditions on TE properties. The corresponding TE properties of the 

SEM images are shown in Figure S6.

Hall effect measurements were carried out to provide insight into the charge carrier transport 

behavior of the flash sintered films. As shown in Table S3, the carrier mobility µ increases 

dramatically from 64.9 in unsintered film to 721.3 cm2 V−1 s−1 in the sintered film under the 

optimized condition (experiment 32). Here, the increased mobility can be ascribed to the increased 

film density and grain sizes with decreased grain boundaries, as shown in Figure 2(e). The 
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decreased carrier concentration in the sintered film explains the increase of Seebeck coefficient 

after flash sintering. EDS analysis on sintered films under the optimized condition revealed a slight 

shift in composition from Ag1.9Se (unsintered film) to Ag1.96Se (Table S4). In addition, we 

conducted XRD analysis on silver-selenide films before and after flash sintering (experiment 32). 

The increase in X-ray diffraction intensity (Figure S7) indicates an improvement of crystallinity 

due to grain growth, which is consistent with the observation in SEM analysis. The unsintered 

sample shows weak characteristic peak of (112) and (121) of silver-selenide as well as wide peaks 

near 16o to 26o, of which the latter may correspond to the polymer substrate of the vacuum filtrated 

films. The sintered film also reveals almost identical phase with the bulk silver-selenide crystal in 

the Inorganic Crystal Structure Database (ICSD#52603), indicating no obvious impurities.

In addition, we found that the thicknesses of silver-selenide films played an important role in flash 

sintering process and the resulting TE properties. Figures 2(f)-(h) show cross-sectional SEM 

images of unsintered, and sintered films under the same input energy but with varying thicknesses. 

As shown in Figure S8, sintering films under the same input energy of ~2.54 J (experiments 6, 

and 28) but varying thicknesses of 14.3 μm and 2.3 μm results in PF of 523.5 μW/mK2 and 1145.2 

μW/mK2 respectively. The films with reduced thicknesses undergo more uniform heating and 

sintering across the entire thickness, thus possessing the potential to achieve greater PF using the 

flash sintering (Figures 2(g) and (h)). Room temperature TE properties (Figure S8) show a 128% 

enhancement of the electrical conductivity under the same input energy by reducing thickness. We 

observed that an excessive input energy on thin films could cause sublimation of the silver-selenide 

nanostructures and create disconnected and porous microstructures with very low PF (see Figure 

S9). 
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Among the optimized sintering variables, pulse delay time between two adjacent pulses does not 

alter the input energy, but it impacts the microstructure and the resulted TE properties of the 

sintered films. Figure S10 shows the room temperature TE properties of the films under three sets 

of sintering variables with the same input energy for each set but different pulse delay times. We 

found that the PF increased with decreasing pulse delay time. For example, decreasing the pulse 

delay time from 1500 ms to 248 ms in experiments 13 and 15 (details in Table S1), respectively, 

led to 76.7% increase in PF. This is attributed to elevated temperatures because of decreased pulse 

delay time between adjacent pulses that leads to densified microstructures.51 This phenomenon 

was also observed for other TE material system (n-type Bi2Te2.7Se0.3) in our previous study.32   

The thermal diffusivity of the silver-selenide film was measured using the Angstrom method, and 

the in-plane thermal conductivity κ was determined using the relationship κ = αρcp where α, cp, 

and ρ are thermal diffusivity, specific heat capacity, and density, respectively. The in-plane κ 

of the silver-selenide films is 0.5 W/mK before sintering. The in-plane κ increases to 0.61 

W/mK under the optimized sintering condition (experiment 32), which leads to a zT value of 

1.1 at room temperature. As shown in Figures 2(h), S11, and S12, the sintered film contains 

numerous pores of different sizes, which can effectively scatter phonons with short to long 

wavelengths and reduce lattice thermal conductivity. Details of the thermal diffusivity 

measurement process is described in Materials and Methods section, and Supplementary 

Information.
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Figure 3 demonstrates and explains the efficacy of the GPR machine learning model to predict 

the PF of flash sintered films as a function of four sintering variables (voltage, pulse duration, 

number of pulses, pulse delay) and the thickness of the silver-selenide films. 

Figure 3. (a) Comparison of the measured and machine learning predicted power factors for sintered films. 
The red dots and error bars correspond to the GPR prediction mean and standard deviation. The black 
squares and error bars show the measured power factor. (b)-(e) Heatmaps show the sensitivity of the 
expected improvement (BO objective) as a function of thickness and (b) voltage, (c) pulse duration, (d) 
number of pulses, and (e) pulse delay time. The color scale from blue to red shows the expected 
improvement, where the red region indicates the range of optimal sintering variables. The black star marks 
the conditions of experiment 32 which had the maximum measured power factor.
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The predicted power factors in Figure 3(a) are generated iteratively (with constant 

hyperparameters) using data from the prior experiments. For example, the GPR prediction for 

experiment 7 uses data from the six prior experiments for training. Out of the five variables, the 

four sintering variables can be controlled by adjusting the flash sintering processing parameters, 

while the film thickness can be controlled by adjusting the silver-selenide particle concentration 

during the vacuum filtration process. Table S1 further divides the two groups of samples shown 

in Figure 3(a) with average thicknesses of 2.6 m to 12.5 m into eight subgroups. Analysis of 

Figure 3(a) and Table S1 shows the GPR rapidly learns the process-property relationship and 

only needs one or two experiments in each thickness subgroup to make confident predictions on 

experiment with close distance (as explained in the Materials and Methods section, each prediction 

is a “weighted sum” of prior experiments). For example, experiments 14 to 22 are in the 9 m 

thickness subgroup; experiment 14 has high prediction uncertainty of 545 μW/m  as there is no K2

prior experimental data for a sample with 9 m. Experiment 15 has close distance with experiment 

14; thus, after incorporating experiment 14 in the GPR model, the prediction uncertainty of 

experiment 15 reduced to 192 μW/m .  Experiment 16 is far away in distance compared with K2

both experiment 14 and 15, leading to high prediction uncertainty of 508 μW/m ; comparing K2

experiment 16 with experiment 14, the prediction uncertainty decreased 6.7% because the prior 

experiments 14 and 15 enhance the confidence of the GPR model. As more data are added to each 

thickness subgroup near the optimal sintering conditions, one expects the GPR prediction 

uncertainty to converge to the experimental measurement uncertainty. In addition, Table S1 

includes data for 8 experiments in which the thin film burned, due to the excessive energy input, 

and the PF was measured to be zero. These experiments are not shown in Figure 3(a) for clarity 

but were included in the GPR analysis. Inspecting the GPR hyperparameters,  (voltage), 𝑙1 = 0.625
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 (pulse duration),  (number of pulses),  (pulse delay), and  𝑙2 = 0.459 𝑙3 = 5 𝑙4 = 2.36 𝑙5 = 0.0477

(thickness), reveals that the film thickness can influence effectiveness of the flash sintering process 

(as explained in the Materials and Methods section, the importance of a feature is inversely 

proportional to its length scale ) and the thinner films typically have higher PF comparing similar 𝑙

thicker films. As aforementioned, the films with reduced thicknesses experience more uniform 

heating and sintering across the entire thickness, leading to dense microstructure, and greater PF. 

These GPR results motivated the team to prepare the second group of thinner films shown in Figure 

3(a), which underscores the synergies between experiments and machine learning modeling. 

Figures 3(b)-(e) show the sensitivity of the expected improvement metric (objective for BO) as a 

function of thickness and the other four flash sintering variables. Figure S13 in the Electronic 

Supplementary Information shows similar heatmaps for the prediction mean, prediction 

uncertainty, and expected improvement over a wider thickness range (1 to 16 m). These heatmaps 

confirm that the GPR model predicts a narrow thickness range, 2.2 μm to 2.6 m, which maximizes 

the expected improvement. Moreover, Figures 3(b)-(e) and Figure S13 show voltage and pulse 

duration are important factors on PF. Similarly, there is a wide range of pulse delay time and 

number of pulses that give a high expected improvement. This finding is consistent with 

importance of features indicated by the length scales as well as the Pearson correlation matrix 

shown in Figure S14. Furthermore, the gradual improvement in PF in each thickness group 

emphasizes the importance of optimizing all flash sintering variables. In this application, the film 

thickness was determined by the vacuum filtration process. The GPR model was then used to 

optimize the remaining four sintering variables with the thickness held constant.  
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A key contribution of this work is the integration of BO recommendations and expert intuition to 

maximize the PF of flash sintered silver-selenide TE films. To illustrate this integration, consider 

the results from experiments 23 to 30 in the second thickness group (2.6 ± 0.5 m). Experiment 

23 is chosen by intuition from previous experiments 1 to 22 as it is the first experiment in 2.3 m 

thickness subgroup. The GPR was then updated to incoporated the result from experiment 23 and 

BO recommend up to five optimal conditions for the next experiment, which were then 

downselected by the experimental expert. Following this same procedure, the conditions for the 

next eight experiments (24 to 32) were chosen, resulting in the steady increase in power factor. 

The maximum PF was achieved at experiment 32 (see details of sintering conditions in Table S1) 

which is the final experiment in the sixth thickness subgroup (2.4 m). We observed that the PF 

decreases for all subsequent five sintering experiments which correspond to seventh and eighth 

thickness subgroups (2.7 and 3.8 m, respectively). One possibility, suggested by Figure 3(b)-

3(e), is that there is a narrow range of thickness values, approximately 2.3 to 2.6 m for which the 

PF is maximized. The final five experiments (and two thickness subgroups) are outside this range.

Table 1 lists room temperature TE properties of several reported works on organic and inorganic 

TE materials including flexible silver-selenide films fabricated using vacuum-assisted filtration 

method. Our approach using machine learning for optimizing the flash sintering process not only 

results in an ultrahigh PF and zT, among the highest in n-type flexible TE materials, but also 

significantly decreases the sintering time to less than one second. 

Table 1. Room temperature TE properties of organic and inorganic TE materials including silver-selenide 
films with different compositions.
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Composition Sintering 
time (s)

Seebeck 
coefficient 

(μV/K)

Electrical 
conductivity 

(S/m)

Thermal
conductivity 

(W/mK)

Power factor 
(μW/m )𝐊𝟐 zT Ref.

Cu1Ag4Se3 1800 -45.7 7.6 × 104 1.32 1594 0.4 11

PVP-Ag2Se 1800 -143.4 9.3 × 104 0.51 1910 1.1 12

Ag2Se 1800 -143.0 9.2 × 104 0.69 1882 0.8 13

Ag1.8Se 1800 -120.3 6.7 × 104 NA 975* NA
17

Ag2Se/Se/polypyrrole 1800 -144.0 10.6 × 104 0.71 2240 0.9 19

β-Ag2Se 1800 -140.7 4.9 × 104 0.48 987 0.6 20

Sb1.6Bi0.4Te3/Te 2700 204 7.2 × 104 0.9 3000 1 52

Sb2Te3/Te 3600 130 7.8 × 104 NA 1370 NA 53

Te/PEDOT 600 115 2.1 × 104 0.22 284 0.39 54

CNT/PANI 72000 61 6.1 × 104 0.7 220 0.1 55

Bi2Te3 600 -141 6.7 × 104 1.2 1332 0.3 56

Bi2Te2.7Se0.3 1.5 -163 2.7 × 104 NA 730 NA 32

Ag1.96Se < 1 -161.7 8.4 × 104 0.61 2205 1.1 This 
work

*Digitized from the reference. 

Apart from the TE properties, the flexibility and mechanical durability of the silver-selenide films 

play a vital role in fabricating flexible TEGs for practical applications (e.g., wearable electronics). 

Figure 4 demonstrates the average ratio of the electrical conductivity (σ/σ0), Seebeck coefficient 

(S/S0), and power factor (PF/PF0) as a function of bending cycles. Three samples were tested, and 

the error bar represents the standard deviation from these samples. We used a programmable linear 

motion slide for the bending test with a bending radius of 5 mm. Figure S15 demonstrates the film 
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under different bending angels. As shown in Figure 4, the electrical conductivity decreases slightly 

with the increasing of bending cycles whereas the Seebeck coefficient is almost stable. This leads 

to about 8% decrease in PF after 103 bending cycles which confirms the excellent flexibility and 

robustness of the sintered films. Table S5 lists flexibility of several recently reported works on 

silver-selenide films fabricated using vacuum-assisted filtration method. 

Figure 4. Flexibility test of the flash sintered films. The electrical conductivity, the Seebeck coefficient, 
and the PF change of the films after bending for 1000 cycles. Bending radius is 5 mm.

A flexible TEG was assembled with six silver-selenide legs sintered under the optimum condition 

(experiment 32: 2.3 kV voltage, 1.5 ms pulse duration, 4 pulses, and 293 ms pulse delay time) with 

internal resistance of 75.8 Ω. Figure S16 demonstrates the fabricated TEG and the measurement 

setup. Details are included in the Materials and Methods section. The theoretical internal resistance 

of the six silver-selenide legs is calculated to be 75.4 Ω using the resistivity and the dimensions of 

the TE legs, which is in good agreement with the measured internal resistance. The small 

difference (<0.5%) between the measured and the theoretical resistances is attributed to the silver 

electrodes and the contact resistance between the TE legs and silver electrodes. Figure 5(a) shows 
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the measured device open circuit voltage (Voc) under different temperature gradients up to 70 K. 

The measured values are almost equal to the theoretical values which are calculated according to 

the expression Voc =N|S|ΔT where N is the number of TEG legs, S is the Seebeck coefficient, and 

ΔT is the corresponding temperature gradient with the maximum output voltage of 67.5 mV at ΔT 

of 70 K. 

Figure 5. Performance of a flexible TEG fabricated using flash sintered silver-selenide films. (a) Open-
circuit voltage at different temperature gradients. (b) Device operating voltage versus current at various 
∆T. (c) Power output versus electrical current. (d) Electrical power density at various ∆T.  

Figure 5(b) shows the device operating voltage as a function of electrical current where there is a 

linear negative correlation between the output voltage and the output current. Figure 5(c) shows 
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the device power output at different ΔT with the maximum power output of almost 16 μW at ΔT 

of 70 K. As conventionally calculated,11,13,57 the power density can be obtained from dividing the 

generated power by the number of legs N and the cross-sectional area , where  is the 𝐴 = 𝑤 × 𝑡 𝑤

width of films and  is the thickness of silver-selenide film. As shown in Figure 5(d), the maximum 𝑡

power density is calculated to be 0.5 and 26.6 mW/cm2 at ΔT of 10 and 70 K, respectively. This 

is sufficient to power a variety of low energy consumption Internet of Things sensors. In addition, 

we demonstrated a wearable TEG to harvest heat from human body and convert it to electricity. 

Figure 6 shows the flexible TEG with internal resistance of 56 Ω was tied around an arm with a 

generated voltage of 1.4 mV at ΔT of ~1.8 K between the hot-side and the cold-side of the device. 

Figure 6. Performance of a wearable TEG. (a) Internal resistance of the TEG fabricated using six silver-
selenide films. (b) The digital photo of 1.4 mV open-circuit voltage generated by ΔT of ~1.8 K between 
the hot-side and the cold-side of the device. The inset is the corresponding infrared thermal image.

We also tested the stability of the TEG by exposing it to the air for a month and monitored the 

internal resistance change over time. After being exposed to air, the internal resistance of the 

device increased by ~0.5% to 76.2 Ω, showing an excellent stability of the sintered silver-selenide 

films even without encapsulation. The flexible TEG can be applied to energy harvesting from other 
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heat sources with higher temperatures than human body, such as power plants, factories, industrial 

machines, geothermal and other low-grade waste heat sources. In addition to energy harvesting, 

an alternative application could be thermoelectric coolers (TECs) based on the Peltier effect. TECs 

have exhibited significant advantages compared to conventional vapor-compression refrigeration 

systems, including small size, free of noise, moving parts, working fluid, and chemical 

reaction.58,59

As demonstrated by these results, this study highlights the synergies between machine learning-

enabled Bayesian optimization and expert-driven experimental search. Human intuition is critical 

to defining the BO problem by identifying the experimental decision variables and their bounds. 

GPR is especially well-suited for sparse noisy data arising from expensive experiments as GPR 

“intelligently interpolates” from prior experiments. Early in the experimental campaign, we 

purposefully explored a mix of BO and human recommended sintering conditions. The latter 

helped bias the search to consider unexplored regions of the decision space based on prior 

knowledge. Late in the campaign, we used expert intuition to down select recommended 

experimental conditions with similar EI scores. We found these strategies to be less cumbersome 

than designing custom GPR kernels to incorporate said prior knowledge.40,60 Moreover, this study 

demonstrates the robustness and flexibility of the GPR strategy, as we successfully extended the 

GPR input space to include thickness partway through the experimental campaign. While GPR 

models do not offer full mechanistic insights, analysis of the kernel length scales provides a relative 

importance of each input variable. We used this information to design one-dimensionally 

sensitivity analyses near the optimal sintering conditions and perform the corresponding materials 

characterization to develop a mechanistic understanding of the results (Figures 2, S5, S7, S11, S12, 
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Tables S2, S3, and S4). Moreover, emerging physics-based machine learning models can be 

incorporated into the proposed framework. In our opinion, these synergies between machine 

learning and expert intuition are key factors to success.

4. Conclusion

In summary, we report the first machine learning-assisted ultrafast flash sintering of flexible silver-

selenide TE devices for energy harvesting applications. BO significantly accelerated our findings 

of a set of intense pulsed light (flash) sintering variables leading to an ultrahigh power factor of 

2205 μW/mK2, and zT of 1.1 at room temperature realized with sintering time less than 1.0 second. 

Flash sintered films demonstrate outstanding flexibility with 92% retention of the PF after 103 

bending cycles. The maximum power density of a six-leg TEG is 0.5 and 26.6 mW/cm2 at ΔT of 

10 K and 70 K, respectively. The ultrahigh-performance, low-cost, and highly flexible silver-

selenide TE films show great potential for energy harvesting and wearables. Although this study 

focuses on the optimization of flash sintering for silver-selenide TE materials, this machine 

learning-assisted experimentation strategy possesses the potential for ultrafast sintering of other 

TE material systems (e.g., Bi2Te3, and Sb2Te3) and roll-to-roll manufacturing of a broad range of 

energy, thermal, and electronic devices.
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Materials and Methods 

Synthesis of silver-selenide nanostructures

The silver-selenide nanostructures were prepared by bottom-up synthesis approach. Selenium 

dioxide (2.5 g) and polyvinylpyrrolidone (PVP, 0.05 g) are dissolved in 200 mL deionized water, 

followed by the addition of 60 mL ethanol to adjust the surface tension of the solution. The above 

solution was then added dropwise to a stirred solution of ascorbic acid (3.2 wt%, 200 mL) in water, 

leading to the formation of selenium nanowires (red). After vigorously stirring for 1 h, 

stoichiometric amount of silver precursor solution (AgNO3 in water) was introduced to the above 

mixture and left to react overnight. The final product was collected by centrifugation, and then 

washed with water and ethanol each three times before use.

Characterization

Crystal structures of synthesized nanostructures were examined via X-ray diffractometry (XRD; 

MiniFlex; Rigaku) using Cu Ka radiations over a 2θ range of 20-60. Microstructures and chemical 

compositions of the TE films were examined using scanning electron microscopy (Helios G4 Ux 

Dual Beam) coupled with energy-dispersive X-ray spectrometer (EDS, Bruker).

Flash   sintering   of   silver-selenide films

Flash sintering was performed using a Sinteron 2100 (Xenon Corp., USA) with a 107 mm Xenon 

spiral lamp. The S-2100 was configured for maximum pulse durations of 3 ms with the sintering 

carried out in an ambient environment. The S-2100 produced the pulse energy (single) ranging 

from 30 to 2850 J.
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Measurement of TE properties 

The room temperature Seebeck coefficient and electrical conductivity are measured using a 

custom-built setup. We used the four-point probe method for electrical conductivity measurement. 

To measure the thickness of the films precisely, we used cryogenic cooling of the films by liquid 

nitrogen to create sharp edge for measuring the thickness using SEM, as shown in Figure S5. For 

Seebeck coefficient measurement, we applied a temperature gradient (6 K) across the film and 

measured the induced voltage and temperatures using k-type thermocouples. The Seebeck 

coefficient is calculated as . The measurement error of the custom-built apparatus was 𝑆 =  
―∆𝑉
∆𝑇

~5% for both the electrical conductivity, and the Seebeck coefficient. Details of the measurements 

are described in our previous work.61 We used the Angstrom method for in-plane thermal 

conductivity measurement of the silver-selenide films. The room temperature in-plane thermal 

conductivity κ was determined by measuring the thermal diffusivity α, specific heat capacity 

cp, and density ρ, using the relationship κ = αρcp. Thermal diffusivity was measured using the 

Angstrom method by applying a sinusoidal heat signal at one end of the sample and measuring the 

temperature response as a function of time at two different locations along with the sample. Figure 

S12 shows the cross-sectional SEM image of the film used for thermal diffusivity measurement. 

The thermal diffusivities of both the porous filtration membrane and the combined membrane and 

silver-selenide film are measured. Modified effective medium theory was used to extract the 

thermal conductivity of the silver-selenide film itself. Details of the measurement process and 

thermal conductivity extraction are described in Supplementary Information. Thermal 

conductivity measurement error was estimated around 10%. Specific heat capacity and density 

values are adopted form a previous report.57 
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Hall effect measurement

The hall effect measurement is conducted to measure the room temperature carrier transport 

properties of unsintered, and flash sintered silver-selenide films under the optimized condition 

(experiment 32). Table S3 shows the carrier mobility (µ) and carrier concentration (n). We used 

an automatic hall effect measurement system (INSTEC, H8200) for room temperature carrier 

mobility and concentration measurement. We measured two films (10 mm × 10 mm) for each 

condition (unsintered and sintered). To minimize the electrical contact resistance between the leads 

and the film, four corners of the film (100 µm × 100 µm) were sputter coated with a 30 nm layer 

of 80% Au and 20% Pd.

TEG fabrication and testing

Two thermoelectric generators were assembled with six silver-selenide films sintered under the 

optimum condition (experiment 32: 2.3 kV voltage, 1.5 ms pulse duration, 4 pulses, and 293 ms 

pulse delay) on mica and flexible polyimide substrate with 150 μm and 25 μm thickness, 

respectively. Each leg with a size of 12 mm × 4 mm × 2.5 μm was attached to the substrate using 

double-sided tape. To minimize the contact resistance, both ends of each film (1 mm × 4 mm) were 

sputter coated with a 30 nm layer of 80% Au and 20% Pd and then the legs were connected by 

silver paste (Flash-dry, SPI). We used a custom in-house apparatus for measuring the device 

performance under different temperature gradients with two k-type thermocouples for measuring 

cold and hot side temperatures as shown in Figure S16. 

Design of initial experiments
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Special care is required to select the initial training data used for machine learning-based 

optimization of experiments.62 In this work, to determine the parameters for Experiments 1 to 6 in 

Table S1, we consider two factors for three sintering variables: voltage (2.2 or 2.4 kV), pulse 

duration (1 or 2 ms) and number of pluses (1 pulse or 5 pulses with 1000 ms pulse delay). 

Thickness was held constant. Instead of performing a full factorial design (23 = 8), we decided to 

omit the two experiments with 2 ms pulse duration and 5 pulses to avoid burning any samples 

(based on our prior experience). The data from these first six experiments were used to training 

the initial machine learning models.

Machine learning and Bayesian optimization 

Gaussian Process Regression (GPR) and Bayesian Optimization (BO) are popular machine 

learning techniques to intelligently improve expensive experiments through adaptive learning. In 

this section, we describe the underlying mathematics behind GPR and BO and emphasize specific 

details for implementation with TE materials.

Let  represent unknown function that maps experiment conditions  (input, vector) and power 𝑓(𝒙) 𝒙

factor  (output, scalar). Mathematically, we seek to solve the optimization problem , 𝑦 max
𝒙𝜖𝜲

𝑓(𝒙)

where the set  contains all possible (feasible) experiment conditions. However, experiments are 𝜲

expensive and time-consuming. BO recommends a sequence of experiments to maximize power 

factor using three main steps: first the GPR machine learning model is training on available data 

to emulate the unknown function . Second, decision theory is used to recommend the most 𝑓(𝒙)

valuable experiments; third, the proposed experiments are conducted, measured, and recorded. The 

process is repeated multiple times until the desired power factor is obtained or the experimental 

budget is exhausted.
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A single flash sintering experiment requires specifying five input variables – voltage , pulse (𝑥𝑖1)

duration , pulse delay , number of pulses , and thickness ) – which result in a (𝑥𝑖2) (𝑥𝑖3) (𝑥𝑖4) (𝑥𝑖5

correspond power factor . Here the subscript  denotes the experiment (sample) number. All (𝑦𝑖) 𝑖

samples are combined for the dataset , abbreviated as 𝐷 =  {(𝒙𝑖,𝑦𝑖),|𝒙𝑖 ∈  ℝ5,𝑦𝑖 ∈ ℝ, 𝑖 ∈  1,…,𝑁}

.𝐷 = (𝑿,𝒚)

We now construct a GPR model to predict the outcome of a new experiment, , at conditions 𝑓(𝒙 ∗ )

. GPR is a non-parametric model, which means the data  are directly embedded into the model. 𝒙 ∗ 𝐷

The GPR model is fully specified by the dataset , the mean function , and the kernel 𝐷 𝑚(𝑋)

(covariance) function  In this work, we use the radial basis function as the kernel 𝐾(𝑿,𝑿′). 𝑘𝑅𝐵𝐹

, which measures the distance between each pair of experiment (𝒙, 𝒙′|𝒍) = 𝑒
―

1
2∑5

𝑗 = 1(𝑥𝑗 ― 𝑥′𝑗
𝑙𝑗

 )
2

 

condition  and . Thus, when making a prediction at the new condition experimental , the 𝒙 𝒙′ 𝒙 ∗

GPR incorporates all information from dataset  using the kernel to “weight” the importance of 𝐷

all prior experiments using the distance between  and all . In this way, the GPR is a 𝒙 ∗ 𝒙𝑖 ∈ 𝐷

sophisticated ML approach to interpolate between all prior experiments in  without requiring an 𝐷

assumed parametric model to map inputs  to output Instead, the GPR model assumes the 𝒙𝒊 𝑦. 

experimental outcomes are described by a multivariate normal distribution :𝑵(.,.)

[ 𝒇(𝑿)
𝑓(𝒙 ∗ )] ∼ 𝑵([ 𝒎(𝑿)

𝑚(𝒙 ∗ )],  [ 𝑲(𝑿,𝑿) 𝑲(𝑿,𝒙 ∗ )
𝑲(𝒙 ∗ ,𝑿) 𝑲(𝒙 ∗ ,𝒙 ∗ )])    #(1)

Applying Bayes rule of probability gives the following analytical expressions for the prediction 

mean and variance at new experimental condition : 63𝒙 ∗

𝜇 ∗ (𝒙 ∗ ) = 𝐸(𝑓(𝑥 ∗ )|𝒚) = 𝒎(𝒙 ∗ ) + 𝑲(𝒙 ∗ ,𝑿)[𝑲(𝑿,𝑿) + 𝜎2𝑰] ―1(𝒚 ― 𝒎(𝑿))#(2𝑎)

𝜎 ∗ (𝒙 ∗ ) = 𝑉𝑎𝑟(𝑓(𝑥 ∗ )|𝒚) = 𝑲(𝒙 ∗ ,𝒙 ∗ ) ― 𝑲(𝒙 ∗ ,𝑿)[𝑲(𝑿,𝑿) + 𝜎2𝑰] ―1𝑲(𝑿,𝒙 ∗ )#(2𝑏)
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Eq. (2) also includes normally distributed observation error with mean zero and variance .  The 𝜎2

hyperparameters  in kernel function , also called length-scales, 𝒍 = (𝑙1, 𝑙2,𝑙3,𝑙4,𝑙5)𝑇 𝑘𝑅𝐵𝐹(𝒙, 𝒙′)

determines the importance of the features. If length-scale  is small, then the corresponding feature 𝑙𝑗

 is more important to predict the output . Optimal length-scales are computed by maximizing 𝒙𝑗 𝑦

log marginal likelihood (LML).60 

Expected Improvement (EI) in popular acquisition function to recommend an optimal  in a BO 𝒙 ∗

framework. EI balances the trade-offs between exploration, i.e., choosing in regions with high 𝒙 ∗  

uncertainty, and exploitation, i.e., choosing  in regions that will maximize . EI achieves 𝒙 ∗ 𝑓(𝒙 ∗ )

this balance by computing the expected value of the improvement between  and  , 𝑓(𝒙 ∗ ) 𝑓(𝒙 + )

where  is the experiment condition in dataset  that has highest power factor. Thus 𝒙 + 𝐷

mathematically . By exploiting mathematical properties of 𝐸𝐼(𝒙 ∗ ) =  max (𝑓(𝒙 ∗ ) ― 𝑓(𝒙 + ), 0)

the normal distribution,  has the following analytic formula:𝐸𝐼(𝒙)

𝐸𝐼(𝒙 ∗ ) = {(𝜇 ∗ (𝒙 ∗ ) ― 𝑓(𝒙 + ))Φ(𝑧) + 𝜎 ∗ (𝒙 ∗ )𝜙(𝑧),   𝜎 ∗ (𝒙 ∗ ) > 0
0,   otherwise #(3𝑎)

𝑧(𝒙 ∗ ) = {(𝜇 ∗ (𝒙 ∗ ) ― 𝑓(𝒙 + ))
𝜎 ∗ (𝒙 ∗ ) ,  𝜎 ∗ (𝒙 ∗ ) > 0

0,   otherwise
#(3𝑏)

Here,  is cumulative distribution function, and  is probability density function, Φ( ⋅ ) 𝜙( ⋅ )

respectively, for the standard normal distribution. The GPR and BO workflows were implemented 

in Scikit-learn.64 The entire workflow, including the interaction between BO and human experts 

(experimentalist), is illustrated in Figure 7. The entire procedure including hypertuning training 

and EI optimization requires less than 2 minutes on a MacBook with a 2.6 GHz Intel Core i7 CPU.
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Figure 7. The proposed workflow integrates Bayesian optimization (BO) and human intuition. The overall 
procedure contains three steps: Gaussian process regression (GPR) model training (green box), expected 
improvement (EI) calculation (blue box), and experimentalist down selection and fabrication (yellow box). 
The BO is implemented in first two steps and expert intuition is incorporated in the last one. The dataset, 𝐷

, contains  samples of recorded sintering variables , which consist of voltage , pulse = (𝑿,𝒚) 𝑁 𝒙𝑖 (𝑥𝑖1)
duration , pulse delay , number of pulses , and thickness ), and the corresponding power (𝑥𝑖2) (𝑥𝑖3) (𝑥𝑖4) (𝑥𝑖5
factor . In each iteration, dataset  is provided to BO, and  new experiments, (𝑦𝑖) 𝐷 𝑑 {(𝑥𝑁 + 1,𝑦𝑁 + 1),…,(𝑥𝑁 + 𝑑,

 are selected by human intuition, performed, and added to dataset ; the procedure terminates when 𝑦𝑁 + 𝑑)}, 𝐷
the expected improvement approaches zero or the experimental budget is exhausted.
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