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Abstract

Graph neural networks (GNNs) have been widely used for predicting molecular proper-
ties, especially for single molecules. However, when treating multi-component systems, GNNs
have mostly used simple data representations (concatenation, averaging, or self-attention on
features of individual components) that might fail to capture molecular interactions and po-
tentially limit prediction accuracy. In this work, we propose a GNN architecture that captures
molecular interactions in an explicit manner by combining atomic-level (local) graph convo-
lution and molecular-level (global) message passing through a molecular interaction network.
We tested the architecture (which we call SolvGNN) on a comprehensive phase equilibrium
case study that aims to predict activity coefficients for a wide range of binary and ternary mix-
tures; we built this large dataset using the COnductor-like Screening MOdel for Real Solvation
(COSMO-RS). We show that SolvGNN can predict composition-dependent activity coefficients
with high accuracy and show that it outperforms a previously-developed GNN used for pre-
dicting only infinite-dilution activity coefficients. We performed counterfactual analysis on the
SolvGNN model that allowed us to explore the impact of functional groups and composition
on equilibrium behavior. We also used the SolvGNN model for the development of a com-
putational framework that automatically creates phase diagrams for a diverse set of complex
mixtures. All scripts needed to reproduce the results are shared as open-source code.
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1 Introduction

Predicting the physicochemical properties of molecules is crucial for applications such as prod-
uct and process design. In the past decade, machine learning (ML) techniques have been used
as data-driven approaches that help accelerate molecule screening and to reduce experimenta-
tion cost, especially when a large chemical space is involved. These models have also shown
to be versatile and to predict diverse molecular properties such as water solubility,1–3 toxicity,4–6

and lipophilicity.7, 8 A fundamental step in the use of ML models is the pre-definition or pre-
calculation of molecular descriptors;9–12 such descriptors are used as input data to develop quan-
titative structure-property relationship models.13 Recently, there has been growing interest in
applying ML models to study more complex chemical systems that might contain multiple com-
ponents such as chemical reactions,14, 15 alloys,16, 17 copolymers,18–20 and gas/liquid mixtures.21–33

Among the ML techniques explored, graph neural networks (GNNs)34, 35 have gained special pop-
ularity because they can directly incorporate molecular representations (in the form of graphs),
which enable the capturing of key structural information while potentially avoiding the need
to pre-calculate/pre-define descriptors using more advanced but computationally-intensive tools
such density functional theory (DFT) or molecular dynamics (MD) models.

In a typical GNN architecture for prediction of molecular properties,36 the characteristics of the
atoms and of the bonds are propagated based on the chemical structure of a single input molecule,
followed by featuring embedding via nonlinear transformation. The embedded features are then
fed to fully-connected layers to construct predictive models. GNNs have achieved better perfor-
mance than conventional descriptor-based approaches in various benchmark datasets.37, 38 When
dealing with multiple components, several approaches have been devised; a typical way to en-
code multi-molecule information is to simply average or concatenate the features of individual
molecules and to use these as system-level features for property inference with fully connected
or attentive layers.14, 15, 19 Previous studies have also incorporated weighted sums or concatena-
tion to take into account composition information when needed.19 However, these approaches do
not capture molecular interactions in an explicit manner, which may limit the predictive power of
GNNs for systems in which intermolecular interactions play an important role.

In this work, we present a GNN architecture that explicitly incorporates molecular interactions
via the combination of atomic-level (local) graph convolution and molecular-level (global) mes-
sage passing for property prediction of multi-component chemical systems. To connect local fea-
tures with global features, we construct a molecular interaction network as an intermediate step.
The molecular interaction network is a complete graph in which each node represents a molecule
and each edge represents a hypothetical intermolecular interaction (e.g., hydrogen bonding). This
representation serves as a physics-informed topological prior that aids feature extraction from
multi-component systems. The composition information is also encoded in the architecture as
additional node feature for the molecular interaction network. We hypothesize that, with this
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type of data representation and feature propagation guided by physical intuition, the proposed
architecture may better model mixture properties while taking composition information into con-
sideration.

We evaluate the proposed GNN architecture through a comprehensive case study on miscibil-
ity calculations for multi-component systems. We choose activity coefficients as the target thermo-
dynamic property of interest, which measures the deviation of a liquid mixture from ideal solution
behavior. Activity coefficients are one of the fundamental properties of a mixture and therefore
can lead to the derivation of equilibrium conditions (e.g., phase diagrams), which are important
in physical chemistry and engineering for understanding and optimizing chemical separations.39

Previous studies have developed ML-based methods to predict infinite-dilution activity coeffi-
cients for binary mixtures, including matrix completion on the activity coefficient matrix28, 40 and
multilayer perceptrons on the system descriptors.41 However, these methods did not account for
molecular structural information directly, and the latter is limited to systems of water in ionic
liquids. A more recent study by Medina et. al.29 used GNN models to tackle this problem; this
approach, however, used a data representation that involves a simple concatenation of individ-
ual graph features after local embedding (i.e., the GNN architecture does not explicitly captures
intermolecular interactions). Furthermore, all these previous studies have focused on predicting
infinite-dilution coefficients, which do not take into consideration composition information (this
limits their use in more sophisticated thermodynamic predictions such as phase diagrams). To
the best of our knowledge, GNNs have not been explored as a method to predict composition-
dependent activity coefficients nor have they been extended to predict activity coefficients for
systems with more than two components. The proposed GNN architecture is generalizable to
multiple component systems and captures composition.

Through our case study, we demonstrate that the proposed GNN (which we call SolvGNN)
outperforms prior architectures (that lack an explicit graph representation of molecular interac-
tions) in terms of prediction accuracy. Our study leverages a large dataset that was developed
using the COnductor-like Screening MOdel for Real Solvation (COSMO-RS). SolvGNN also en-
ables better modeling of mixture compositions due to the incorporation of global message pass-
ing on the molecular interaction network with hydrogen bonding information. We also show that
SolvGNN can be applied to both binary and ternary liquid-phase mixtures to predict composition-
dependent activity coefficients. To interpret our SolvGNN predictions, we perform counterfactual
analysis42 to identify the impact of functional groups on activity coefficients. To demonstrate the
applicability of SolvGNN, we developed a framework that can automatically predict phase behav-
ior for complex binary and ternary mixtures. Example outcomes of the framework, such as binary
P-x-y diagrams, can be used to study solvent miscibility and to help identify azeotrope compo-
sitions to guide the design of targeted mixtures and chemical separations. We share scripts and
datasets as open-source code to enable the reproduction of the results and to conduct benchmarks.
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2 Materials and Methods

2.1 Data Set Summary

We assembled a list of 700 common solvents,43 covering a wide spectrum of small molecules such
as water, alcohols, esters, and ethers. We then used random sampling over the solvent space
to generate 40,000 binary mixtures and 40,000 ternary mixtures. For each binary mixture, we
explored five molar composition ratios–10%/90%, 30%/70%, 50%/50%, 70%/30%, 90%/10%; for
each ternary mixture, we explored four molar composition ratios–15%/15%/70%, 15%/70%/15%,
70%/15%/15%, and 33.3%/33.3%/33.4%. Overall, we assembled a large database with 200,000
entries for binary mixtures and 160,000 entries for ternary mixtures. We further augmented the
binary mixture data set with 80,000 infinite dilution activity coefficients (corresponding to molar
composition ratios of 0% or 100%) to determine how these points influence prediction accuracy
at extreme compositions. These data are later combined with the previous binary mixture data
set to enable a more powerful SolvGNN that can accurately predict activity coefficients across all
concentrations, including the infinite dilution case.

To visualize the coverage of the chemical space, the solvents were grouped into 22 categories
based on a predefined list of functional groups (details are provided in the SI Section 1). The vi-
sualization is provided in Figure 1a. The sampled binary mixtures are represented by connections
between nodes. The number of solvents in each category and the number of sampled pairs are
reflected by node size and edge thickness; this illustrates that our random mixture sampling cov-
ers a wide range of solvent pairs in different categories. We also visualized the chemical space
of the solvents by performing a t-distributed stochastic neighbor embedding (t-SNE)44 dimen-
sionality reduction technique on the Morgan fingerprints,9 also known as extended connectivity
fingerprints10 in Figure 1b. The 2D map from t-SNE shows separation between some solvent cat-
egories, such as nitriles and aromatics. However, because some solvents contain more than one
identifiable functional group, they may potentially be grouped into another category. As a result,
the clustering in a few other categories is less clear, but in general the scattered distribution here
suggests the inclusion of diverse and complex chemical structures.

We categorized the sampled binary and ternary mixtures based on whether each component
in the mixture is polar or nonpolar (obtained from RDKit45), as summarized in Table 1. We com-
puted the percentage of each mixture type; this information was used for stratified sampling,
which creates training/validation folds by preserving the percentage of samples for each mixture
type (this ensure that the model learns different types of molecular interactions). Overall, most
mixtures contain at least one polar component, indicating the presence of strong intermolecular
interactions (e.g., , dipole-dipole forces).
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Figure 1: Dataset visualization. (a) Solvent categories based on the primary functional group of
individual solvents with examples. The categorization method is detailed in SI. The size of a node
reflects the number of solvents in that category, and the thickness of an edge reflects the number of
sampled pairs between two categories. (b) 2D map obtained by t-SNE dimensionality reduction44

applied to molecular fingerprints.

Table 1: Mixture types based on polarity (obtained from RDKit45) of individual components.

Mixture Type Count Percentage

Binary

(280,000)

polar-polar (p-p) 162,547 58%

polar-nonpolar (p-n) 101,913 36%

nonpolar-nonpolar (n-n) 15,540 6%

Ternary

(160,000)

polar-polar-polar (p-p-p) 71,136 45%

polar-polar-nonpolar (p-p-n) 66,040 41%

polar-nonpolar-nonpolar (p-n-n) 20,848 13%

nonpolar-nonpolar-nonpolar (n-n-n) 1,976 1%

2.2 Activity Coefficient Calculations

To overcome the challenge of limited experimental data availability, we used the COnductor-like
Screening MOdel for Real Solvation (COSMO-RS) to generate ground-truth labels for supervised
ML. COSMO-RS calculations are based on surface charge densities (σ-profiles) of mixture compo-
nents, which are obtained from DFT calculations coupled with the COSMO continuum solvation
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model,46 and it can be used to calculate the activity coefficients for any mixture as long as the
chemical structures are provided and optimized. For each solvent mixture, we obtained activity
coefficients γi for individual components i from COSMO-RS and constructed large and structured
data sets for model training and evaluation.

COSMOtherm47 (version 2019), a software that implements COSMO-RS, was used to obtain
composition-dependent activity coefficients for the individual components of each sampled mix-
ture. Prior to COSMO-RS calculations, chemical structures were generated from CirPy (version
1.0.2), a Python library that serves as the interface for the Chemical Identifier Resolver (CIR);48

this searches the National Institutes of Health (NIH) database for the chemical structures and
provides the optimized coordinates for the atoms. We next conducted DFT calculations using
TURBOMOLE49 (version 7.5) at the BP-TZVP theory level with the Becke-Perdew (BP) functional
and the resolution of identity approximation under ideal screening condition (ϵ∞, COSMO contin-
uum solvation model). A single-point calculation was then conducted with the def2-TZVPD basis
set and fine cavity parameter to create the σ-profiles. Activity coefficients were then calculated
given the σ-profiles of individual components, the mixture compositions in the liquid phase, and
temperature (298K).

2.3 GNN Model Architecture

GNNs are a class of neural networks that take graphs as inputs and perform convolutions based
on the graph topology by aggregating the features of a node and its connected neighbors. The
node features are embedded into a fixed-dimension space where similar nodes are close to each
other. Compared with conventional convolution neural networks that operate on grid data (e.g.,
images), GNNs have the advantage of extracting features from data with more flexible topology
and different sizes while keeping locality information, and therefore are applied widely to chemi-
cal data.

As shown in Figure 2, each input mixture is represented as molecular graphs G = (V,E,H) of
individual components with nodes v ∈ V , edges e ∈ E, and node feature matrix

H =


— hTv1 —
— hTv2 —

...

 (1)

that encodes atom and bond information such as atom types and degrees.50 A local graph convo-
lution51 was applied to each of the input molecular graphs, and the node features were updated
through

H(t+1) = ReLU
(
D̃− 1

2 ÃD̃− 1
2H(t)W (t)

)
. (2)

Here, Ã is the adjacency matrix of graph G with self-loops, D̃ =
∑

j Ãij is the degree matrix and
W (t) is the learnable weight matrix at time step t. D̃− 1

2 ÃD̃− 1
2 is derived from normalized graph

Laplacian that accounts for graph topology and implicitly imitates molecular interactions. The
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W (t) values are kept the same for each component in the mixture. After local graph convolution,
node-level features are averaged to generate the graph-level feature uG = 1

|V |
∑

v hv.

We compared several approaches to capture molecular interactions. The first approach is il-
lustrated in Figure 2a and referred to as SolvCAT. In this approach, uG ’s undergo a feature con-
catenation with composition x to form a fixed-length latent feature vector. For a ternary system,
for example, umix = x1|uG1 |x2|uG2 |x3|uG3 . The system-level feature vector is then sent to fully
connected neural network layers for activity coefficient predictions. The second approach is illus-
trated in Figure 2b and referred to as SolvGCN. In this approach, a molecular interaction network
was constructed to explicitly simulate molecular interactions between the components in a sys-
tem. The molecular interaction network Gint = (Vmol, Eint, Hmol) is a complete graph where each
node vmol ∈ Vmol denotes a molecule, each edge eint ∈ Eint denotes the existence of certain inter-
molecular interaction, and molecular-level node feature matrix:

Hmol =


— hTvmoli

= xi|uTGi
—

— hTvmolj
= xj |uTGj

—
...

 . (3)

A global graph convolution is applied using the same updating rules as Eq.2; in this case, umix is
obtained by concatenating the latent node features hmol’s after global graph convolution.

The third approach is illustrated in Figure 2c and referred to as SolvGNN. Building on SolvGCN,
for this approach we developed a more informative representation of the molecular interaction
network; we encoded hydrogen-bond (H-bond) information, one of the strongest form of dipole-
dipole interactions, as the edge feature. For a ternary system, this feature is formulated as:

eint(vmoli
vmolj

)
=

min(#HBAvmoli
,#HBDvmolj

), i = j

min(#HBAvmoli
,#HBDvmolj

) + min(#HBDvmoli
,#HBAvmolj

), i ̸= j
(4)

where HBA and HBD stands for H-bond acceptor and donor. Given such edge representation, H-
bond information between like molecules (i = j) and unlike molecules (i ̸= j) are both captured.
In this case, the global graph convolution integrates edge features and is achieved via message
passing35 expressed by

m(t+1)
vmol

=
∑

vmoli
∈N(vmol)

Mt(h
(t)
vmol

, h(t)vmoli
, eint(vmolvmoli

)
) (5)

and
h(t+1)
vmol

= Ut(h
(t)
vmol

,m(t+1)
vmol

), (6)

Here, we used the original message passing formulation,35 where the message function Mt is a
fully-connected edge network to compute a message matrix based on graph topology as well as
edge features, and the node update function Ut is a gated recurrent unit (GRU)52 to aggregate
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Figure 2: GNN architectures studied. All three GNN architectures undergo the same graph con-
volution for feature embedding of individual components at a local level. They differ in their way
of capturing intermolecular interactions. SolvCAT (a) conducts a simple concatenation of the mole
fraction and locally embedded features; SolvGCN (b) constructs an intermediate molecular inter-
action network followed by global convolution without explicit edge information; SolvGNN (c)
explicitly incorporates H-bond information as the edge feature in the interaction network, which
undergoes global message passing for ”intermolecular”-level feature embedding. In each case,
the globally embedded features are used for activity coefficient (γi) predictions through fully con-
nected readout layers. Images at the bottom illustrate screening charge densities computed from
COSMO-RS and representative interactions.

”message” and the original node feature, which can be viewed as a generalization of the plain
GCN.

In all three cases mentioned above, the embedded features after ”intermolecular interactions”
are sent to the fully connected readout layers for the final activity coefficient (γi) prediction.
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2.4 GNN Training and Hyperparameter Tuning

SMILES strings were used as molecule identifiers and processed by RDKit (version 2019.03.2)45

to generate molecular graphs. The GNN models were constructed using PyTorch (version 1.2.0)53

and Deep Graph Library (version 0.4.3).54 The major hyperparameters we varied include the num-
ber of graph convolution layers (1,2), the number of fully connected readout layers (1,2,3), the
number of hidden neurons (128,256), and the learning rate (0.0005,0.001). The model was trained
with the average mean-squared-error (MSE) loss for the ln γi values, the Adam optimizer, a learn-
ing rate of 0.001, and a batch size of 100 for 100 epochs. Unlike SolvGCN and SolvGNN where
graph convolutions are conducted at the node-level and where model predictions are unaffected
by the order of the components, SolvCAT does not naturally preserve permutation invariance. To
address this issue, we performed data augmentation during training by randomly flipping the
order of the components. For model evaluation, we performed 5-fold cross-validation (CV) with
stratified random sampling to split data for hyperparameter tuning and model evaluation. Strat-
ification is based on the type of mixture (e.g., polar-polar, polar-nonpolar, or nonpolar-nonpolar)
to ensure that both the training and validation sets contain all types of mixtures. Other than strat-
ification on the type of mixture, we did not enforce any constraints on the components or the
compositions, and therefore the validation sets contain completely unseen systems and compo-
sitions. To further study the more stringent cases of SolvGNN to generalize to unseen mixtures
(and their interactions) or components, we explored three alternative data splitting methods; the
results and comparison are discussed in the SI. All evaluation metrics are computed using the
compilation of the validation data in each fold to obtain a realistic estimation of the model perfor-
mance. More implementation details about training and validation can also be found in the SI.

Because the data sets contain a large number of binary or ternary mixtures at different compo-
sitions, it is computationally expensive to generate the corresponding molecular graphs for every
training/validation instance. As a result, we designed our data loading and model training al-
gorithm to lower the training time. Upon data set initiation, we generated and stored all 700
molecular graphs at once in a dictionary format. When a training/validation instance was passed
to the algorithm, the molecular graphs were obtained from the dictionary using the index and
only require simple manipulation (e.g., calculation for intermolecular H-bond) to form the desired
mixture data. Doing so largely reduced redundant calculations and saved time (from days to a
couple of hours).

We trained separate models for binary and ternary mixtures for simplicity and for a fair com-
parison between different GNN architectures. In the cases of SolvGNN and SolvGCN, the model
architectures are the same (with the same number of learnable parameters) for binary and ternary
mixtures given the permutation invariance nature of graph convolutions that perform node-level
computation. However, in the case of SolvCAT, the model architectures vary for binary and
ternary mixtures as molecule-level embeddings are concatenated together for the final inference,
which results in a larger number of learnable parameters for ternary mixtures. Applying the same
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read-out layers to each molecule-level embedding can guarantee permutation invariance and in-
terchangeability of binary/ternary inputs but worsens the model performance drastically, so we
decided to keep the concatenation design choice for SolvCAT while augmenting the data through
random permutation of component orders during training. Potentially, the binary and ternary
data sets can be merged together as one data set with a single model trained to predict either case
easily if we use SolvGCN or SolvGNN, but requires setting the features of one of the components
to zero for binary mixtures and keeping the ternary architecture if we use SolvCAT, which may
result in biased selection of the component to be masked. Therefore, the integration of binary and
ternary mixtures is beyond the scope of the current project, and we would like to consider this as
future work in the further development of the tool.

2.5 Counterfactual Analysis

To interpret the trained model, we adapted the counterfactual framework proposed in42 to un-
derstand which chemical structures and functional groups lead to certain activity coefficient pre-
dictions. Here, we generated two types of counterfactuals for our dataset. Counterfactual Type
I (Eq.7) focused on searching for mixture samples with minimal input differences but maximal
output deviations from a base mixture. Counterfactual Type II (Eq.8) focused on the mixture sam-
ples with the maximal input differences and minimal output deviations. The similarity between
mixtures similarity(mixture,mixture′) was obtained via the mean Tanimoto similarity55 of the
pair, and the difference between predicted activity coefficient predictions was computed with the
absolute differences (MAE) between the ln γi values using the trained SolvGNN denoted as f̂ .
The parameter λ is a trade-off parameter that controls the relative importance of mixture (input)
similarity and prediction (outcome) difference. The parameter λ was set to 0.9 to generate Type
I counterfactuals with a similarity value of at least 0.6. The search space was limited to the 700
solvents in our data set to keep the computational cost tractable, especially for Type II counterfac-
tuals.

max
mixture′

λsimilarity(mixture,mixture′) + (1− λ)(MAE(f̂(mixture), f̂(mixture′))) (7)

and

min
mixture′

λsimilarity(mixture,mixture′) + (1− λ)(MAE(f̂(mixture), f̂(mixture′))) (8)

2.6 Phase Behavior Calculations

For an illustration of real-world applications, we set up a computational framework that can in-
take the chemical structures from diverse binary or ternary mixtures and make activity coeffi-
cient predictions with uncertainties by averaging the predicted values from individually trained
SolvGNNs in each CV fold. For binary mixtures, P-x-y phase diagrams were then generated from
the predicted activity coefficients γi using modified Raoult’s Law P =

∑
i yiP =

∑
i xiγiP

sat
i .

10
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When using modified Raoult’s Law, we assume that the vapor phase is an ideal solution and that
the liquid phase is incompressible with a pressure close to its saturation pressure. We also assume
that the fugacity coefficients of the pure components in the vapor phase are approximately the
same as the fugacity coefficients of the pure component at the saturation pressure. Such calcula-
tions make no assumptions about the ideality of the liquid phase.

In this study, the saturation pressure P sat
i for each component was obtained using the Antoine

Equation log10 P
sat
i = Ai− Bi

Ci+T with coefficients collected from the National Institute of Standards
and Technology (NIST) via web scraping.56 We sampled the liquid-phase compositions xi and cal-
culated the equilibrium pressures P with the specified compositions at 298 K. For ternary systems,
we computed phase behavior following the same method for the binary systems by sampling the
mixture compositions followed by equilibrium pressure calculations.

3 Results and Discussion

3.1 Model Performance on Binary Mixtures

We compared the three GNN architectures (SolvCAT, SolvGCN, and SolvGNN) introduced in the
previous section in terms of their ability to predict the composition-dependent activity coefficients.
SolvCAT takes the concatenation of mole fraction and embedded features after local graph con-
volutions on individual components; SolvGCN constructs a complete interaction network after
local convolution without any assumptions on the edge weights for another layer of graph convo-
lution at the global level. SolvGNN takes this SolvGCN one step further by introducing H-bond
information as an example prior knowledge on intermolecular interactions for further message
passing.

The performance of the three GNN architectures was evaluated on the binary mixture data
set by the cumulative frequency plot, as shown in Figure 3a. The infinite dilution activity coeffi-
cients for these systems were included as extreme concentrations. More specifically, we assigned
a mole fraction of 0 to the infinitely dilute component and a mole fraction of 1 to the other com-
ponent (values were also reversed for each pair as well to capture both infinite dilution activity
coefficients). In the cumulative frequency plot, the absolute errors of the natural logarithms of the
activity coefficients, ln γ1 and ln γ2, (between true and predicted values from CV) for each data
point were first averaged, and the cumulative frequencies for the averaged error values were then
plotted in the ascending order. Among the three GNN architectures, SolvGNN exhibits the best
performance; specifically, it shows that almost 97% of the data points are predicted with an error
of less than 0.1. SolvCAT performs slightly worse, with 91% of the data points falling within the
0.1 error range. SolvGCN shows the worst performance, with only around 45% of the data points
predicted with an error less than 0.1. These observations are also supported by the mean absolute
errors (MAEs), which are 0.03, 0.05, and 0.31 for SolvGNN, SolvCAT, and SolvGCN (respectively).
We also performed the same experiments on the binary mixture data set without infinite dilu-
tion activity coefficients, and the results are comparable (R2=0.98, MAE=0.03, RMSE=0.08; see
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Figure S1). Additionally, we developed a baseline model using XGBoost (R2=0.64, MAE=0.21,
RMSE=0.50; see Figure S2), which was substantially less accurate than SolvGNN. These results
are detailed in the SI.

The above results indicate that the inclusion of the global interaction network with H-bond
information in SolvGNN provides an effective method for improving the prediction accuracy for
activity coefficients. When H-bond information is excluded, the pure global graph convolution
worsens the model performance, possibly due to the unbiased ”averaging” without any physics-
informed resemblance to intermolecular interactions. Additionally, when setting all the edge fea-
tures to one in SolvGNN, the CV MAE was increased by 9% and the CV MSE was increased by
15%, suggesting the significance of the physics-informed edge features in the interaction network
(more details in SI). The added model complexity of SolvGNN is also a decisive factor for the
performance difference, since message passing enables and propagates edge features through an
edge neural network. On the other hand, SolvCAT, despite the lack of explicit global graph convo-
lution that depicts intermolecular interactions, still exhibits satisfactory predictive power. This is
consistent with an earlier study,19 which has found that aggregation over latent features provides
an effective approach to handle information of mixture composition. However, SolvCAT is not
strictly permutation invariant to the order of the input components, even though the data were
augmented by random order switching during training.

Figure 3b shows the parity plot of ln γi’s from SolvGNN for binary mixtures. All the pre-
dictions shown are from the validation process yet still exhibit high accuracy, with average ln γi

MAE being 0.03 and average ln γi RMSE being 0.10. The data points are colored by the mixture
type defined earlier. In general, the values of ln γ for nonpolar-nonpolar interactions are close
to 0 (ideal behavior) and have smaller MAE, while the values of ln γ for mixtures with polar
components spread across the entire data range and have slightly larger MAE. With respect to
composition, mixtures that are rich in one of the components (10%/90%) exhibit a slightly higher
MAE (∼0.032), whereas the mixtures with equimolar components exhibit a relatively lower MAE
(∼0.025). We also identified a couple of outliers in the plots; these mixtures contain amines with
hydrogen-bonding solutes or solvents. The extreme ln γ values of these mixtures can be the result
of limitations of COSMO-RS, which has been specifically noted to incorrectly simulate the inter-
actions of secondary and tertiary amines when hydrogen-bond donors or acceptors are present in
the system.57

Besides the regular CV using stratified sampling that relies on the type of mixture, we also
tested the generalizability of the SolvGNN using an alternative CV method. Here, for each CV
fold, we trained the model on only two of the three mixture types (polar-polar, polar-nonpolar,
or nonpolar-nonpolar; see Table1) and validated the rest. Results have shown that, although the
model could achieve similar training losses to the regular CV, the validation accuracy was re-
duced accordingly. For the case where we trained the model with polar-polar and polar-nonpolar
mixtures (94% of the data set) while validating on nonpolar-nonpolar mixtures, the model demon-
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Figure 3: Model comparison and parity plots for binary and ternary mixtures. (a) Cumulative
frequency plots for the average ln γi errors for binary (black) and ternary (red) mixtures to compare
SolvCAT, SolvGCN, and SolvGNN. Additionally, the parity plots for individual ln γi’s between
the true (COSMO-RS) and predicted (SolvGNN) values from CV are displayed for binary (b) and
ternary (c) mixtures. The points are colored by the type of mixtures defined in Table 1 based on
polarity.

strated suitable transferability by comparable validation losses (MAE=0.04). However, when we
trained the model on only polar-polar and nonpolar-nonpolar samples (64%) while validating on
polar-nonpolar samples, validation MAE increased by 0.16, which indicates the distinct nature
of polar-nonpolar interactions and suggests that it is non-trivial and therefore cannot be omitted
during model training. Additionally, we examined the condition when the model was trained
on only polar-nonpolar and nonpolar-nonpolar mixtures (42%) and validated on polar-polar mix-
tures. The convergence plot (Figure S3) indicates over-training with high validation losses; such
behavior was expected because the training size is less than half of the data set, and the majority of
the training samples lack H-bond acceptors or donors, which are present in most of the validation
set. This result again suggests that polar-polar and polar-nonpolar mixtures, despite possessing
strong intermolecular interactions such as H-bonding in both cases, are intrinsically different and
therefore are both required in the training process. These results are in general agreement with
chemical intuition.

To further demonstrate the generalizability of the proposed SolvGNN, we conducted two ad-
ditional data splitting methods that enforce all validation data to be unseen systems or compo-
nents. sFor both experiments, SolvGNN still outperforms other architectures and still exhibits
strong predictive performance based on the parity plots (detailed in the SI).

3.2 Scale up to Ternary Mixtures

We next scaled up the proposed SolvGNN architecture to ternary mixtures. As shown in Figure 3a
(red), the cumulative frequency of the average ln γ errors demonstrates similar trends as in binary
mixtures. SolvGNN provides the best model performance, followed by SolvCAT and SolvGCN.
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Here, we observed that the gaps between the curves appear wider, suggesting a more significant
advantage of SolvGNN over SolvCAT and SolvGCN. For SolvGNN, more than 94% of the data
points were predicted with an error less than 0.1. SolvCAT was the second-most accurate model,
with around 86% of the data points falling within the 0.1 error range, showing a more notable per-
formance drop (8%) than the results for binary mixtures (3%). SolvGCN continues to exhibit the
worst performance, and only around 30% of the data points are predicted with an error less than
0.1. These observations are supported by MAE values, which are 0.04, 0.06, and 0.30 for SolvGNN,
SolvCAT, and SolvGCN.

For SolvGNN, comparable model accuracy was obtained even though the number of train-
ing/validation samples was reduced for the ternary mixture data set compared to the binary mix-
ture data set, as shown in Figure 3c. The CV R2, MAE, and RMSE are similar to the results from
binary systems, with corresponding values around 0.99, 0.03, and 0.10. When breaking down
the predicted values based on the mixture type, we found that samples containing only nonpo-
lar components tend to have smaller errors and systems containing only polar components have
larger errors. Mixtures with both polar and non-polar components have MAEs and RMSEs lying
somewhere in between the extremes. When grouping by composition, mixtures that are rich in
one of the components tend to have slightly higher prediction errors than equimolar mixtures.
This observation is consistent with model performance on binary mixtures without infinite dilu-
tion data and could be caused by the fact that the majority of the training data are not equimolar
systems.

Overall, SolvGNN exhibited satisfactory performance in making predictions for activity co-
efficients of binary and ternary systems, given the advantage of explicitly including H-bond in-
formation (as a representative and primary intermolecule force) via global message passing on
the molecular interaction network. To the best of our knowledge, this is the first time that such a
graph-based architecture (permutation invariant to the component order) is used to make predic-
tions for composition-dependent activity coefficients (compared to models that predict infinite-
dilution activity coefficients only) and for ternary systems (compared to binary systems).

3.3 Comparison to Previous GNN for Infinite-Dilution Activity Coefficients

To compare SolvGNN with a recently developed GNN for infinite dilution activity coefficient
(ln γ∞) prediction by Medina et al.,29 we conducted a benchmark of our model on the same ex-
perimental data set used in their study, which contains 2,810 binary mixtures (with specific so-
lute/solvent assignment) and values of ln γ∞ for the solute. To conduct a fair comparison, we
applied the same training / validation / testing method described in their research29 through en-
semble learning (bagging), which splits the training/validation data randomly 30 times and av-
erages the predictions. We also used the same batch size (32) and epoch number (200). Although
the logarithmic values were used to train and validate the models, Medina et al.29 calculated the
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evaluation metrics on the unscaled γ∞ values. The error score functions are detailed in SI. For an
easy comparison, we applied the same conversion to our data and summarized the results in Table
2 for a comparison of the test data. We observed that the performance of SolvGNN is better than
the previous GNN model29 for ln γ∞ prediction. The proposed SolvGNN shows improvements in
all metrics used to evaluate the model in the original paper, including a significant decrease in the
mean absolute percent error (MAPE) by 50%.

Table 2: SolvGNN for prediction of infinite dilution activity coefficients (γ∞) and a comparison
with the previously developed GNN29 on the test data using the unscaled values.

Model MAE SDEP MSE RMSE MAPE R2

Previous GNN29 3.91 26.73 729.69 27.01 22.66 0.82

SolvGNN 3.25 19.52 391.45 19.79 11.40 0.89

% difference -17% -27% -46% -27% -50% +9%

In general, our results provide evidence that SolvGNN can be used to predict infinite-dilution
activity coefficients in a satisfactory manner, thus illustrating that the architecture is versatile.
Comparison of the evaluation metrics indicates that there is a benefit in including intermolecu-
lar interactions in the GNN architecture. These results also provide evidence that the SolvGNN
architecture can be used to learn not only from simulation data (e.g., COSMO-RS) but also from
experimental data.

3.4 Counterfactual Analysis

We derived counterfactuals42 as a way to provide some interpretability to SolvGNN predictions.
Here, we investigated two types of counterfactuals: mixtures with the highest similarity yet the
most different predictions (Type I), and mixtures with the lowest similarity yet the most similar
predictions (Type II). As illustrated in Figure 4, we started with a base mixture (50% benzene and
50% toluene) that exhibits nearly ideal behavior (γi = 1 for both components). Since input chem-
ical ratios are also a contributing factor to activity coefficients, we first identified the composition
with the same two molecular species that leads to the farthest deviation in activity coefficients,
as illustrated by Counterfactual 1. We found that increasing the composition in benzene to the
extreme has the most significant impact on activity coefficients, although the deviation from ideal
behavior is still small. Next, we fixed one of the components and varied the other to find the
mixture with the highest structural resemblance yet the most dissimilar activity coefficients, illus-
trated by Counterfactual 2 and Counterfactual 3. When fixing benzene, Counterfactual 2 shows
that replacing the methyl group with a hydroxyl group, coupled with a change in composition,
largely influences activity coefficients. This can be explained by the fact that removing the methyl
group converts one of the components from nonpolar to polar, thus resulting in strong deviations
from ideal behavior. Counterfactual 3 shows a similar tendency. When fixing toluene, the other
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component in the counterfactual tends to converge to a more polar chemical, such as pyridine
which converts one of the carbons on the benzene ring to nitrogen.

On the other hand, Type II counterfactuals also reveal interesting trends to identify mixtures
with dissimilar chemical structures but similar γi’s. When fixing one of the components, coun-
terfactuals 4 and 5 both acquire an alternative component that is nonpolar. In both cases, one
of the aromatic components is replaced by a non-aromatic structure as the result of the effort to
minimize similarity, but since the replacement is also nonpolar, the mixtures exhibit near-ideal be-
havior as reflected by the activity coefficients. Lastly, when we relaxed the constraint and allowed
both components to vary, counterfactual 6 picks out the mixture from the data set that shows two
nonpolar yet unlike chemical structures with near-ideal behavior.

In general, the counterfactual analysis has shown coherent physical insights regarding how
compositions and structural features may lead to variations in activity coefficient, and these find-
ings in turn agree with our chemical understanding of mixture behavior. Such interpretation,
especially Type II counterfactuals, can be used to apply SolvGNN to procedures such as the se-
lection of a candidate good solvent for a desired solute. For example, counterfactuals could be
used to identify an antisolvent given a known good solvent for a specific polymer for polymer
recycling applications.58, 59 The antisolvent is expected to be miscible with the solvent while im-
miscible with the polymer, and therefore counterfactual Type I may be identified as the candidate
antisolvent.

3.5 From Activity Coefficients to Phase Behavior

We next sought to utilize the activity coefficients obtained from SolvGNN to predict relevant phase
behavior (e.g., azeotrope compositions). Therefore, we further developed a framework to gener-
ate phase diagrams directly from chemical structures using the trained SolvGNN. These results
aim to show the potential use of SolvGNN in industrially-relevant applications or experimental
studies (e.g., miscibility or separation of target components). The framework uniformly samples
the compositions of the input mixtures and predicts the corresponding activity coefficients using
SolvGNN, which are then used for calculating equilibrium bubble and dew pressures via modified
Raoult’s Law. Figure 5 showcases several P-x-y phase diagrams generated from the framework
for binary mixtures. We would like to point out that most of the shown mixtures (all except for
water-methanol) are not in our training or validation data, so they can be viewed as additional test
instances, in spite of the fact that they are commonly used as mixture examples with contrasting
equilibrium behavior.

Figure 5a-c includes representative example phase diagrams of polar-polar, nonpolar-nonpolar,
and polar-nonpolar binary mixtures. At 298K, a water-methanol mixture deviates positively from
ideal solution behavior and shows higher equilibrium bubble pressure as a result of unfavorable
unlike-molecule interactions. By contrast, a benzene-toluene mixture exhibits near-ideal behav-
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Figure 4: Counterfactual analysis. Type I (red) shows mixtures with the most similar structures
but the most different activity coefficients from the base mixture whereas Type II (green) shows
the opposite. The corresponding solvents are labeled on the 2D t-SNE map introduced in Figure 1
to help illustrate similarity.

ior, as indicated by a bubble line that is almost linear, which suggests a homogeneous solution
where molecular interactions between like and unlike components are viewed the same. Addi-
tionally, we showcase a cyclohexane-ethanol mixture that forms an azeotrope, which was suc-
cessfully identified by SolvGNN, and the predicted azeotrope composition (xcyclohexane ∼ 0.65)
is consistent with the estimates from COSMOtherm (COSMO-RS) and Aspen Plus (UNIFAC). In
all three cases, the predicted phase diagrams obtained by SolvGNN are consistent with the phase
diagrams generated using COSMOtherm (COSMO-RS) or Aspen Plus (UNIFAC), and the MAE
values in the equilibrium pressure range from 0.001 to 0.004 bar. We also observed that, compared
to Aspen Plus (UNIFAC), SolvGNN tends to underestimate equilibrium pressure values, whereas
COSMOtherm tends to overestimate these values. Upon inspecting the activity coefficients for the
sample mixtures (Fig.5d-f), we found that, although the activity coefficients were trained only on
four compositions plus infinite dilution, SolvGNN was able to make relatively accurate predic-
tions for compositions in a continuous space. We also compared experimental equilibrium data66

for cyclohexane-ethanol at similar temperatures for which data are available (293K and 303K) and
found similar behavior and a similar azeotrope composition; these data as well as a few additional
phase diagram examples along with their activity coefficient predictions are shown in SI.
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Figure 5: Example phase diagrams generated from SolvGNN. (a-c) P-x-y diagrams of three bi-
nary mixtures, each representing a different type of mixture (polar-polar, nonpolar-nonpolar, and
polar-nonpolar). The equilibrium pressure is computed with modified Raoult’s Law using the
predicted activity coefficients from SolvGNN. The phase diagrams are compared with those gen-
erated from two other state-of-the-art tools, including COSMOtherm that implements COSMO-
RS57 and Aspen Plus that implements UNIFAC60 (as well as other activity models61–65). The va-
por compositions (yi) are represented as circles and liquid compositions (xi) are represented as
squares. (d-f) Predicted activity coefficients for individual components at different compositions
from SolvGNN, COSMOtherm, and Aspen. ”x” denotes activity coefficients at infinite dilution. In
all phase diagram calculations, the ln γi’s are obtained by averaging the predictions of SolvGNN
trained from each CV fold, and the standard deviations are visualized as the error bars.

Next, we computed vapor-liquid equilibrium (VLE) data for a ternary mixture of water-acetone-
methyl isobutyl ketone (MIBK). Similar to the phase diagram calculations for binary systems, we
sampled different liquid compositions and calculated the equilibrium pressures using modified
Raoult’s Law. For simplicity, we picked two pressures and computed corresponding liquid and
vapor compositions; numerical comparisons between SolvGNN and COSMOtherm (COSMO-RS)
are summarized in Table S4. For the selected pressures, the predicted vapor-phase compositions
(yi) have an MAE around 0.02 when comparing SolvGNN predictions to COSMOtherm data.

In summary, we were able to create binary phase diagrams (at 298K) with a full range of com-
positions using SolvGNN that was only trained on a few sampled input ratios. The provided
framework has shown great potential for high-throughput screening of mixtures for use cases in-
cluding azeotrope identification and non-ideal behavior investigation for liquid mixtures. Incor-
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porating SolvGNN into such phase equilibrium calculations bypasses the need to identify func-
tional groups with human expertise and obtain interaction parameters (as needed in UNIFAC)
or to conduct DFT calculations (as needed in COSMO-RS), especially when the chemicals in a
mixture are relatively uncommon. Moreover, this framework could be used in conjunction with
open-source process models (e.g., BioSteam67) as an addition to the existing computational models
(e.g., UNIFAC) for generating thermodynamic data.

4 Conclusions and Future Outlook

We developed a GNN architecture (SolvGNN) that incorporates both local (intramolecular) and
global (intermolecular) convolutions on graph representations and used this for predicting ac-
tivity coefficients of solvent mixtures. SolvGNN explicitly integrates intermolecular interactions
through the construction of the molecular interaction network that encodes H-bonding informa-
tion. We found that with such feature embedding, SolvGNN can successfully estimate the activity
coefficients that vary with chemical compositions for binary as well as ternary mixtures, which has
not been explored much under the hood of ML, especially in the context of activity coefficients.

Compared to the current state-of-the-art approach for general activity coefficient estimations
(e.g., UNIFAC and COSMO-RS), SolvGNN achieves comparable model performance and is easy
to use without any additional calculations for missing parameters or DFT. We also benchmarked
SolvGNN on the same experimental dataset that was used in an earlier study for developing a
GNN that predicts only the infinite-dilution activity coefficients of binary mixtures;29 SolvGNN
outperforms the previously developed GNN in almost all evaluation metrics, proving the im-
portance to use prior knowledge (in this case explicit topological prior pertinent to intermolec-
ular interactions) when designing GNN architectures. These findings demonstrate the ability of
SolvGNN to learn from simulation (e.g., COSMO-RS) and experimental data.

Moreover, we provided an open-source computational tool for creating phase diagrams (P-x-
y) using SolvGNN as an example to show its potential for real-world applications. The generated
phase diagrams were consistent with those obtained from COSMOtherm and Aspen Plus (with
the selection of UNIFAC as the thermodynamic method), which further illustrated the generaliza-
tion ability of SolvGNN that was only trained on a minimal subset of composition cases. Besides
phase diagrams, we provided algorithms to obtain counterfactuals to aid model interpretation,
which may help extract physical insights that are less known and help design solvent mixtures.

The architecture and study can be expanded in a number of ways. For example, so far we
have only obtained activity coefficients at room temperature, and thus SolvGNN does not have
temperature dependence. However, obtaining temperature-dependent activity coefficients from
COSMO-RS and re-training SolvGNN with an additional temperature variable would be a rel-
atively trivial, given that the computational framework is in place. Another limitation for phase
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equilibrium predictions is related to the availability of Antoine coefficients; in circumstances where
Antoine coefficients are missing e.g., no measurements for the substance or outside of the temper-
ature range, we cannot compute the corresponding phase diagrams. A potential solution could be
to develop another GNN architecture for Antoine coefficient predictions or expand the output di-
mension of our current SolvGNN to make these predictions. Additionally, since the model weights
that are related to concentrations are not constrained, unphysical activity coefficient trend may be
present from the current SolvGNN predictions. This issue may be addressed in future studies
through conditioning constraints on the model weights or theory-infused network architecture.
Furthermore, the presented counterfactual analysis only searches the chemical space within the
data set, and therefore to obtain more meaningful results, we will adapt some of the more estab-
lished chemical search algorithms42, 68 that have been designed for single chemicals to the case of
mixtures. Future studies will also explore the use of SolvGNN for other mixture properties and
investigate different possible representations of intermolecular interactions (e.g., Lennard-Jones
potentials as additional edge features or replacing edge features by molecular-level node features).
We are also interested in using these types of architectures to design solvents that can selectively
solubilize target molecules in combination with generative models.69–71
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[55] Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-
based similarity calculations? Journal of cheminformatics. 2015;7(1):1-13.

24

Page 25 of 27 Digital Discovery

http://zavalab.engr.wisc.edu
https://cactus.nci.nih.gov/chemical/structure


http://zavalab.engr.wisc.edu

[56] Contreras O. NIST-web-book-scraping. GitHub; 2019. https://github.com/

oscarcontrerasnavas/NIST-web-book-scraping.

[57] Klamt A, Eckert F, Arlt W. COSMO-RS: an alternative to simulation for calculating thermo-
dynamic properties of liquid mixtures. Annual review of chemical and biomolecular engi-
neering. 2010;1:101-22.

[58] Walker TW, Frelka N, Shen Z, Chew AK, Banick J, Grey S, et al. Recycling of multilayer
plastic packaging materials by solvent-targeted recovery and precipitation. Science advances.
2020;6(47):eaba7599.

[59] Zhou P, Sánchez-Rivera KL, Huber GW, Van Lehn RC. Computational Approach for Rapidly
Predicting Temperature-Dependent Polymer Solubilities Using Molecular-Scale Models.
ChemSusChem. 2021;14(19):4307-16.

[60] Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients
in nonideal liquid mixtures. AIChE Journal. 1975;21(6):1086-99.

[61] Margules M. On the composition of saturated vapors of mixtures. Akademie
der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung II.
1895;104:1234-9.
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