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Abstract. The potential energy curves (PECs) for homonuclear dimers He-He, Ar-Ar, Cu-Cu, and 

Si-Si, as well as heteronuclear dimers Cu-He, Cu-Ar, Cu-Xe, Si-He, Si-Ar, and Si-Xe, are obtained 

in quantum Monte Carlo (QMC) calculations.  It is shown that the QMC method provides the PECs 

with an accuracy comparable with that of state-of-the-art coupled cluster singles and doubles with 

perturbative triples corrections [CCSD(T)] calculations.  The QMC data are approximated by the 

Morse long range (MLR) and (12-6) Lennard-Jones (LJ) potentials. The MLR and LJ potentials 

are used to calculate the deflection angles in binary collisions of corresponding atom pairs and 

transport coefficients of Cu and Si vapors and their mixtures with He, Ar, and Xe gases in the 

range of temperature from 100 K to 10000 K.  It is shown that the use of the LJ potentials 

introduces significant errors in the transport coefficients of high-temperature vapors and gas 

mixtures.  The mixtures with heavy noble gases demonstrate anomalous behavior when the 

viscosity and thermal conductivity can be larger than that of the corresponding pure substances.  

In the mixtures with helium, the thermal diffusion factor is found to be unusually large.  The 

calculated viscosity and diffusivity are used to determine parameters of the variable hard sphere 

and variable soft sphere molecular models as well as parameters of the power-law approximations 

for the transport coefficients.  The results obtained in the present work include all information 

required for kinetic or continuum simulations of dilute Cu and Si vapors and their mixtures with 

He, Ar, and Xe gases.

Keywords: Potential energy curve, quantum Monte Carlo, deflection angle, viscosity, thermal 
conductivity, diffusivity, thermal diffusivity, variable hard sphere (VHS) model, variable soft 
sphere (VSS) model. 
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1. Introduction

The flows of high-temperature vapors of metals and semiconductors, as well as their 

mixtures with other gases are ubiquitous in laser material processing applications, where the laser 

heating induces material removal, formation of a gaseous plume, and expansion of the plume into 

a vacuum or background gas.  These applications include laser cutting, drilling, and patterning,1 

laser powder-bed fusion additive manufacturing,2  deposition of functional thin films,3,4,5 

fabrication of nanoclusters,6 laser-induced breakdown spectroscopy (LIBS),7 and studies of photo-

induced desorption of volatile species in the space environment.8  

The plume expansion processes are theoretically studied based on continuum gas 

dynamics, e.g., Refs. 9-13, and kinetic, e.g., Refs. 14-21 models. The latter are usually formulated 

for numerical simulations in the form of the direct simulation Monte Carlo (DSMC) method.22 The 

need in the kinetic simulations is justified by high degrees of translational non-equilibrium, when, 

e.g., a plume expands into a low-density background gas or vacuum. The numerical simulations 

of gas flows require multiple constitutive relations that describe the transport processes such as 

diffusion, viscous drag, and heat conduction.  For kinetic simulations of dilute monatomic gases 

based on the Boltzmann kinetic equation and its generalizations, the necessary constitutive 

relations include the differential collision cross section as a function of the deflection angle and 

relative velocity.23-25  The DSMC treatment of collisions is usually based on molecular collision 

models, such as the hard sphere (HS), variable hard sphere (VHS),26 and variable soft sphere 

(VSS)27 models, which determine the differential collision cross section and contain only a few 

adjustable parameters.  For continuum simulations of dilute monatomic gases based on the Navier-

Stokes equations, the required relations include diffusivity, shear viscosity, and thermal 

conductivity of pure gas substances and gas mixtures as functions of gas temperature, density, and 

molar fractions of species.23-25  

The collisional and transport properties are currently well-known for noble gases, 

components of the atmospheric air, and some other species that exist in a gaseous form at room 

temperature.  The properties of high-temperature vapors of metals and semiconductors, including 

the parameters of the VHS and VSS molecular models, are currently known with much less 

accuracy or not known at all.28,29  In particular, the molecular model parameters remain unknown 

for multiple cross-species collisions involving a vapor atom and an atom of a background gas.  
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The transport processes in dilute gases are ultimately defined by the momentum and energy 

exchange during binary collisions between gas particles.  If the gas temperature is sufficiently 

high, the quantum effects in interaction between atoms in the ground state are small.24-25 For 

example, for argon,  the quantum effects in binary collisions change the viscosity in % at a ~0.15

temperature of 50 K and in less than 0.1% when the temperature is equal to or greater than 120 

K.30  Then the solution of the classical scattering problem, e.g., Refs. 23-31, can be used to 

calculate the deflection angle in binary collisions and, consequently, transport coefficients of pure 

gas substances and gaseous mixtures using the Chapman-Enskog method based on an interatomic 

potential or potential energy curve (PEC) for corresponding atom pairs.23-25 The VHS and VSS 

model parameters can be also directly derived from the PECs using the Chapman-Enskog 

method.22,32  The approach to sampling interatomic collisions in the DSMC method can also be 

directly based on the solution of the classical scattering problem that uses PECs as an input for the 

calculation of the outcome of each binary collision in the course of a DSMC simulation.33,34 

The present paper is targeted at filling the gap in understanding of collisional and transport 

properties of high-temperature vapors and their mixtures with noble gases, which are calculated 

here based on PECs for corresponding dimers or atom pairs established in high-fidelity ab initio 

calculations (hereinafter, when discussing PECs, the terms “dimer” and “atom pair” are used 

interchangeably since the ab initio PECs for dimers can be further used to calculate collisions 

between corresponding pairs of atoms).  For this purpose, we first obtain the PECs for atom pairs 

of interest in the quantum Monte Carlo (QMC) calculations for a broad range of interatomic 

distances.  Second, we investigate the collisional and transport properties of high-temperature 

vapors of copper and silicon, as well as their mixtures with helium, argon, and xenon gases from 

first principles.  Finally, we present the obtained results in the approximate form of VHS and VSS 

molecular models that are ready-to-use for kinetic and continuum simulations of corresponding 

gas flows.  

Copper and silicon are chosen for investigation due to the tremendous practical importance 

of these materials and, correspondingly, large amounts of experimental and computational studies 

involving laser-, ion spattering-, and plasma etching-induced flows of Cu or Si vapor plumes, e.g., 

Refs. 35-38.  The simultaneous consideration of light-weight He, medium-weight Ar, and heavy 

Xe gases is inspired by the results of recent experimental39 and computational studies17,19 that 

report the strong effect of the molecular weight of a noble background gas on the plume or jet 
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expansion processes in material processing technologies. The transport properties of Cu and Si 

vapors are of practical interest at elevated temperatures, e.g., roughly from 2000 K to 6000 K at 

atmospheric pressure. The condensation processes limit the lower temperature, while the upper 

temperature is limited by ionization.  The exact temperature range, where the gas-vapor mixtures 

can exist in the form of mixtures of neutral monatomic gases, depends on pressure and degree of 

flow non-equilibrium.  Under conditions of strongly non-equilibrium flows, the neutral atoms can 

exist in a broader range of conditions compared to equilibrium.  Therefore, the transport properties 

are considered in the present paper in the extended range of temperature from  K to  K.102 104

Currently, the ab initio PECs are known with very high accuracy for homonuclear and 

heteronuclear dimers of noble gases, e.g., Refs. 40-48.  These PECs are often approximated by the 

Tang & Toennies49,50 potential or its generalized versions, e.g., by the universal potential recently 

suggested in Ref. 51, and are used for high-fidelity calculations of collisional and transport 

properties of corresponding gases and gaseous mixtures, e.g., Refs. 30,47,52-57.  These 

calculations show a good agreement between the predicted and experimentally measured 

viscosities.58  In the literature, the ab initio or experimental PECs can be also found for 

Cu-Cu,20,59-61 Cu-He,62,63 Cu-Ar,62 Si-Si,64 and Si-Ar65 dimers (hereinafter, the notation “A-B” is 

used for a dimer formed by atoms A and B, a pair of atoms A and B whose binary collision is 

under consideration, and gas mixtures composed of monatomic gases A and B). These data, 

however, are partially incomplete since the data points often do not cover a sufficiently large range 

of interatomic distance.  

Most of the calculations of dimer PECs mentioned above are performed based on the 

coupled cluster singles and doubles with perturbative triples corrections [CCSD(T)] method,66 

which is considered as a state-of-the-art approach for high-fidelity calculations of PECs. This 

method, however, is characterized by high computational costs that scale with the number of 

electrons  as .  The density functional theory (DFT)67 is rarely used for calculations of dimer 𝑁𝑒 𝑁7
𝑒

PECs, as the approximate energy functionals used in the DFT calculations require additional 

corrections for van der Waals interaction and can either underpredict or overpredict the potential 

energy well depth.68  Moreover, the PECs obtained in the DFT calculations have been reported to 

break down in the attraction parts with the relative errors in the ground-state energy strongly 

increasing with increasing interatomic distance.69,70  These limitations of DFT are overcome in the 

QMC method,71-73 which uses stochastic techniques to sample wave functions in the quantum 
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many-body problem.  Compared to DFT, the QMC method does not require further 

approximations to account for van der Waals attraction between atoms.71,74  Providing the same 

level of accuracy as the post-Hartree-Fock methods such as CCSD(T), the QMC method is less 

computationally demanding, as its computational cost scales as .  At the same time, as a 𝑁3
𝑒

stochastic approach, the QMC method usually requires a generation of large-size statistical 

samples.71  

In the present work, the PECs for homonuclear dimers He-He, Ar-Ar, Cu-Cu, and Si-Si, as 

well as heteronuclear dimers Cu-He, Cu-Ar, Cu-Xe, Si-He, Si-Ar, and Si-Xe are determined in 

QMC calculations using the QMCPACK package75,76 and then approximated by the Morse long 

range77,78 (MLR) and Lennard-Jones (LJ) potentials (Sect. 2).  For Xe-Xe dimers, the MLR and LJ 

approximations are obtained based on the results reported in Ref. 48.  Then the obtained MLR and 

LJ potentials are used to calculate the deflection angle at binary collisions of atoms in Sect. 3, as 

well as transport coefficients of pure vapors of Cu and Si and their mixtures with He, Ar, and Xe 

gases based on the ten-term approximations with respect to the Sonine polynomials of the 

Chapman-Enskog theory (Sects. 4-6).  The obtained values of viscosity and diffusivity are used to 

find parameters of the VHS and VSS molecular models for kinetic simulations and power-law 

approximations of transport coefficients as functions of temperature for continuum simulations in 

Sect. 7.  Finally, the major results of this study are summarized in Sect. 8. The raw results of 

calculations of the PECs, deflection angles, transport collision integrals, and transport coefficients 

are provided in the form of tables, plots, and text files in the Appendix and Supplementary material.

2. Potential energy curves (PECs)

2.1. Quantum Monte Carlo (QMC) calculations of PECs

The QMC calculations of PECs were conducted with the QMCPACK package.75,76  We 

used the trial wave functions of the Slater-Jastrow type, , where  and  are the 𝚿𝑻 = 𝑒𝑱𝑫↑𝑫↓ 𝑫↑ 𝑫↓

Slater determinants of the spin-up and spin-down electrons respectively and  is the Jastrow factor.  𝑱

This form of the trial wave functions was chosen because it has a general form and was applied to 

many electronic systems ranging from single atoms to many-atom solids.71  The Slater 

determinants are constructed based on the Kohn-Sham (KS) DFT orbitals obtained using the 

QUANTUM ESPRESSO package.79,80
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In setting up the DFT calculations, the self-consistent field (scf) calculations were 

performed in a sample periodic box of 20 Å  20 Å  20 Å which is large enough to make the × ×

interactions of atoms through periodic boundaries negligible. The local density approximation 

(LDA) was used to approximate the exchange-correlation functional.81

The trial wave function constructed from the KS orbitals is firstly optimized using the 

variational Monte Carlo (VMC) scheme in the QMCPACK package.  The statistical error estimates 

of the VMC scheme are further minimized by adjusting the trial wave functions. For this purpose, 

large cut-off energy and special QMC-type pseudo-potentials are applied. As such, the plane-wave 

cut-off energy was set to 5440 eV (400 Ry) since the preliminary calculations showed that 

increasing the plane-wave cutoff energy did not significantly change the resulting energy. The 

norm-conserving plane-wave pseudopotentials parameterized by Burkatzki, Filippi, and Dolg 

were also used82,83 since these pseudopotentials were generated specifically for subsequent QMC 

calculations and have been shown to produce more accurate trial wave functions unlike other 

general pseudopotentials which can produce time-step errors in the diffusion Monte Carlo (DMC) 

scheme.84

The calculations are performed for isolated atoms and dimers in the ground states (Table 

1). The values of numerical parameters, including the plane-wave cutoff energy in the DFT 

calculations, number of samples and wavefunction optimization cycles in VMC calculations, DMC 

timestep, and number of DMC walkers, are chosen in a preliminary convergence study. This 

convergence study ensures statistical convergence and good computational accuracy of the QMC 

calculations, which is especially important for dimers characterized by small potential well depth, 

such as a He-He dimer. Based on the results of the convergence study, the number of statistical 

samples used ranged from 12800 to 51200. The number of the VMC optimization cycle was equal 

to 9.  The DMC calculations were performed using 128 to 256 random walkers, with the DMC 

walkers being initialized from the VMC random walk, with a time step of 0.005 Ha-1.85 

The potential energy  was then computed as , where  is the dimer 𝑉 𝑉 = 𝑉12 ― (𝑉1 +𝑉2) 𝑉12

energy, and  are the energies of isolated atoms ( ).  Overall, the QMC calculations were 𝑉𝑘 𝑘 = 1,2

performed for pairs of atoms with interatomic distances  ranging from 0.4-1 Å to 10 Å.  The 𝑟

smallest value of  was chosen individually for each dimer to ensure that the investigated range of 𝑟

 is sufficient for high-fidelity calculations of the gas transport coefficients up to a temperature of 𝑟

 K.`104

Page 6 of 60Physical Chemistry Chemical Physics



7

The tabulated values of energy obtained in the QMC calculations for all dimers under 

consideration are provided in the Appendix.85  For each dimer, the values of the potential well 

depth (binding energy)  and equilibrium interatomic distance  are calculated by means of the 𝐷𝑒 𝑟𝑒

three-point interpolation of the PEC established in the QMC calculations. For this purpose, three 

QMC data points with the minimum values of energy are used.

To validate the QMC computational approach, the calculated values of  and  are 𝐷𝑒 𝑟𝑒

compared in Table 2 with the literature data, obtained both in computations, using various 

simulation techniques, and in the experiments reported in Refs. 86-89.  Table 2 also contains  𝐷𝑒

and  for Xe-Xe dimer, whose PEC was not calculated in the present work. The comparison shows 𝑟𝑒

that the results of our calculations of  and  agree very well with the most recent values obtained 𝐷𝑒 𝑟𝑒

in the CCSD(T) calculations and, in some cases, with the calculations based on other ab initio 

approaches. With a few exclusions, the values of  and  predicted by different computational 𝐷𝑒 𝑟𝑒

approaches or experimentally are consistent with each other.  The PECs for He-He and Ar-Ar 

dimers obtained in various works are compared with the results from the present calculations in 

Fig. 1.85

2.2. PECs of He-He, Ar-Ar, and Xe-Xe dimers

As the PECs for noble gases are well-known from the CCSD(T) calculations, the 

corresponding PECs are calculated in the present work to reveal the capability of the QMC method 

to accurately predict PECs in a broad range of  and to validate the approaches for the 𝑟

parameterization of functional potentials and calculation of transport coefficients.

In Fig. 1, the calculated values of PECs for noble gas dimers He-He and Ar-Ar (squares) 

are compared with the values obtained in Refs. 44 and 45 (crosses).  The comparison shows close 

agreement between the results of the QMC and CCSD(T) calculations in the whole ranges of  𝑟

considered. The difference between the values of  and  computed is less than 0.2% for a He-𝐷𝑒 𝑟𝑒

He dimer and 0.06% for an Ar-Ar dimer. 

Based on the good agreement between the results of our QMC calculations and CCSD(T) 

calculations from the literature for He-He and Ar-Ar dimers, we decided not to perform the QMC 

calculations for a Xe-Xe dimer and to use the PEC suggested in Ref. 48 in the functional form of 

Tong & Toennies potential,49 where the parameters are chosen to fit the energy values obtained in 

the CCSD(T) calculations.85 
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2.3. PECs of Cu-Cu, Cu-He, Cu-Ar, and Cu-Xe dimers

The energy values obtained in the QMC calculations for a homonuclear Cu-Cu dimer are 

shown by symbols in Fig. 2(a).  The calculated values of  and  are consistent with the values 𝐷𝑒 𝑟𝑒

obtained based on other ab initio computational approaches20,59-61 with the typical differences on 

the order of 1% to 10% (Table 2).  In particular, the present calculations provide  and  that are 𝐷𝑒 𝑟𝑒

less than 1.5% different from those that are found in the DFT calculations,20 where the long-range 

van der Waals interactions are accounted for based on the Grimme’s D2 correction.90  

The energy values obtained in the QMC calculations for heteronuclear dimers that include 

a Cu atom and a noble gas atom are shown by symbols in Fig. 2(b).  The binding energies of such 

dimers are strongly reduced compared to a Cu-Cu dimer and have an order of magnitude of  for 𝐷𝑒

corresponding homonuclear noble gas dimers.  This agrees with the analysis of PECs of Cu-He 

and Cu-Ar dimers obtained in the CCSD(T) calculations and suggests a weak, van der Waals-type 

bonding between the metal and noble gas atoms.62,63 The potential well depth monotonically 

increases while the equilibrium distance monotonically decreases with an increasing atomic 

number of the noble gas atom. The same trends were found for a series of dimers of a Cu atom 

with He, Ne, and Ar atoms.63 This was attributed to the difference in principal quantum numbers 

of noble gas atoms, which affect the distributions of the wave functions of electrons in the 

outermost shell such that, when a Cu atom and noble gas atom are at equilibrium distance, the 

overlapping portions of the wave functions increase with the increasing number of electrons in the 

noble gas atom.

2.4. PECs of Si-Si, Si-He, Si-Ar, and Si-Xe dimers

The values of energy found in the QMC calculations for a homonuclear Si-Si dimer are 

shown by symbols in Fig. 3(a).  The results obtained in the present work are in close quantitative 

agreement with the results of CCSD(T) calculations both in terms of  and  (Table 2) and the 𝐷𝑒 𝑟𝑒

whole PEC.85 

The calculated PECs for heteronuclear Si-He, Si-Ar, and Si-Xe dimers [Fig. 3(b)] 

demonstrate similar trends which are revealed for heteronuclear dimers containing a Cu atom: The 

binding energies are small, which suggests dispersive interaction between atoms in these dimers, 

and  monotonically increases with an increasing atomic number of the noble gas atom.  Contrary 𝐷𝑒
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to the case of Cu-A dimers, the variation of  for Si-A dimers is non-monotonous with respect to 𝑟𝑒

the mass of atom A, as the  for Si-He dimer is in between the equilibrium distances for Si-Ar 𝑟𝑒

and Si-Xe dimers. The difference in  between Si-He and Si-Ar dimers, however, is only %.  𝑟𝑒 ~1

Interestingly, the slope of the repulsive part of the Si-He PEC, when  is moderately different from 𝑟

, is much smaller than that for Si-Ar and Si-Xe dimers, so that the repulsive part of the Si-He 𝑟𝑒

interatomic potential is much softer than its Si-Ar and Si-Xe counterparts. The computed values 

of  and  for a Si-Ar dimer are only less than 0.5% different from the corresponding values 𝐷𝑒 𝑟𝑒 

found in the calculations based on the spin unrestricted open-shell coupled cluster singles and 

doubles with perturbative triples corrections method.65 

2.5. Morse long range (MLR) and Lennard-Jones (LJ) approximations of PECs

Various functional forms of potentials are currently available for approximation of ab initio 

PECs depending on the bonding type and other factors, e.g., Ref. 91.  Here, we use the Morse long-

range (MLR) potential function77,78 as a convenient model that allows us to accurately approximate 

QMC data points with different types of bonding, including van der Waals, metallic, and covalent 

bonding. 

The PECs obtained in QMC calculations are approximated by the MLR potential in the 

form

𝑉(𝑟) = 𝐷𝑒(1 ―
𝑢(𝑟)
𝑢(𝑟𝑒)𝑒 ―𝛽(𝑟)𝑦(𝑟))2

― 𝐷𝑒,                                                                                              (1)

where  is the interatomic distance and  is a three-term function describing the long-range 𝑟 𝑢(𝑟)

behavior of the PEC:

𝑢(𝑟) =
𝐶6

𝑟6 +
𝐶8

𝑟8 +
𝐶10

𝑟10,                                                                                                                                (2)

𝛽(𝑟) = 𝑦(𝑟) 𝛽∞ + [1 ― 𝑦(𝑟)]
4

∑
𝑖 = 0

𝛽𝑖𝑦(𝑟)𝑖,                                                                                            (3)

𝑦(𝑟) =
𝑟3 ― 𝑟3

𝑒

𝑟3 + 𝑟3
𝑒
,                                                                                                                                            (4)

𝛽∞ = ln (2𝐷𝑒/𝑢(𝑟𝑒)).                                                                                                                                  (5)
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Besides  and , this potential has eight interpolating parameters , , , , , , 𝐷𝑒 𝑟𝑒 𝐶6 𝐶8 𝐶10 𝛽0 𝛽1 𝛽2

, and . The values of  and  are calculated as the parameters at the minimum of the three-𝛽3 𝛽4 𝐷𝑒 𝑟𝑒

point interpolation of the PEC established in the QMC calculations, as discussed in Sect. 2.1. The 

remaining parameters , , , , , , , and  are calculated by multifactorial non-linear 𝐶6 𝐶8 𝐶10 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4

least-square fitting that minimizes the relative root-mean-square (RMS) deviation 

RMS = (1
𝑁

𝑁

∑
𝑖 = 1

∆2
𝑖 )

1/2

,                                                                                                                               (6)

where ,  is the potential energy found in the QMC ∆𝑖 = [𝑉(𝑟𝑖) ― 𝑉QMC(𝑖)]/𝑉QMC(𝑖) 𝑉QMC(𝑖)

calculations at , and all  data points with  belongs to a range . The 𝑟 = 𝑟𝑖 𝑁 𝑟 = 𝑟𝑖 𝑟𝑓,𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑓,𝑚𝑎𝑥

boundaries of this range are chosen individually for each type of dimer to ensure that the MLR 

potential has only one extremum at  and  is small enough to enable accurate 𝑟 = 𝑟𝑒 𝑟𝑓,𝑚𝑖𝑛

calculations of transport coefficients at temperatures  K.85𝑇 ≤ 𝑇𝑚𝑎𝑥 = 104

The obtained parameters of the MLR potentials for all dimers under consideration are 

presented in Table 3.  The values of the relative RMS deviation for most dimers span the range 

from ~0.5% to ~3% but approach 5% for Ar-Ar and Cu-Cu dimers. The parameters of the MLR 

potential for a Xe-Xe dimer are calculated by the least-square fitting of the Tang & Toennies-

type49 potential function obtained in Ref. 48.85  The corresponding potentials are shown by solid 

curves in Figs. 1-3.  As seen in Figs. 1, the developed MLR potentials for He-He and Ar-Ar dimers 

agree well with the potential functions developed in Refs. 44,45,48,51.  The potential function for 

noble gas dimers suggested in Ref. 50 significantly overestimates the potential energy at small 

interatomic distances that correspond to strong repulsive interaction. 

The (12-6) Lennard-Jones (LJ) potential in the form

𝑉(𝑟) = 𝐷𝑒[(𝑟𝑒

𝑟 )
12

― 2(𝑟𝑒

𝑟 )
6],                                                                                                                  (7)

is still a popular approximation for the calculation of collisional and transport properties of high-

temperature gases and vapors, especially under conditions when the exact PEC is not available.29 

For noble gases, this potential is known to provide an approximation of PECs that is sufficient for 

kinetic simulations of gas flows at moderate temperatures92 and calculation of transport properties 
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in agreement with experimental viscosity data.24  Since the LJ potential is widely used, it is 

important to quantify the errors in the transport coefficients of high-temperature vapors and 

gaseous mixtures imposed by the use of this potential function. Various generalizations of the LJ 

potential, e.g., improved LJ (ILJ) potential,93 offer potentially better accuracy compared to (12-6) 

LJ potential at the price of at least one additional fitting parameter.  Since these parameters can be 

determined only based on known ab initio PECs or spectroscopical measurements, these 

generalized LJ potentials do not have a decisive advantage over more complex potential functions, 

e.g., the MLR potential adopted in the present work. 

To verify the applicability of the LJ potential for homonuclear dimers Cu-Cu and Si-Si, as 

well as for heteronuclear dimers, the values of the LJ potentials with  and  from Table 3 are 𝐷𝑒 𝑟𝑒

plotted by dashed curves in Figs. 1-3.  The relative RMS deviations of the LJ potentials are 1-3 

orders of magnitude larger than that of the corresponding MLR potentials.85

As expected, the LJ potentials provide reasonably good approximations of the actual PECs 

for noble gas dimers at .  At interatomic distances that correspond to strong repulsion, 𝑟 ≳ 𝑟𝑒

however, the LJ potentials strongly overestimate both energy and force (insets in Fig. 1).  As shown 

in Sects. 5.1, 5.2, and 6.3, this results in relatively large errors in the values of the transport 

coefficients of noble gases and their mixtures with Cu vapor at large temperatures.  It makes the 

LJ potential not a suitable approximation for high-fidelity simulations of high-temperature flows 

of pure substances and gas mixtures considered in the present work.

For homonuclear dimers Cu-Cu and Si-Si, the LJ potentials strongly overestimate the 

energy and interatomic interaction force at both attraction and repulsion and should not be used 

for high-fidelity calculations [Figs. 2(a) and 3(a)]. As shown in Ref. 20, a generalized  (𝑚 ― 𝑛)

Lennard-Jones potential, where the exponents  and  are chosen to exactly fit the zero energy 𝑚 𝑛

point and potential stiffness at  can substantially improve the accuracy of the approximation 𝑟 = 𝑟𝑒

of the Cu-Cu PEC only in a small vicinity of , in the range from ~1.7 Å to ~2.7 Å, but still 𝑟 = 𝑟𝑒

provides insufficient accuracy outside this range.

For heteronuclear dimers, the LJ potentials, as a rule, strongly overestimate the energy and 

force at  [Figs. 2(b) and 3(b)].  For a Cu-He dimer, however, the LJ potential underestimates 𝑟 < 𝑟𝑒

the energy and force.  This suggests that the LJ approximations of the PECs for all heteronuclear 

dimers under consideration must not be used for calculations of the collisional and transport 

properties of corresponding gas mixtures at high temperatures.
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3. Effect of the PEC shape on particle scattering in binary collisions

To solve the Boltzmann kinetic equation for monatomic gases, the deflection angle , i.e., 𝜒

the angle between the relative velocity vectors of colliding particles before and after a binary 

collision, must be determined based on .  Here, the solution of the classical elastic scattering 𝑉(𝑟)

problem23-31,22 is used to find  as a function of the magnitude of the relative particle velocity 𝜒

before the collision  and geometrical collision parameter  in the form:𝐶𝑟 𝑏

𝜒(𝐶𝑟,𝑏) = 𝜋 ―
∞

∫
𝑟𝑚𝑖𝑛

𝐿𝑟𝑑𝑟

𝑚𝑟2
𝐻𝑟 ― 𝑉(𝑟)

2𝑚 ―
𝐿2

𝑟

(2𝑚𝑟)2

,                                                                                (8)

where  is the reduced mass for interacting particles with masses  and 𝑚 = 𝑚1𝑚2/(𝑚1 + 𝑚2) 𝑚1

 (Table 1),  is the PEC for participating particle species, , , and  𝑚2 𝑉(𝑟) 𝐻𝑟 = 𝑚𝐶2
𝑟/2 𝐿𝑟 = 𝑚𝐶𝑟𝑏 𝑟𝑚𝑖𝑛

is the minimum distance between particles attained at a collision which can be found as the largest 

root of the equation

𝐻𝑟 ― 𝑉(𝑟𝑚𝑖𝑛)
2𝑚 =

𝐿2
𝑟

(2𝑚𝑟𝑚𝑖𝑛)2.                                                                                                                     (9)

In the present work, the tables of values of  (the scattering matrices) are 𝜒𝑖𝑗 = 𝜒(𝑏𝑗,𝐶𝑟𝑖)

calculated for all atom pairs in the ranges  Å and , where the values of 0 ≤ 𝑏 ≤ 20 0 < 𝐶𝑟 ≤ 𝐶𝑟 ∗

 were chosen in preliminary calculations individually for each pair of atoms to ensure the 𝐶𝑟 ∗

accuracy of further calculation of the transport coefficients up to  K.85  The integral in Eq. 𝑇 = 104

(8) was calculated numerically, assuming that the atoms do not interact with each other when  is 𝑟

greater than the cutoff distance  Å.  Then the range  was divided into 3 sub-𝑟𝑐𝑢𝑡𝑜𝑓𝑓 = 40 𝑟 ≥ 𝑟𝑚𝑖𝑛

ranges:  (range I),  (range II), and  𝑟𝑚𝑖𝑛 + 10 ―7 Å ≤ 𝑟 ≤ 10 ―4 Å 10 ―4 Å ≤ 𝑟 ≤ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓 𝑟 ≥ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓

(range III), where the lower boundary in range I is shifted with respect to  to exclude the 𝑟𝑚𝑖𝑛

singularity at . The numerical integration in ranges I and II is performed with the simple 𝑟 = 𝑟𝑚𝑖𝑛

trapezoidal rule and spacings  and , respectively, while the contribution ∆𝑟 = 10 ―7 Å ∆𝑟 = 10 ―4 Å

of range III is calculated as .∆𝜒III = 2arcsin (𝑏/𝑟𝑐𝑢𝑡𝑜𝑓𝑓)

The tables of the deflection angle are calculated for all atom pairs under consideration.95  

The characteristic distributions of the quantity  versus  for single-species 𝜗 = 1 ― cos 𝜒 𝑏2
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collisions in the Ar-Ar and Cu-Cu atom pairs as well as cross-species collisions in the Cu-He atom 

pair, calculated based on the MLR and LJ potentials are shown in Figs. 4-6 by solid and dashed 

curves, respectively.  The similar plots for all other atom pairs under consideration are presented 

in the Supplementary material.  At relatively small , the plots, e.g., in Fig. 4(a), show two 𝐶𝑟

characteristic ranges of , the first one for head-on collisions, which are primarily controlled by 𝑏

the interatomic repulsion, and the second for quasi-orbiting collisions, which are strongly affected 

by attraction.  With increasing , the contribution of quasi-orbiting collisions becomes almost 𝐶𝑟

negligible and invisible on the scale of Figs. 4-6.  

For all atom pairs, the values of  calculated based on the LJ potentials demonstrate the 𝜗

strongest deviation from the values of  calculated based on the MLR potentials at the smallest 𝜗

[20 ms-1, panels (a)] and largest [  ms-1, panels (d)]  considered, while at the intermediate  104 𝐶𝑟 𝐶𝑟

[  ms-1, panels (c)], the dependence of  on  is practically independent of the shape of the 103 𝜗 𝑏2

potential function.  The range of  corresponding to quasi-orbiting collisions predicted by the LJ 𝑏

potential is shifted towards larger  compared to the MLR potential.  Since the LJ potential usually 𝑏

overestimates the energy and force at repulsion, the values of  calculated based on the LJ potential 𝜗

for oblique collisions are greater than the values predicted based on the MLR potential for all atom 

pairs and  considered at small and large .  The only exclusion from this rule is provided by the 𝐶𝑟 𝐶𝑟

Cu-He atom pair at large  [Fig. 6(c) and (d)].  It occurs since, for a Cu-He dimer, the LJ potential 𝐶𝑟

strongly underestimates the potential energy at repulsion [Fig. 2(b)].

For Ar-Ar collisions, the scattering matrices were additionally calculated based on the 

potential functions suggested in Refs. 45,50,51 (Fig. 4).  The shape of the potential function has 

the most pronounced effect on the scattering angle at small and large . At small  [Fig. 4(a)], 𝐶𝑟 𝐶𝑟

the differences in the distributions of  appear due to different asymptotic behavior of the potential 𝜗

functions at .  The MLR potential predicts the smallest values of  for head-on collisions 𝑟→∞ 𝜗

among all potentials considered, while the values of  calculated based on the potential functions 𝜗

from Refs. 45 and 50 practically coincide with each other at small and moderate speeds.  At large 

 [Fig. 4(d)], the results obtained with different potential functions deviate from each other since 𝐶𝑟

the fitting coefficients in these functions do not allow to fit accurately the energy at ,51 and 𝑟 ≪ 𝑟𝑒

the quality of the approximation fast deteriorates with reducing  at repulsion.  The values of  𝑟 𝜗

calculated based on the MLR potential practically coincide with the values based on the potential 
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function of Ref. 45.  At intermediate  [Fig. 4(c)], the values of  calculated based on different 𝐶𝑟 𝜗

potential functions are close to each other. 

A similar study of the effect of the PEC shape on the deflection angle is performed for 

collisions in the He-He and Xe-Xe atom pairs.85  This study shows that the values of  predicted 𝜗

based on the MLR potentials and potential functions developed in Refs. 44 (for He-He) and 48 

(for Xe-Xe) practically coincide with each other at  ms-1.  This conclusion confirms a 𝐶𝑟 ≥ 100

good agreement between the PECs obtained in the QMC and CCSD(T) calculations.  The 

disagreement between the asymptotic behaviors of different potential functions and, 

correspondingly, values of the deflection angle at  ms-1, affects the predicted values of 𝐶𝑟 ≤ 100

the transport coefficients of noble gases only at  K.85  Thus, this disagreement is not 𝑇 ≪ 100

relevant to the case of high-temperature gas mixtures considered in the present work.  

4. Calculation of transport coefficients

4.1. Transport properties of binary mixtures

The obtained solutions of the classical scattering problem in the form of dependencies 

 are used to calculate the transport coefficients based on the Chapman-Enskog method 𝜒 = 𝜒(𝑏,𝐶𝑟)

in the form of the Sonine polynomial expansions.23-31  For pure substances, the self-diffusivity , 𝔇

shear viscosity , and thermal conductivity  are calculated as functions of the gas temperature .  𝜇 𝜅 𝑇

For binary gaseous mixtures, composed of Cu or Si vapor and a noble gas, the binary diffusivity 

, shear viscosity , thermal conductivity , and thermal diffusion factor  are calculated as 𝔇 𝜇 𝜅 α𝑇

functions of temperature  and molar fraction of the noble gas .𝑇 𝑥𝑔

For pure substances and gas mixtures, the shear viscosity is defined in the same way as a 

coefficient that appears in the standard form of a Newtonian viscous tensor for monatomic gases.23-

25 The diffusion in a binary mixture, i.e., the local difference between bulk velocities  and  of 𝐮1 𝐮2

species 1 and 2, is described by the generalized Maxwell-Stefan law

𝐮1 ― 𝐮2 = ―𝔇[ ∇𝑥1

𝑥1(1 ― 𝑥1) + α𝑇∇log 𝑇],                                                                                          (10)
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where  is the molar fraction of species 1. In the present work, species 1 is always assumed to be 𝑥1

a vapor and species 2 is assumed to be a noble gas.  The chemical composition in such a mixture 

is described by the molar fraction of the noble gas  so that Eq. (10) can be re-written as𝑥𝑔 = 𝑥2

𝐮𝑣 ― 𝐮𝑔 = 𝔇[ ∇𝑥𝑔

𝑥𝑔(1 ― 𝑥𝑔) ― α𝑇∇log 𝑇],                                                                                           (11)

where  and  are the bulk velocities of the vapor and gas, respectively.  When both species are 𝐮𝑣 𝐮𝑔

at rest ( ), a stationary chemical composition distribution is established in a non-isothermal 𝐮𝑣 = 𝐮𝑔

mixture given as

∇𝑥𝑔 = 𝑥𝑔(1 ― 𝑥𝑔)α𝑇∇log 𝑇.                                                                                                                  (12)

The thermal diffusion leads to two kinds of thermal conductivities for gas mixtures: Partial  and 𝜅′

steady-state  thermal conductivity coefficients.25  The quantity  characterizes heat transfer 𝜅 𝜅′

through a mixture with a uniform chemical composition.  The coefficient  corresponds to the state 𝜅

when a time-independent chemical composition is established according to Eq. (12).  

Henceforward, the steady state thermal conductivity  is considered.  It defines the heat flux  in 𝜅 𝐪

the form25

𝐪 = ―𝜅∇𝑇 + 𝑛𝑘𝐵𝑇𝑥𝑔(1 ― 𝑥𝑔)α𝑇(𝐮𝑣 ― 𝐮𝑔).                                                                                     (13)

The calculation of the transport coefficients using the Sonine polynomial expansions is 

described in detail in Ref. 96.  In the present work, the expressions for the transport coefficient are 

used in the form obtained in Refs. 53 and 54 in terms of the transport collision -integralsΩ

Ω(𝑙,𝑠)(𝑇) =
𝑘𝐵𝑇
2𝜋𝑚

∞

∫
0

exp ( ― 𝜉2)𝜉2𝑠 + 3𝑄(𝑙)( 2𝑘𝐵𝑇
𝑚

𝜉)𝑑𝜉,                                                            (14)

where

𝑄(𝑙)(𝐶𝑟) = 2𝜋
∞

∫
0

[1 ― cos𝑙 𝜒(𝐶𝑟,𝑏)]𝑏𝑑𝑏                                                                                             (15)

is the collision cross section and  is the Boltzmann constant, so that only a summary of these 𝑘𝐵

expressions is given below.
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The diffusivity , viscosity , thermal conductivity , and thermal diffusion factor  of a 𝔇 𝜇 𝜅 α𝑇

binary mixture are calculated as

𝔇 =
3
2

(1 ― 𝑥𝑔)𝑥𝑔𝑘𝐵𝑇𝑑0

𝑛(𝑚𝑣 + 𝑚𝑔) ,                                                                                                                        (16)

𝜇 =
5
2𝑘𝐵𝑇[(1 ― 𝑥𝑔)𝑏1 + 𝑥𝑔𝑏 ―1],                                                                                                           (17)

𝜅 =
75
8 𝑘2

𝐵𝑇[(1 ― 𝑥𝑔)𝑎1

𝑚𝑣
+

𝑥𝑔𝑎 ―1

𝑚𝑔 ],                                                                                                      (18)

α𝑇 = ―
5
2

𝑚𝑣 + 𝑚𝑔

𝑑0 [ 𝑑1

𝑥𝑔 𝑚𝑣
+

𝑑 ―1

(1 ― 𝑥𝑔) 𝑚𝑔],                                                                              (19)

where  and  are masses of vapor and noble gas atoms, respectively, and the coefficients , 𝑚𝑣 𝑚𝑔 𝑏1

, , , , , and  are determined by systems of linear algebraic equations.  The details 𝑏 ―1 𝑎1 𝑎 ―1 𝑑1 𝑑0 𝑑 ―1

of calculations of these coefficients, which depend, in particular, on the adopted number of terms 

 in the expansions of the solution of the Boltzmann equation with respect to the Sonine 𝑁

polynomials, are provided in Ref. 53.

To simplify notation, the subscripts that are often used for individual quantities in Eqs. 

(14)-(19) to denote participating atomic species are dropped.  The atomic species define the value 

of the reduced mass  in Eq. (14) and the potential function used to calculate the deflection angle 𝑚

in Eq. (15).  This simplified notation does not introduce any ambiguity in the presentation of results 

since the further discussion of all results based on Eqs. (14)-(19) is accompanied by explicit 

specification of species under consideration. 

The viscosity and thermal conductivity of pure substances can be obtained from Eqs. (17) 

and (18) at  or .  In this case, the coefficient  becomes the gas self-diffusivity 𝑥𝑔 = 0 𝑥𝑔 = 1 𝔇

according to the definition adopted, e.g., in Ref. 2, if one uses Eq. (16) at  and 𝑥𝑔 = 𝑥𝑣 = 1/2 𝑚𝑔 =

.  𝑚𝑣

The values of , , and  can be represented in a reduced form of Schmidt, , and Prandtl, 𝔇 𝜇 𝜅 Sc

 numbersPr,

Sc =
𝜇

𝜌𝔇,                                                                                                                                                      (20)
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Pr =
𝑐𝑝𝜇
𝜅 ,                                                                                                                                                     (21)

where  and  are the mass density and mean isobaric specific heat of the 𝜌 = 𝑛𝑚𝑥 𝑐𝑝 = (5/2)𝑘𝐵/𝑚𝑥

gas mixture,  is the total number density, and  is the average atom 𝑛 𝑚𝑥 = 𝑚𝑣(1 ― 𝑥𝑔) + 𝑚𝑔𝑥𝑔

mass.  The Schmidt and Prandtl numbers can be used to characterize the difference in the variation 

of  and  with temperature with respect to .𝔇 𝜅 𝜇

4.2. Numerical calculation of -integrals and transport coefficients𝛀

The transport collision integrals and transport coefficients are calculated in the range of 

temperature from 10 K to  K, however, the transport coefficients for Cu and Si vapors and their 104

mixtures with noble gases are further discussed only at  K.  At smaller temperatures, the 𝑇 ≥ 100

values of the transport coefficients can be sensitive to the peculiarities of the asymptotic behavior 

of the potential functions at .  The low-temperature gas properties, however, are out of the 𝑟→∞

scope of the present paper.  

The integrals in Eqs. (14)-(15) are calculated numerically using the preliminarily 

determined scattering matrices , so that the numerical accuracy of calculations of 𝜒𝑖𝑗 = 𝜒(𝑏𝑗,𝐶𝑟𝑖)

the -integrals implicitly depends on the accuracy of numerical calculation of individual deflection Ω

angles according to Eq. (8).  The numerical accuracy of calculations of the -integrals depends on Ω

the integration step sizes  and   used for numerical quadrature as well as on the cutoff values ∆𝑏 ∆𝐶𝑟

of the impact parameter  and relative speed  that replace the top limits in improper integrals 𝑏 ∗ 𝐶𝑟 ∗

of Eqs. (14)-(15).  The accuracy of the transport coefficients also depends on the number of terms 

 in the Sonine polynomial expansions.𝑁

In the present work, two independently developed codes for calculations of the deflection 

angle and -integrals were used.  The codes use different approaches for numerical quadrature in Ω

Eq. (8), but the maximum relative difference between  predicted by both codes does 𝜗 = 1 ― cos 𝜒

not exceed  with exception of sliding collisions at large , which do not contribute to the -10 ―6 𝑏 Ω

integrals.  The first code is based on the numerical quadrature of Eqs. (14) and (15) on meshes 

with equal spacings  and .  The second code utilizes non-homogeneous meshes for both  ∆𝑏 ∆𝐶𝑟 𝑏

and .  𝐶𝑟
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The comprehensive convergence studies were performed for both codes.  Based on the 

results of this study, the values of  Å,  Å, and  ms-1 are chosen for 𝑏 ∗ = 20 ∆𝑏 = 0.005 ∆𝐶𝑟 = 2.5

numerical integration in Eqs. (14)-(15) with the first code, while the value of  is chosen 𝐶𝑟 ∗

individually for different atom pairs.85  In this case, the direct calculations showed that the 

estimated error in the value of all transport coefficients for pure substances does not exceed 0.04%.  

The numerical accuracy of the second code was investigated in Refs. 30,53,54.  For the second 

code, the estimated relative error in the values of the transport coefficients does not exceed 0.01% 

for both pure substances and gaseous mixtures.  

In the present work, the calculations are performed with , , and .  The results that 𝑁 = 1 2 10

are further presented and discussed in Sects. 5 and 6, however, are all obtained with  with 𝑁 = 10

exception of Table 4, where all results are calculated with .  𝑁 = 2

4.3. Transport coefficients in the first approximation with respect to the Sonine polynomial 

expansions

It is instructive to use the one-term expansions of the transport coefficients.  Such one-term 

expansions are simple and can be easily presented in an algebraic form.  These one-term 

expansions are also usually used for the fitting of the HS, VHS, and VSS molecular models.22 

At , Eq. (16) for  and  reduces to𝑁 = 1 𝑥𝑔 = 1/2 𝑚𝑔 = 𝑚𝑣

𝔇 =
3
8

𝑘𝐵𝑇

Ω(1,1)(𝑇)

1
2𝑚𝑛,                                                                                                                               (22)

while Eqs. (17)-(18) for  or  reduce to𝑥𝑔 = 0 𝑥𝑔 = 1

𝜇 =
5
8

𝑘𝐵𝑇

Ω(2,2)(𝑇)
,                                                                                                                                         (23)

𝜅 =
15
16

𝑘𝐵𝑇

Ω(2,2)(𝑇)
𝑐𝑝,                                                                                                                                   (24)

where . Eqs. (22)-(24) represent the one-term (first) approximations of the 𝑐𝑝 = (5/2) 𝑘𝐵/(2𝑚)

self-diffusivity, viscosity, and thermal conductivity of pure substances with respect to the Sonine 

polynomial expansions.  These equations also define the “contributions” of collisions between 
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corresponding atom pairs to the one-term approximations of binary diffusivity, viscosity, and 

thermal conductivity of gaseous mixtures.24 

For pure substances, the second terms in the Sonine polynomial expansions provide 

corrections to the first-order approximations not greater than 0.8% for all cases considered in the 

present work at temperatures between  K and  K (Table 4). The total contributions of further 102 104

terms from third to tenth are found to be less than 0.1%. 

In the first approximation, for a gas mixture composed of species 1 and 2, the binary 

diffusivity is defined by Eq. (22), while the viscosity, thermal conductivity, and thermal diffusion 

factor are determined algebraically by complex equations24 that can be represented in the form 

𝜇 = 𝜇12 𝑓𝜇(𝑚1,𝑚2,
𝜇1

𝜇12
,
𝜇2

𝜇12
,
Ω(1,2)

12

Ω(1,1)
12

,
Ω(1,3)

12

Ω(1,1)
12

,
Ω(2,2)

12

Ω(1,1)
12

,𝑥2),                                                                 (25)

𝜅 = 𝜅12 𝑓𝜅(𝑚1,𝑚2,
𝜅1

𝜅12
,
𝜅2

𝑘12
,
Ω(1,2)

12

Ω(1,1)
12

,
Ω(1,3)

12

Ω(1,1)
12

,
Ω(2,2)

12

Ω(1,1)
12

,𝑥2),                                                                 (26)

α𝑇 = 𝑓𝛼(𝑚1,𝑚2,
𝜅1

𝜅12
,
𝜅2

𝑘12
,
Ω(1,2)

12

Ω(1,1)
12

,
Ω(1,3)

12

Ω(1,1)
12

,
Ω(2,2)

12

Ω(1,1)
12

,𝑥2),                                                                        (27)

where  and  are the viscosity and thermal conductivity of pure substance  calculated based 𝜇𝑘 𝜅𝑘 𝑘

on Eqs. (23) and (24), while  and  are quantities that are calculated based on the same Eqs. 𝜇12 𝜅12

(23) and (24) but using the reduced mass  and -integrals for cross-species collisions .  𝑚 Ω Ω(𝑙,𝑠)
12 (𝑇)

These equations show that the viscosity and thermal conductivity of a gas mixture to a large extent 

depend on the “contributions”  and  of cross-species collisions.  The binary diffusion 𝜇12 𝜅12

coefficient in the second approximation is determined by an equation similar to Eq. (25), which 

will include the self-diffusivity  and binary diffusivity  calculated in the first approximation 𝔇𝑘 𝔇12

based on Eq. (22).24  For a binary mixture with arbitrary chemical composition, the contributions 

of second and further terms in the Sonine polynomial expansions, as a rule, are larger than for the 

corresponding pure substances. 

4.4. Effect of the PEC shape on the values of -integrals𝛀

According to Eqs. (22)-(24), the effect of temperature on the transport coefficients of pure 

substances is dominated by integrals  and .  Eqs. (25)-(27) show that the Ω(1,1)(𝑇) Ω(2,2)(𝑇)
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corresponding integrals for cross-species collisions also determine (together with  and ) Ω(1,2)
12  Ω(1,3)

12

the first-order coefficients of gas mixtures.  

For collision pairs involving a Cu atom, the effect of the PEC shape on the dependences of 

 and  on temperature is illustrated in Fig. 7.  The plots in this figure are obtained based Ω(1,1) Ω(2,2)

on the MLR and LJ potentials with the parameters from Table 3, and the results are presented in 

the form of reduced -integralsΩ

Ω(𝑙,𝑠) ∗ (𝑇) =
Ω(𝑙,𝑠)(𝑇)

Ω(𝑙,𝑠)
𝐻𝑆 (𝑇)

,                                                                                                                               (28)

where

Ω(𝑙,𝑠)
𝐻𝑆 (𝑇) = 𝐶(𝑙,𝑠)𝜋𝜎2

𝑘𝐵𝑇
2𝜋𝑚

                                                                                                                   (29)

is a corresponding integral for HS particles of diameter  and𝜎

𝐶(𝑙,𝑠) =
(𝑠 + 1)!

2 [1 ―
1
2

1 + ( ―1)𝑙

1 + 𝑙 ],                                                                                                     (30)

as functions of the reduced temperature .  Following the approach adopted in Ref. 𝑇 ∗ = 𝑘𝐵𝑇/𝐷𝑒

24, where  corresponds to the zero-energy distance of the LJ potential, the length scale  in Eq. 𝜎 𝜎

(29) is used in the form .  The calculated values of  and  for other collision 𝜎 = 𝑟𝑒/6 2 Ω(1,1) ∗ Ω(2,2) ∗

pairs are presented in the Supplementary material.  In all cases, the calculations are performed for 

a temperature range from  K to  K.10 104

All these calculations result in consistent conclusions regarding the effect of the PEC 

shape.  In general, in the logarithmic scale, the plots of -integrals include three quasi-linear parts, Ω

where the integrals roughly follow the power scaling laws with temperature, at , 𝑇 ∗ ≲ 0.2 0.2 ≲ 𝑇 ∗

, and . This is realized, e.g., in the Cu-Ar case [Fig. 7(c)].  For other dimers, due to the ≲ 2 𝑇 ∗ ≳ 2

strong variability of , the range of temperature,  K   K, may not contain all three 𝐷𝑒 10 ≤ 𝑇 ≤ 104

characteristic sub-ranges of .  The values of -integrals calculated based on the MLR and LJ 𝑇 ∗ Ω

potentials usually agree with each other reasonably well in the mid-range . The 0.2 ≲ 𝑇 ∗ ≲ 2

degree of disagreement between the MLR- and LJ-based values of -integrals grows fast with Ω

both an increase and decrease in  outside this range. The maximum disagreement is observed 𝑇 ∗

for the Cu-Cu and He-He pairs.  In V-G atom pairs, where V is a Cu or Si atom and G is a noble 
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gas atom, the maximum disagreement between -integrals calculated based on the MLR and LJ Ω

potentials is observed in pairs containing He atoms. This disagreement decreases with an 

increasing mass of the noble gas atoms.

5. Transport properties of pure substances

5.1. Noble gases

For helium, argon, and xenon, the transport coefficients calculated based on the ab initio 

PECs are well-known.30,52,57  In the present work, therefore, the transport coefficients of noble 

gases are calculated to validate the numerical approach and reveal the effect of the PEC shape.  

For argon and xenon, the viscosities predicted based on the MLR and LJ potentials closely 

agree at .  For helium, the difference in viscosities calculated based on the MLR and LJ 𝑇 ∗ ~1

potentials remains relatively large in the whole temperature range considered.  The average 

differences  between the MLR- and LJ-based viscosities are %, %, and 5% for He, ∆[𝜇]𝐴 ~24 ~9

Ar, and Xe gases, respectively (Table 4).  The viscosity calculated based on the MLR potentials 

agrees well with the viscosity calculated based on the potential functions established in the 

CCSD(T) calculations in Ref. 44 for He (average disagreement %), Ref. 45 for Ar (∆[𝜇]𝐴~1 ∆[𝜇]𝐴

%), and Ref. 48 for Xe ( %) (Table 4).  The universal potential function for noble ~0.3 ∆[𝜇]𝐴~0.3

gas dimers developed in Ref. 51 provides the viscosity data that agree well with the MLR potential 

for argon (  %) but demonstrate worse agreement for He and Xe.  The viscosity obtained ∆[𝜇]𝐴~0.1

based on the potentials suggested in Ref. 50 strongly deviates from the viscosity based on the MLR 

potential with the average differences that are only twice smaller than the corresponding 

differences for the LJ potential.85

5.2. Cu and Si vapors

For Cu and Si vapors, the selected values of diffusivity, viscosity, and thermal conductivity 

are given in the Appendix.  The additional values of the transport coefficients are provided in the 

form of individual text files as a part of the Supplementary material.  The viscosity of Cu vapor as 

a function of temperature shown in double logarithmic scale is non-linear with the slope strongly 

changing at  K [Fig. 8(a)].  This suggests that the viscosity cannot be accurately 𝑇~5000

approximated by a power law in the whole range of temperature considered.  The viscosity of Si 
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vapor, on the contrary, demonstrates power scaling with temperature.  The average differences 

 between the MLR- and LJ-based viscosities are % and % for Cu and Si vapors, ∆[𝜇]𝐴 ~17 ~7

respectively (Table 4).  This makes the LJ potential not suitable for high-fidelity calculations of 

the transport coefficients.  It also means that the parametrizations of the LJ potential for Cu and Si 

vapors based on viscosity data or other indirect experimental measurements may not provide 

accurate values of  and . 𝐷𝑒 𝑟𝑒

The difference in the scaling behavior of diffusivity and thermal conductivity with respect 

to viscosity can be characterized by the Schmidt and Prandtl numbers. For pure substances, using 

the one-term expansions with respect to the Sonine polynomials, Eqs. (20)-(21) reduce to

Sc =
10
6

Ω(1,1)(𝑇)

Ω(2,2)(𝑇)
,                                                                                                                                     (31)

Pr =
2
3.                                                                                                                                                         (32)

It is well known that for noble gases both the Schmidt and Prandtl numbers are weak functions of 

temperature, e.g.,  varies between 0.71 and 0.78.32  The computations for Cu and Si vapors reveal Sc

somewhat stronger but still weak variability of  and  with temperature [Fig. 8(b) and (c)], Sc Pr

when  varies between  and , while  varies between  and .  This Sc ~0.73 ~0.85 Pr ~0.6635 ~0.6662

indicates a similar scaling behavior of all transport coefficients of Cu and Si vapors with respect 

to .𝑇

5.3. Cross-species collisional contributions

Fig. 9 shows the values of  and  calculated based on Eqs. (22)-(23) for cross-species 𝔇 𝜇

collisions.  These quantities partially describe the contributions of the cross-species collisions to 

the viscosity of binary mixtures in the form of the one-term expansion with respect to the Sonine 

polynomials according to Eq. (25) and binary diffusivity in the second approximation.  In 

agreement with the previous analysis of -integrals for the cross-species collisions, these results Ω

reveal a strong difference between the values of  and  calculated based on the MLR and LJ 𝔇 𝜇

potentials for collisions involving He and Ar atoms.  In the logarithmic scale, the temperature 

dependences of  and  are practically linear for collision pairs involving He atoms.  The results 𝔇 𝜇
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of calculations of  based on Eq. (24) are not shown but they demonstrate the same qualitative 𝜅

trends that can be observed for .𝜇

6. Transport properties of binary mixtures

The values of the transport coefficients of all binary mixtures, which are considered as 

functions of temperature  and gas molar fraction , are provided in the Supplementary material 𝑇 𝑥𝑔

in the form of individual text files.  In this section, only a selection of the obtained results is 

described.

6.1. Cu-He, Cu-Ar, and Cu-Xe mixtures

The values of the transport coefficients calculated for the Cu-He, Cu-Ar, and Cu-Xe binary 

mixtures based on the MLR potentials are shown as functions of the noble gas molar fraction  𝑥𝑔

in Fig. 10.  As expected, at constant pressure, the binary diffusivity  only marginally changes 𝔇

depending on the chemical composition.  It occurs since the binary diffusion is dominated by the 

first term given by Eq. (22), which does not depend on molar fractions, while the dependence on 

 appears only in the higher approximations with respect to the Sonine polynomials.  The values 𝑥𝑔

of the binary mixture viscosity and thermal conductivity strongly depend on  as these 𝑥𝑔

dependencies appear already in the first approximation.24

For light-weight helium, the mixture viscosity is practically not affected by the presence of 

the noble gas and remains equal to the viscosity of Cu vapor up to . The thermal 𝑥𝑔 = 0.7

conductivity of the mixture, on the contrary, strongly varies even at small . For the Cu-He 𝑥𝑔

mixture, the variability of  with  is strongest among all mixtures considered in Fig. 10.  It occurs 𝜅 𝑥𝑔

since the thermal conductivity is inversely proportional to the reduced mass  [Eq. (24)].  𝑚

The variations of the transport coefficients with  in the mixtures of Cu vapor with heavier 𝑥𝑔

argon and xenon are qualitatively similar.  The transport coefficients of these mixtures demonstrate 

an abnormal behavior when the mixture viscosity and thermal conductivity can be larger than the 

coefficients of the corresponding pure substances. The viscosity of such mixtures can non-

monotonically vary with , when the maximum viscosity is achieved at .𝑥𝑔 0.6 < 𝑥𝑔 < 0.8

The thermal diffusion factor in the Cu-He mixture has large positive values at large molar 

fraction of He.  According to Eq. (11), the positive sign of  means that thermal diffusion 𝛼𝑇
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promotes diffusion of vapor atoms into a cooler region, while the helium atoms move to a hotter 

region. Such a situation is characteristic in a mixing layer at the edge of a laser-induced vapor 

plume expanding into a background gas, e.g., Ref. 21.  In the Cu-Ar mixture,   is also positive, 𝛼𝑇

while in the Cu-Xe mixture, the sign of  is negative at small and large temperatures.𝛼𝑇

Contrary to pure substances, where the Schmidt, , and Prandtl, , numbers are known Sc Pr

to be conservative parameters,  and  of a gas mixture demonstrate much stronger variability Sc Pr

as functions of temperature and molar fraction (Fig. 11).  It is found that  can vary within two Sc

orders of magnitude in a mixture of heavy vapor and light noble gas, e.g., the Cu-He mixture, due 

to the variation of mass density  in Eq. (20).  The modified Schmidt number 𝜌

Sc =
𝜇

𝜌𝔇 = Sc
𝜌
𝜌,                                                                                                                                        (33)

which is based on the mean density  that is independent of the chemical 𝜌 = 𝑛(𝑚1 + 𝑚2)/2

composition, is found to be a more conservative parameter.  For the Cu-He gas mixture, both  Sc

and  vary within the range from  to  in the whole temperature range under Pr ~0.3 ~0.7

consideration.

6.2. Si-He, Si-Ar, and Si-Xe mixtures

The calculated transport coefficients of mixtures of Si vapor with noble gases are presented 

in Fig. 12. Qualitatively, the transport properties of these mixtures demonstrate the same trends as 

in the case of the corresponding Cu-noble gas mixtures.  The only exclusion from this rule is the 

viscosity of the Si-He mixture, which almost linearly increases with the gas molar fraction up to 𝑥𝑔

 and then remains constant with further increase of .~0.9 𝑥𝑔

6.3. Effects of the PEC shape on the transport coefficients in binary mixtures

The ratios of the transport coefficients calculated based on the LJ and MLR potentials for 

the Cu-He mixture are presented in Fig. 13.  As one can see, the difference between the results 

obtained with these two potentials can be as large as 50-60% for all transport coefficients.  The 

differences tend to increase with increasing mixture temperature. It occurs because the LJ 

potential, as a rule, strongly overestimates the magnitude of interatomic forces at .  The 𝑟 <  𝑟𝑒

differences between the transport coefficients for this gas mixture are larger than the typical 
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differences between the transport coefficients predicted based on the MLR and LJ potential for 

pure substances (Table 4). 

The calculations of the transport coefficients based on the LJ potentials for other gas 

mixtures reveal the same trends and similar levels of discrepancy with respect to the values 

predicted based on the MLR potentials.  For instance, the calculations for the Cu-Ar mixture  reveal 

the maximum discrepancies of % between the MLR- and LJ-based binary diffusivities , ~35 𝔇

viscosities , and thermal conductivities , while the thermal diffusion factor  calculated based 𝜇 𝜅 α𝑇

on the LJ potential can be, depending on temperature, twice smaller or larger than  calculated α𝑇

based on the MLR potentials.85  These results confirm that the LJ potentials may not be a good 

PEC approximation for high-fidelity calculations of the transport of properties of gas mixtures 

composed of such dissimilar components as Cu or Si vapor and a noble gas.

7. Parameters of molecular models for kinetic simulations of gas flows

7.1. Variable hard sphere (VHS) model 

In the VHS molecular model,22,26 the gas molecules are considered as hard spheres with 

the isotropic scattering at binary collisions and variable diameter which is defined as 

𝑑𝑉𝐻𝑆 = 𝑑VHS,𝑟𝑒𝑓(𝐶𝑟,𝑟𝑒𝑓

𝐶𝑟 )
𝜔 ― 1/2

,                                                                                                             (34)

where 

𝐶𝑟,𝑟𝑒𝑓 =
2𝑘𝐵𝑇𝑟𝑒𝑓/𝑚

Γ1/(2𝜔 ― 1)(5/2 ― 𝜔)
                                                                                                                 (35)

is the reference relative velocity,  is the gamma function,  is the reference diameter at Γ(𝑥) 𝑑𝑉𝐻𝑆,𝑟𝑒𝑓

a reference temperature , and  is the viscosity index.  The parameters  and  of the 𝑇𝑟𝑒𝑓 𝜔 𝑑VHS,𝑟𝑒𝑓 𝜔

VHS model are usually determined by fitting the gas viscosity data.22

In the VHS model, the deflection angle is equal to 

𝜒(𝐶𝑟,𝑏) = 2arccos ( 𝑏
𝑑VHS(𝐶𝑟)).                                                                                                           (36)
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By using Eq. (36) in Eq. (15), one can obtain, in the single-term expansions with respect to the 

Sonine polynomials, power laws for self-diffusivity, viscosity, and thermal conductivity of a pure 

substance:

𝔇VHS = 𝔇VHS,𝑟𝑒𝑓
𝑛𝑟𝑒𝑓

𝑛 ( 𝑇
𝑇𝑟𝑒𝑓)𝜔

,                                                                                                            (37)

𝜇VHS = 𝜇VHS,𝑟𝑒𝑓( 𝑇
𝑇𝑟𝑒𝑓)𝜔

,                                                                                                                       (38)

𝜅VHS = 𝜅VHS,𝑟𝑒𝑓( 𝑇
𝑇𝑟𝑒𝑓)𝜔

,                                                                                                                       (39)

where  is the reference number density, and the reference values of the transport coefficients 𝑛𝑟𝑒𝑓

at a reference temperature  are equal to𝑇𝑟𝑒𝑓

𝔇VHS,𝑟𝑒𝑓 =
3 𝜋

8Γ(7/2 ― 𝜔)𝜋𝑑2
VHS,𝑟𝑒𝑓𝑛𝑟𝑒𝑓𝐶2𝜔 ― 1

𝑟,𝑟𝑒𝑓
(2𝑘𝐵𝑇𝑟𝑒𝑓

𝑚 )
𝜔

,                                                         (40)

𝜇VHS,𝑟𝑒𝑓 =
15𝑚

(5 ― 2𝜔)(7 ― 2𝜔)𝑑2
VHS,𝑟𝑒𝑓

𝑘𝐵𝑇𝑟𝑒𝑓

2𝜋𝑚 ,                                                                             (41)

𝜅VHS,𝑟𝑒𝑓 =
𝑐𝑝𝜇VHS,𝑟𝑒𝑓

Pr ,                                                                                                                              (42)

where Pr = 2/3

For binary mixtures, the transport coefficients in the form of the one-term expansions with 

respect to the Sonine polynomials are defined by Eqs. (22) and (25)-(27). All -integrals for the Ω

VHS (and VSS) molecular model vary with temperature as , so that the fractions Ω(𝑙,𝑠) ∝ 𝑇1 ― 𝜔

 in Eqs. (25)-(27) are independent of temperature.  Then the temperature dependences Ω(𝑙,𝑠)/Ω(1,1)

of the transport coefficients of a mixture are determined by the dependences of the coefficients of 

the corresponding pure substances, e.g.,  and , and contributions of the cross-species 𝜇1 𝜇2

collisions, e.g., .  This means that the parameters of the VHS (and VSS) model for cross-species 𝜇12

collisions,  and , must be determined to fit the temperature dependence of  (and  𝑑𝑉𝐻𝑆,12 𝜔12 𝜇12 𝔇12

for the VSS model, Sect. 7.2) using the same approach, which is used to fit the model parameters 

for collisions between particles of the same chemical sort.
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The actual dependence of viscosity on temperature is not described by the power law in 

Eq. (38), and, thus, the parameters of the model,  and , depend on the choice of the range 𝑑VHS,𝑟𝑒𝑓 𝜔

of temperature or a single temperature value, where the viscosity data will be used to parameterize 

the model.  The values of  and  can be found to fit exactly the values of  and  at 𝑑VHS,𝑟𝑒𝑓 𝜔 𝜇 𝑑𝜇/𝑑𝑇

some temperature .  Here, we use another approach, where the viscosity exponent  is first 𝑇𝑟𝑒𝑓 𝜔

derived from the least square fit of Eq. (38) to the viscosity data in some temperature range 𝑇𝑓,𝑚𝑖𝑛

 and then the value of  is determined to exactly fit the viscosity at a reference ≤ 𝑇 ≤ 𝑇𝑓,𝑚𝑎𝑥 𝑑VHS,𝑟𝑒𝑓

temperature,  ( ), using Eq. (41).  Then the value of the 𝜇𝑉𝐻𝑆,𝑟𝑒𝑓 = 𝜇𝑟𝑒𝑓 𝑇𝑓,𝑚𝑖𝑛 ≤ 𝑇𝑟𝑒𝑓 ≤ 𝑇𝑓,𝑚𝑎𝑥

viscosity index can be calculated based on the tabulated values of viscosity  (here 𝜇𝑖 = 𝜇(𝑇𝑖) 𝑇𝑓,𝑚𝑖𝑛

) as≤ 𝑇𝑖 ≤ 𝑇𝑓,𝑚𝑎𝑥;𝑖 = 1,..,𝑀

𝜔 = [ 𝑀

∑
𝑖 = 1

(log
𝑇𝑖

𝑇𝑟𝑒𝑓)
2]

―1 𝑀

∑
𝑖 = 1

[(log
𝜇𝑖

𝜇𝑟𝑒𝑓)(log
𝑇𝑖

𝑇𝑟𝑒𝑓)].                                                                     (43)

To validate this approach, it was applied for noble gases in a short temperature range at 

 K,  K, and  K. The obtained parameters of the VHS model 𝑇𝑓,𝑚𝑖𝑛 = 270 𝑇𝑓,𝑚𝑎𝑥 = 500 𝑇𝑟𝑒𝑓 = 273

are found to be in close agreement with the parameters obtained in Ref. 22 for the same .  In 𝑇𝑟𝑒𝑓

particular, for argon gas, the present calculations result in Å and , which 𝑑VHS,𝑟𝑒𝑓 = 4.195 𝜔 = 0.81

practically coincide with the values of Å and  in Ref. 22.𝑑VHS,𝑟𝑒𝑓 = 4.19 𝜔 = 0.81

The calculated values of viscosity for various atom pairs, however, do not exactly follow 

the power laws in the whole range of temperature under consideration. The range of temperature 

from 10 K to  K can contain up to three sub-ranges, where the best-fit  significantly changes.  104 𝜔

For instance, for argon, the viscosity approximately follows power laws  at 10 K  𝜇 ∝ 𝑇0.776 ≤ 𝑇 ≤

70 K,  at 70 K  500 K, and  at 500 K   K.  The same trend 𝜇 ∝ 𝑇0.902 ≤ 𝑇 ≤ 𝜇 ∝ 𝑇0.683 ≤ 𝑇 ≤ 104

is also characteristic, e.g., for viscosity contribution of Si-Ar collisions [Fig. 9(e)].  For other atom 

pairs, it can be sufficient to divide the range of temperature under consideration only in two sub-

ranges, e.g., for contributions of Cu-Cu collisions, or a good power fit can be obtained in the whole 

temperature range, e.g., for contributions of Si-Si collisions [Fig. 8(a)].

Taking into account the diversity in the variation of viscosity with temperature for different 

atom pairs, we developed at least two parametrizations of the VHS model for each pair, which are 

different by the boundaries of  and  of the fitting temperature range and by . In the 𝑇𝑓,𝑚𝑖𝑛 𝑇𝑓,𝑚𝑎𝑥 𝑇𝑟𝑒𝑓
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first parametrization,  is obtained by fitting the viscosity data in the range from  K 𝜔 𝑇𝑓,𝑚𝑖𝑛 = 300

to  K at  K, or, in some cases, if the lower boundary can be reduced without 𝑇𝑓,𝑚𝑎𝑥 = 104 𝑇𝑟𝑒𝑓 = 300

sacrificing the accuracy, from  K. In the second parametrization,  is fitted in the 𝑇𝑓,𝑚𝑖𝑛 = 100 𝜔

range from  K to  K at  K.  𝑇𝑓,𝑚𝑖𝑛 = 103 𝑇𝑓,𝑚𝑎𝑥 = 104 𝑇𝑟𝑒𝑓 = 103

The reference values of the transport coefficients that are calculated based on the MLR 

potentials with the one-term expansions with respect to the Sonine polynomials at  K 𝑇𝑟𝑒𝑓 = 300

and  K are presented in Table 5.  This table also includes the values of the HS molecular 𝑇𝑟𝑒𝑓 = 103

diameter  calculated at  using Eq. (41) with .𝑑𝐻𝑆,𝑟𝑒𝑓 𝑇 = 𝑇𝑟𝑒𝑓 𝜔 = 1/2

The calculated values of the VHS model parameters are given in Table 6 along with the 

quantities  and  which are equal to the RMS and maximum relative differences ∆[…]𝐴 ∆[…]𝑀

between the diffusivities (  and  and viscosities (  and  calculated based ∆[𝔇]𝐴 ∆[𝔇]𝑀) ∆[𝜇]𝐴 ∆[𝜇]𝑀)

on Eqs. (37) and (38) and corresponding transport coefficients calculated based on the MLR 

potentials.  For cross-species collisions, the differences in Table 6 characterize the differences 

between the contributions of corresponding collisions calculated based on the VHS model and 

MLR potentials using one-term expansions with respect to the Sonine polynomials and do not 

represent the differences between the transport coefficients of corresponding gas mixtures.

The VHS model cannot fit, however, the diffusion coefficient with the same accuracy as 

the viscosity and thermal conductivity, since Eq. (39) does not include any adjustable parameter 

that can be changed to enforce the agreement between  and , while  and  are defined 𝔇VHS,𝑟𝑒𝑓 𝔇𝑟𝑒𝑓 𝔇 𝜇

by different -integrals in Eqs. (22) and (23).  This well-known deficiency of the VHS model Ω

results in relatively large RMS deviations  of diffusivity, which are on the order of 10%-∆[𝔇]𝐴

30% for all atom pairs (Table 6).

7.2. Variable soft sphere (VSS) model

The failure of the VHS model in predicting correct values of diffusivity is one of the major 

flaws of this model.  To solve this problem, it was suggested27 to modify the VHS model by 

introducing non-isotropic scattering of particles in binary collisions, when the deflection angle is 

defined by the equation

𝜒(𝐶𝑟,𝑏) = 2arccos [( 𝑏
𝑑VSS(𝐶𝑟))1/𝛼],                                                                                                  (44)
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where the molecular diameter  is defined likewise the VHS model as 𝑑VSS(𝐶𝑟)

𝑑VSS = 𝑑VSS,𝑟𝑒𝑓(𝐶𝑟,𝑟𝑒𝑓

𝐶𝑟 )
𝜔 ― 1/2

.                                                                                                               (45)

In this VSS model,  is an additional parameter that is chosen to fit the gas diffusivity data. 𝛼

By inserting Eq. (44) into Eq. (14), one can prove that, in the VSS model, the dependences 

of diffusivity, viscosity, and thermal conductivity are defined by the power laws in the form of 

Eqs. (37)-(39), but the reference values depend on : 𝛼

𝔇VSS,𝑟𝑒𝑓 =
(𝛼 + 1)

2
3 𝜋

8Γ(7/2 ― 𝜔)𝜋𝑑2
VHS,𝑟𝑒𝑓𝑛𝑟𝑒𝑓𝐶2𝜔 ― 1

𝑟,𝑟𝑒𝑓
(2𝑘𝐵𝑇𝑟𝑒𝑓

𝑚 )
𝜔

,                                          (46)

𝜇VSS,𝑟𝑒𝑓 =
(𝛼 + 1)(𝛼 + 2)

6𝛼
15𝑚

(5 ― 2𝜔)(7 ― 2𝜔)𝑑2
VSS,𝑟𝑒𝑓

𝑘𝐵𝑇𝑟𝑒𝑓

2𝜋𝑚 ,                                                (47)

𝜅VSS,𝑟𝑒𝑓 =
𝑐𝑝𝜇VSS,𝑟𝑒𝑓

Pr .                                                                                                                               (48)

Then the calculation of the VSS model parameters can be implemented as follows. First, 

likewise the VHS model, the viscosity index can be calculated based on Eq. (43), assuming that 

.  This results in the same  for the VHS and VSS models if the same viscosity data 𝜇VSS,𝑟𝑒𝑓 = 𝜇𝑟𝑒𝑓 𝜔

are used in both cases.  Then  and  can be found from the conditions  and 𝑑VSS,𝑟𝑒𝑓 𝛼 𝜇VSS,𝑟𝑒𝑓 = 𝜇𝑟𝑒𝑓

. These conditions reduce to𝔇VSS,𝑟𝑒𝑓 = 𝔇𝑟𝑒𝑓

𝛼 =
10

3(7/2 ― 𝜔)Sc𝑟𝑒𝑓 ― 5,                                                                                                                     (49)

where .  Once  is determined from Eq. (49), the molecular diameter Sc𝑟𝑒𝑓 = 𝜇𝑟𝑒𝑓/(𝔇𝑟𝑒𝑓𝑛𝑟𝑒𝑓𝑚) 𝛼

can be found from Eq. (47).

The calculated values of the VSS model parameters are given in Table 6.  The viscosities 

of Cu and Si vapor calculated based on the VSS [dashed-dotted curves in Fig. 8(a)] deviate from 

the viscosities predicted based on the MLR potentials within 1-7% and 1%, respectively.  These 

relatively small differences are realized because the viscosity index  is defined by Eq. (43) to 𝜔

provide the least square fit of viscosity in a broad range of temperature.  As one can see, the VSS 
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model compared to the VHS model allows one to reduce the RMS error in diffusivity from 10%-

30% to 0.5%-5%.

The ratios of the transport coefficients calculated with the one-term Sonine polynomial 

expansions based on the VSS model and MLR potentials are compared in Fig. 14.  In this case 

study, the differences between the results based on the VSS model and MLR potentials do not 

exceed 8%. With exception of large temperatures,  K, the largest differences are 𝑇 ≳ 7000

observed at large molar fractions of helium. It occurs because the VSS model parameterization 

used to obtain results in Fig. 14 provides large errors with respect to the MLR potential even in 

the case of pure helium gas.  At  K, the VSS model parametrization for Cu vapor also 𝑇 ≳ 7000

becomes relatively inaccurate. Interestingly, the comparison of results in Figs. 13 and 14 shows 

that the use of the LJ potentials, on average, results in order-of-magnitude higher errors in the 

transport properties of the Cu-He mixture compared to the VSS molecular model.

The calculations of the transport coefficients based on the VSS model for other gas 

mixtures reveal the same trends and a similar average level of discrepancy on the order of % ~10

with respect to the values predicted based on MLR potentials.  The magnitude of error, however, 

ultimately depends on the accuracy of approximation of -integrals by power functions of Ω

temperature over the whole temperature range considered.  The accuracies of such approximations 

in a broad temperature range strongly vary for different atom pairs (Fig. 7).  As a result, the 

transport coefficients of some mixtures, when calculated based on the VSS model, can exhibit 

relatively large magnitudes of error in certain temperature ranges. For instance, the calculations 

for the Cu-Ar mixture indicate the maximum errors in , , and  of % at  K, while 𝔇 𝜇 𝜅 ~8 𝑇 ≥ 300

the errors can rise to ~30% at  K.85  At this temperature, the thermal diffusion factor 𝑇 = 100

predicted based on the VSS model is three-fold different from  calculated based on the MLR α𝑇

potentials and even has the opposite sign.  This suggests that the prediction of the thermal diffusion 

effects based on the VSS model can be qualitatively wrong and any calculations of thermal 

diffusion based on the VHS and VSS molecular models must be accompanied by a careful analysis 

of the errors associated with a particular choice of the model parameters.

For pure substances, Eqs. (37)-(39) with parameters in Tables 5 and 6 provide the first-

order power-law approximations of all transport coefficients.  For gas mixtures, Eq. (37) can be 

used directly for binary diffusivity, while the power-law approximations in Eqs. (38) and (39) for 
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single- and cross-species contributions should be used together with Eqs. (25)-(27). The final 

algebraic form of Eqs. (25)-(27) is given, e.g., in Ref. 24.

8. Conclusions

The quantum Monte Carlo (QMC) calculations of the potential energy curves (PECs) are 

performed in a broad range of interatomic (internuclear) distances for the He-He, Ar-Ar, Cu-Cu, 

Cu-He, Cu-Ar, Cu-Xe, Si-Si, Si-He, Si-Ar, and Si-Xe dimers.  The QMC method is found to be a 

robust and reliable tool for ab initio prediction of interaction in dimers with van der Waals, 

covalent, and metallic bonding.  The results obtained in the QMC calculations are found to be in 

close quantitative agreement with the results of the state-of-the-art CCSD(T) calculations and 

spectroscopic measurements.  The ab initio PECs are used to obtain fitting parameters for a Morse 

long range (MLR) potential function for all dimers considered.  The calculated potential well depth 

and equilibrium interatomic distance can be also used to approximate the ab initio PECs by semi-

empirical (12-6) Lennard-Jones (LJ) potentials.  It is found that the LJ potential, as a rule, strongly 

overestimates the magnitude of the interatomic force at repulsion.  The case of a Cu-He dimer, 

where the LJ potential underestimates the force at the repulsive PEC branch, is an exception to this 

rule. The LJ potential also strongly overestimates the attractive forces in homonuclear Cu-Cu and 

Si-Si dimers.

The obtained MLR potentials are used to study the scattering of particles in binary 

collisions.  This study showed that the shape and parameters of the PECs strongly affect the 

deflection angle in binary collisions at small collision speeds, when the outcomes of collisions 

depend on details of the asymptotic behavior of PECs at large interatomic distances. At moderate 

and high collision speeds, the values of scattering angle predicted by different ab initio PECs for 

noble gases agree well with each other.  The values of the deflection angle predicted based on the 

LJ potentials agree with MLR-based calculations only at moderate speeds and strongly disagree at 

both small and high speeds.

The obtained MLR and LJ potentials are used to calculate the diffusivity, viscosity, thermal 

conductivity, and thermal diffusion factor (for mixtures) of helium, argon, and xenon gases, copper 

and silicon vapors, as well as their mixtures with helium, argon, and xenon gases in the one-, two-, 

and ten-term expansions with respect to the Sonine polynomials in the framework of the Chapman-

Enskog method. For pure substances, the PEC shape is found to strongly affect the contributions 
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of corresponding binary collisions, measured either in terms of the transport collision integrals or 

transport coefficients in the form of one-term expansions with respect to the Sonine polynomials, 

at small and large (compared to the room temperature) temperatures. For Cu-Cu and Cu-He atom 

pairs, the values of the transport collisions integrals and transport coefficients calculated based on 

the LJ and MLR potentials are strongly different practically in the whole temperature range from 

100 K to 10000 K.  For high-temperature binary mixtures, the errors in the values of the transport 

coefficients calculated based on the LJ potentials can be as high as 30-60%. This suggests that the 

LJ approximation is not suitable for predicting the transport properties of high-temperature gases 

and gaseous mixtures considered in the present work.

The present study also reveals some intriguing and abnormal behavior of the transport 

coefficients in the mixtures of copper or silicon vapors with noble gases. In particular, it was found 

that the mixture viscosity and thermal conductivity can be larger than the viscosity and thermal 

conductivity of corresponding pure substances at the same temperature.  The simulations also 

reveal a large magnitude of the thermal diffusion factor in Cu-He and Si-He mixtures, which can 

be up to 300% larger than the magnitude of the thermal diffusion factor in binary mixtures 

containing heavier noble gases.  This finding implies that the thermal diffusion, which is often 

assumed to be negligible, can affect, e.g., the structure of mixing layers between high-temperature 

vapor plumes and cold helium background gas.

Finally, the transport coefficients calculated with one-term expansions with respect to the 

Sonine polynomials were used to find parameters of the variable hard sphere (VHS) and variable 

soft sphere (VSS) molecular models, which are routinely used in the direct simulation Monte Carlo 

(DSMC) simulations of rarefied gas flows. The errors in the transport coefficients, when the VSS 

model parametrizations developed in the present work are used, are smaller than 10% at room and 

higher temperatures for pure substances and gaseous mixtures.

The comprehensive results obtained in the present work on the collisional properties, 

transport coefficients, and VHS/VSS molecular model parameters contain all necessary 

information that is required for sampling binary collisions in kinetic, including DSMC, simulations 

and calculations of the transport coefficients in continuum simulations of high-temperature flows 

of copper and silicon vapors, as well as their mixtures with helium, argon, and xenon gases.
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Supplementary material

This Supplementary material includes the discussion of the choice of numerical parameters 

of the quantum Monte Carlo (QMC) calculations which ensures the convergence of numerical 

results (Sect. S1), tables with the atom pair (dimer) energies obtained in the QMC calculations 

(Sect. S2), description of the approach used to parameterize the Morse long range (MLR) potential 

(Sect. S3), comparison of the QMC potential energy curves (PECs) with available literature data 

(Sect. S4), additional plots that characterize the effect of the PEC shape on the scattering of atoms 

in binary collisions (Sect. S5), discussion of the choice of the numerical parameters used for 

calculation of the transport coefficients (Sect. S6), plots of the major transport collision integrals 

for various collision pairs and viscosity for noble gases (Sect. S7), plots that characterize the effect 

of the LJ and VSS approximations on the transport coefficients of the Cu-Ar mixture (Sect. S8), 
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and description of additional supplementary text files containing tabulated transport coefficients 

(Sect. S9).

Appendix. Tabulated PECs and transport coefficients of Cu and Si vapors

The selected values of energy found in the QMC calculations performed in the present 

work are presented in Table 7 for homonuclear and heteronuclear dimers involving Cu and Si 

atoms.  For Cu and Si vapors, the selected values of self-diffusivity, viscosity, and thermal 

conductivity calculated based on the MLR potentials with the ten-term expansions with respect to 

the Sonine polynomials are presented in Table 8.  The corresponding tables, containing all values 

obtained in calculations, are provided in the Supplementary material.
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Table 1 Valence electronic configurations and masses94  of atoms considered in calculations.𝑚

Element He Ar Xe Cu Si

Configuration 1s2 3s2 3p6 4d10 5s2 5p6 3d10 4s1 3s2 3p2

Mass  (Da)𝑚𝑘 4.002602 39.948 131.293 63.546 28.0855
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Table 2 Potential well depths  and equilibrium distances  for various dimers obtained in the 𝐷𝑒 𝑟𝑒

present work and available from the literature.

Dimer  (eV)𝐷𝑒  (Å)𝑟𝑒 Reference* Method of calculation or “Exp.” for 
experimental values

He-He 9.461 10-4⋅ 2.969 This work QMC a
9.4514 10-4⋅ 2.9676 47 (51) Post-Hartree-Fock, CCSD(T)
9.4798 10-4⋅ 2.9634 44 Post-Hartree-Fock, CCSD(T) b
9.4428 10-4⋅ 2.9634 42 (50) QMC

Ar-Ar 0.01225 3.770 This work QMC
0.0127 3.754 20 DFT-vdW c
0.01233 3.762 45 Post-Hartree-Fock, CCSD(T)
0.0123 3.75 46 Post-Hartree-Fock, CCSD(T)
0.01235 3.7572 41 (50) Hartree-Fock, HFDID1 d
0.0123 3.761 86 Exp.
0.0107 3.727 24 Exp., parameters of the LJ potential based on 

the viscosity data
Xe-Xe 0.02408 4.3779 48 (51) Post-Hartree-Fock CCSD(T)

0.02408 4.3779 48 Post-Hartree-Fock CCSD(T)
0.02438 4.3657 40 (50) Hartree-Fock, HFD-B e

Cu-Cu 2.192 2.2 This work QMC
2.166 2.175 20 DFT-vdW
2.22 1.9169 61 Post-Hartree-Fock CCSD(T)
2.021 2.214 60 Post-Hartree-Fock, CCSD(T)
2.203 2.274 59 Post-Hartree-Fock, APUMP4 f
2.2 1.98408 87 Exp.

2.038 2.22 88,89 Exp.
Si-Si 3.257 2.278 This work QMC

3.2527 2.273 64 Post-Hartree-Fock, CCSD(T)
Cu-He 8.192 10-4⋅ 4.616 This work QMC

8.2123 10-4⋅ 4.662 63 Post-Hartree-Fock, CCSD(T)
7.728 10-4⋅ 4.56 62 Post-Hartree-Fock, CCSD(T)

Cu-Ar 0.01013 4.039 This work QMC
0.01009 4.032 63 Post-Hartree-Fock, CCSD(T)

Si-Ar 3.690 10-2⋅ 3.365 This work QMC
3.6672 10-2⋅ 3.386 65 Post-Hartree-Fock, RUCCSD(T) g

* In the secondary references given in parenthesis, the computational data from the 
corresponding primary references are used to develop functional forms of PECs.

a QMC – Quantum Monte Carlo.
b CCSD(T) – Coupled cluster singles and doubles with perturbative triples corrections.
c DFT-vdW – Density functional theory with van der Waals correction.
d HFDID1 – Hartree Fock dispersion individually damped potential.
e HFD-B – Hartree Fock dispersion.
f APUMP4 – Approximate projected unrestricted Møller-Plesset to 4th order.
g RCCSD(T) – Spin unrestricted open-shell coupled cluster singles and doubles with 

perturbative triples corrections.
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Table 3 Parameters of the MLR and LJ potentials obtained by fitting the QMC PECs calculated in the present work.  RMS is the relative 
RMS deviation of the MLR potentials from QMC data points calculated based on Eq. (6). The potential parameters for a Xe-Xe dimer 
are calculated by fitting the PEC in the functional form obtained in Ref. 48.

Dimer  𝐷𝑒

(eV)
 𝑟𝑒

(Å)

𝐶6

(eV Å6)

𝐶8

(eV Å8)

𝐶10

(eV Å10)
𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 RMS

He-He 9 10-4.461 ⋅ 2.969
4.019 10-⋅

1
-2.488 10-⋅

1
4.274 10-⋅

2 2.648 10-1⋅ 2.119 10-1⋅
-3.450 10-⋅

1 -2.522 -2.914 3.29 10-2⋅

Ar-Ar 1.225 10-2⋅ 3.770 2.003 -2.815 1.153 2.785 10-1⋅ -2.602 -3.036 -3.319 -2.453 4.8 10-20 ⋅

Xe-Xe 2.406 10-2⋅ 4.378
1.302 ⋅

102 -2.699 102⋅
1.680 102⋅

3.875 10-1⋅ 4.201 10-1⋅
-6.258 10-⋅

2
-6.589 10-⋅

1 -1.056 4.76 10-3⋅

Cu-Cu 2.200 2.192
2.017 ⋅

101 -1.283 101⋅
2.290

-1.530 -4.766 -5.815 -4.145 -1.491 4.18 10-2⋅

Cu-He 8.192 10-4⋅ 4.616 3.043 -1.672 101⋅ 2.880 101⋅ 2.059 -3.771 -4.593 -1.542 7.245 10-1⋅ 2.09 10-2⋅

Cu-Ar 1.013 10-2⋅ 4.039
4.194 10-⋅

2
-2.574 10-⋅

1
6.916 10-⋅

1
-2.019 10-⋅

1 -6.768 -7.384 -9.995 -6.909 1.27 10-2⋅

Cu-Xe 1.177 10-1⋅ 3.040
6.107 ⋅

101 -6.155 101⋅
1.887 101⋅ -9.486 10-⋅

1 -1.666 -1.258 -1.233 -1.361 4.38 10-3⋅

Si-Si 3.257 2.278
7.998 ⋅

102 -9.943 102⋅
3.790 102⋅

-1.565
-1.418 10-⋅

1 9.702 10-1⋅
-1.120 10-⋅

1 -9.960 10-1⋅ 9.08 10-3⋅

Si-He 5.402 10-3⋅ 3.330 1.328 -8.725
1.744 101⋅

1.601 10-1⋅ -3.401 -1.709
-2.573 10-⋅

1 -2.239 1.84 10-2⋅

Si-Ar 3.69 10-20 ⋅ 3.365
1.982 ⋅

101 -1.129 102⋅
2.959 102⋅

3.213 10-3⋅
-7.546 10-⋅

1
-9.259 10-⋅

1 -3.060 -3.882 1.71 10-2⋅

Si-Xe 1.812 10-1⋅ 3.015
2.915 ⋅

101 -1.478 102⋅
2.524 102⋅

6.561 10-1⋅ 7.387 10-2⋅
-2.786 10-⋅

1 -9.599 -1.294 101⋅ 2.87 10-2⋅
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Table 4 Difference  between viscosities  of pure substances ∆[𝜇] = 100% × (𝜇 ― 𝜇𝑃𝐹)/𝜇 𝜇
calculated based on the MLR potentials with the two-terms expansions of the transport 
coefficients ( ) and viscosities  found based on other potential functions (PF) or with the 𝑁 = 2 𝜇𝑃𝐹

one-term expansions ( ) at various temperatures .  is the RMS value of  in the 𝑁 = 1 𝑇 ∆[𝜇]𝐴 ∆[𝜇]
range of temperature from  K to  K.102 104

 (K)𝑇
PF 𝑁 ∆[𝜇]𝐴 100 200 300 1000 2000 3000 10000

Helium gas
MLR 1 0.298 0.650 0.664 0.643 0.516 0.397 0.312 0.0628
LJ 2 24.4 3.07 4.67 5.86 10.9 15.4 19.0 33.7
Ref. 50 2 11.9 3.06 3.77 4.18 5.63 7.22 8.77 17.0
Ref. 44 2 0.914 0.477 0.376 0.194 0.860 1.35 1.27 1.44
Ref. 51 2 2.61 1.18 1.31 1.28 0.832 0.765 1.11 4.40

Argon gas
MLR 1 0.592 0.00511 0.0324

∙
0.290 0.623 0.673 0.658 0.530

LJ 2 9.05 3.21 1.10 0.851 1.85 3.16 4.20 8.97
Ref. 50 2 4.70 0.753 0.379 0.978 2.46 3.36 3.95 6.25
Ref. 45 2 0.286 0.733 0.209 0.0112

∙
0.210 0.168 0.0709 0.523

Ref. 51 2 0.124 0.243 0.0949 0.0686 0.113 0.159 0.155 0.111
Xenon gas

MLR 1 0.573 0.178 0.00753 0.00876 0.407 0.609 0.641 0.551
LJ 2 5.11 8.98 4.28 2.35 1.25 2.22 3.15 7.77
Ref. 50 2 3.80 0.674 0.950 1.09 1.59 2.28 2.85 5.741
Ref. 48 2 0.219 0.0759 0.130 0.133 0.165 0.205 0.223 0.231
Ref. 51 2 1.64 3.41 1.67 0.965 0.519 0.802 1.07 2.42

Cu vapor
MLR 1 0.518 0.566 0.595 0.605 0.586 0.579 0.701 0.583
LJ 2 17.2 32.9 26.2 21.8 7.23 1.93 8.26 19.6

Si vapor
MLR 1 0.214 0.204 0.213 0.218 0.232 0.235 0.232 0.0929
LJ 2 6.88 1.28 0.198 0.553 3.22 5.01 6.14 7.58
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Table 5 Self (for single-species atom pairs) or binary (for mixed-species pairs A-B composed of 
different atoms A and B) diffusivity  (at a number density of  cm-3), viscosity , 𝔇𝑟𝑒𝑓 𝑛 = 1019 𝜇𝑟𝑒𝑓

thermal conductivity , and HS diameter  [Eq. (41) at ] at the reference 𝜅𝑟𝑒𝑓 𝑑𝐻𝑆,𝑟𝑒𝑓 𝜔 = 1/2
temperature  calculated based on the one-term expansions with respect to the Sonine 𝑇𝑟𝑒𝑓

polynomials, Eqs. (22)-(24), based on the MLR potentials.

Atomic
pair

 𝑇𝑟𝑒𝑓
(K)

 𝔇𝑟𝑒𝑓
(mm2s-1)

 𝜇𝑟𝑒𝑓
(µPa s)

 𝜅𝑟𝑒𝑓
(mWm-1K-1)

𝑑𝐻𝑆,𝑟𝑒𝑓
(Å)

He-He 3 ∙ 102 412.9 19.79 154.2 2.162
103 980.8 45.71 356.1 1.922

Ar-Ar 3 ∙ 102 45.22 22.65 17.68 3.592
103 11.24 55.30 43.16 3.106

Xe-Xe 3 ∙ 102 14.25 23.22 5.515 4.776
103 39.66 64.78 15.38 3.864

Cu-Cu 3 ∙ 102 18.65 14.74 72.32 5.001
103 40.37 33.86 16.61 4.448

Cu-He 3 ∙ 102 88.27 85.43 35.37 3.854
103 179.9 17.31 71.69 3.658

Cu-Ar 3 ∙ 102 43.44 25.98 16.51 3.531
103 114.9 67.30 42.77 2.964

Cu-Xe 3 ∙ 102 14.75 16.77 6.107 5.051
103 53.10 55.52 20.21 3.751

Si-Si 3 ∙ 102 16.00 6.216 6.901 6.279
103 41.73 16.50 18.31 5.208

Si-He 3 ∙ 102 193.4 16.44 73.16 2.728
103 482.9 39.98 177.9 2.364

Si-Ar 3 ∙ 102 39.13 15.79 14.93 4.101
103 130.4 52.95 50.05 3.026

Si-Xe 3 ∙ 102 18.27 11.26 7.588 5.285
103 61.60 35.50 23.92 4.022
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Table 6 Parameters of the VHS and VSS molecular models [diameter  at the reference temperature , viscosity index , and 𝑑MM,𝑟𝑒𝑓 𝑇𝑟𝑒𝑓 𝜔
parameter  in Eqs. (34), (44), and (45);  or ].  The values of  are calculated based on the least-square fitting of the 𝛼 MM = VHS VSS 𝜔
viscosity calculated based on the one-term expansions with respect to the Sonine polynomials in the temperature range 𝑇𝑓,𝑚𝑖𝑛 ≤ 𝑇 ≤

. The quantities  and  are the RMS and maximum relative differences between the diffusivity [  and  𝑇𝑓,𝑚𝑎𝑥 ∆[…]𝐴 ∆[…]𝑀 ∆[𝔇]𝐴 ∆[𝔇]𝑀]
and viscosity [  and  values predicted by the molecular models and the values calculated with the one-term expansions ∆[𝜇]𝐴 ∆[𝜇]𝑀]
with respect to the Sonine polynomials. For mixed-species atom pairs A-B composed of different atoms A and B, the differences are 
calculated for contributions of corresponding cross-species collisions based on Eqs. (22)-(23).  The star “*” marks the parametrizations 
of the VSS model, which are used to obtain the results presented in Figs. 8 and 14 and in the Supplementary material. 

Atomic
pair

Model  𝑇𝑟𝑒𝑓
(K)

𝑑𝑀𝑀, 𝑟𝑒𝑓
(Å)

𝜔 𝛼 𝑇𝑓,𝑚𝑖𝑛
(K)

𝑇𝑓,𝑚𝑎𝑥
(K)

∆[𝔇]𝐴
%

∆[𝔇]𝑀
%

∆[𝜇]𝐴
%

∆[𝜇]𝑀
%

He-He VHS 3 ∙ 102 2.403 0.7400 - 3 ∙ 102 104 25.1 31.5 4.08 6.61
103 2.171 0.7740 - 103 104 26.4 30.6 2.37 4.27

VSS* 3 ∙ 102 2.368 0.7400 1.4402 3 ∙ 102 104 7.62 13.9 4.08 6.61
103 2.141 0.7740 1.5457 103 104 4.84 9.27 2.37 4.27

Ar-Ar VHS 3 ∙ 102 3.929 0.7055 - 3 ∙ 102 104 20.1 20.8 1.68 4.67
103 3.358 0.6796 - 103 104 19.2 21.3 0.43 0.87

VSS* 3 ∙ 102 3.876 0.7055 1.3055 3 ∙ 102 104 5.30 6.09 1.68 4.67
103 3.311 0.6796 1.3235 103 104 3.72 6.00 0.43 0.87

Xe-Xe VHS 3 ∙ 102 5.360 0.7607 - 3 ∙ 102 104 21.8 26.5 4.74 10.5
103 4.204 0.6938 - 103 104 19.2 20.5 0.44 1.07

VSS 3 ∙ 102 5.283 0.7607 1.3717 3 ∙ 102 104 5.27 10.2 4.74 10.5
103 4.140 0.6949 1.3136 103 104 3.98 5.46 0.44 1.07

Cu-Cu VHS 3 ∙ 102 5.427 0.6881 - 102 7 ∙ 103 9.52 16.6 0.67 1.27
3 ∙ 102 5.446 0.6958 - 102 104 12.4 23.6 2.67 7.42

103 4.833 0.6857 - 102 7 ∙ 103 9.36 15.8 0.64 1.45
VSS 3 ∙ 102 5.352 0.6881 1.3100 102 7 ∙ 103 8.86 12.2 0.67 1.27

* 3 ∙ 102 5.371 0.6958 1.3159 102 104 9.31 14.3 2.67 7.42
103 4.781 0.6857 1.1873 102 7 ∙ 103 3.91 5.94 0.64 1.45

Cu-He VHS 3 ∙ 102 4.003 0.5891 - 102 104 10.8 11.4 0.20 0.37
103 3.802 0.5908 - 102 104 10.9 11.3 0.15 0.68

VSS* 3 ∙ 102 3.962 0.5891 1.1742 102 104 1.06 1.62 0.20 0.37
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103 3.761 0.5908 1.1855 102 104 0.57 0.99 0.15 0.68
Cu-Ar VHS 3 ∙ 102 3.955 0.7566 - 3 ∙ 102 104 22.0 24.3 1.83 4.28

103 3.282 0.7317 - 103 104 21.0 21.3 0.14 0.30
VSS* 3 ∙ 102 3.898 0.7566 1.4116 3 ∙ 102 104 3.55 5.99 1.83 4.28

103 3.235 0.7317 1.4406 103 104 0.84 1.20 0.14 0.30
Cu-Xe VHS 3 ∙ 102 6.322 0.9832 - 3 ∙ 102 104 27.0 33.1 7.00 12.0

103 4.672 0.9706 - 103 104 27.4 32.6 6.68 10.3
VSS 3 ∙ 102 6.241 0.9832 1.4131 3 ∙ 102 104 10.6 16.9 7.00 12.0

103 4.615 0.9706 1.6238 103 104 5.95 9.40 6.68 10.3
Si-Si VHS 3 ∙ 102 7.211 0.8093 - 102 104 11.3 17.4 0.35 1.28

103 5.979 0.8085 102 104 11.2 17.4 0.37 1.30
VSS* 3 ∙ 102 7.134 0.8093 1.1831 102 104 3.16 7.90 0.35 1.28

103 5.923 0.8085 1.1511 102 104 3.84 9.46 0.37 1.30
Si-He VHS 3 ∙ 102 3.071 0.7292 - 3 ∙ 102 104 19.0 22.3 1.79 3.17

103 2.605 0.7217 - 103 104 18.7 21.6 1.53 2.50
VSS 3 ∙ 102 2.974 0.7292 1.3991 3 ∙ 102 104 3.12 5.67 1.79 3.17

103 2.568 0.7230 1.4572 103 104 4.08 7.80 1.53 2.50
Si-Ar VHS 3 ∙ 102 4.834 0.8628 - 3 ∙ 102 104 25.2 34.2 8.22 15.8

103 3.391 0.7577 - 103 104 20.7 22.5 2.08 3.64
VSS 3 ∙ 102 4.767 0.8628 1.5018 3 ∙ 102 104 7.90 15.3 8.22 15.8

103 3.342 0.7577 1.3894 103 104 2.89 4.65 2.08 3.64
Si-Xe VHS 3 ∙ 102 6.555 0.9627 - 3 ∙ 102 104 25.6 29.3 4.26 8.31

103 4.997 0.9661 - 103 104 26.4 29.9 4.62 8.01
VSS 3 ∙ 102 6.461 0.9627 1.3869 3 ∙ 102 104 9.13 13.1 4.26 8.31

103 4.931 0.9661 1.5618 103 104 4.83 7.76 4.62 8.01
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Table 7 Energy (eV) of homonuclear and heteronuclear dimers involving Cu and Si atoms found 
in the QMC calculations. 

Distance Dimer

 (Å)𝑟 Cu-Cu Cu-He Cu-Ar Cu-Xe

0.6 5.145⋅102 - - -
1.4 1.128⋅101 - 4.225⋅102 2.927⋅101

1.8 -5.171⋅10-1 - 9.613 5.513
2.4 -2.038 1.999⋅102 4.437⋅10-1 2.094⋅10-1

3 -1.145 4.396 4.597⋅10-2 -1.175⋅10-1

3.6 -4.078⋅10-1 9.234⋅10-2 -5.470⋅10-3 -8.301⋅10-2

4.2 -1.092⋅10-1 7.341⋅10-4 -9.802⋅10-3 -4.273⋅10-2

4.8 -2.768⋅10-2 -7.418⋅10-4 -6.357⋅10-3 -2.006⋅10-2

5.4 -7.079⋅10-3 -4.429⋅10-4 -3.379⋅10-3 -9.324⋅10-3

6 -1.733⋅10-3 -2.860⋅10-4 -1.626⋅10-3 -4.518⋅10-3

7 -7.091⋅10-4 -1.302⋅10-4 -3.853⋅10-4 -1.557⋅10-3

Si-Si Si-He Si-Ar Si-Xe

0.6 1.762⋅102 - - -
1.3 1.464⋅101 3.012⋅102 7.222⋅102 4.874⋅101

1.8 -1.320 1.166 9.510 7.865
2.4 -3.163 5.655⋅10-2 3.624⋅10-1 4.490⋅10-1

3 -1.611 -3.216⋅10-3 -1.783⋅10-2 -1.811⋅10-1

3.6 -5.795⋅10-1 -4.831⋅10-3 -3.328⋅10-2 -9.721⋅10-2

4.2 -2.145⋅10-1 -2.740⋅10-3 -1.751⋅10-2 -4.346⋅10-2

4.8 -8.892⋅10-2 -1.292⋅10-3 -8.207⋅10-3 -2.342⋅10-2

5.4 -4.117⋅10-2 -5.571⋅10-4 -3.921⋅10-3 -1.383⋅10-2

6 -2.082⋅10-2 -2.368⋅10-4 -1.884⋅10-3 -7.922⋅10-3

7 -7.854⋅10-3 -6.264⋅10-5 -4.669⋅10-4 -2.056⋅10-3
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Table 8 Self-diffusivity , viscosity , and thermal conductivity  of Si and Cu vapors as functions 𝔇 𝜇 𝜅
of temperature . The self-diffusivity is calculated at a pressure of 1 atm = 101325 Pa.𝑇

Cu vapor Si vapor
𝑇

(K)
𝔇

(mm s-1)
𝜇

(µPa s)
𝜅

(mWm-1K-1)
𝔇

(mm s-1)
𝜇

(µPa s)
𝜅

(mWm-1K-1)
100 1.21057 6.9141 3.4034 0.89967 2.5393 2.8223
200 3.89895 11.199 5.5133 3.15576 4.4754 4.9744
300 7.67887 14.824 7.2983 6.55939 6.2272 6.9218
400 12.3787 18.080 8.9015 11.0111 7.8679 8.7456

1000 55.5734 34.066 16.771 57.0452 16.525 18.370
1400 95.9998 43.048 21.192 104.305 21.684 24.104
2000 171.536 55.201 27.174 198.0340 28.912 32.140
2400 231.176 62.618 30.830 275.167 33.492 37.232
3000 334.275 72.821 35.869 412.311 40.101 44.578
3400 412.354 79.084 38.966 517.892 44.366 49.319
4000 544.435 87.886 43.314 697.443 50.585 56.232
4400 643.185 93.506 46.083 831.341 54.625 60.724
5000 808.707 101.80 50.154 1053.80 60.545 67.306
5400 931.445 107.34 52.868 1216.78 64.409 71.603
6000 1135.45 115.82 57.011 1483.92 70.106 77.936
6400 1285.44 121.65 59.852 1677.54 73.853 82.100
7000 1532.56 130.70 64.267 1992.11 79.424 88.288
7400 1712.69 136.97 67.327 2218.43 83.120 92.392
8000 2006.94 146.75 72.103 2583.77 88.666 98.546
8400 2219.68 153.53 75.416 2845.11 92.377 102.66
9000 2564.49 164.07 80.579 3264.76 97.985 108.88
9400 2811.94 171.36 84.148 3563.52 101.76 113.07

10000 3210.21 182.65 89.690 4041.07 107.50 119.43
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Fig. 1 Potential energy of homonuclear dimers He-He (a) and Ar-Ar (b).  The red squares show 
the calculated QMC values, the crosses represent the values of energy for a He-He dimer taken 
from Ref. 40 and Ar-Ar dimer from Ref. 45 obtained in the CCSD(T) calculations, and the solid 
and dashed curves are the approximations of the QMC values by the MLR and LJ potentials, 
respectively.  The insets show various functional approximations of PECs in the ranges of  𝑟
correspodning to large repulsive energies: MLR (red solid curves) and LJ (green dashed curves) 
potentials obtained in the present work, potentials from Refs. 50 (blue dashed-dotted curves),. 
40 [for He-He in (a)] and 45 [for Ar-Ar in (b)] (magenta dashed-double-dotted curves), and 51 
(cyan long-dashed curves). In both insets, the curves corresponding to the MLR potentials and 
potentials suggested in Refs. 40 in (a) and 45 in (b) visually coincide with each other.
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Fig. 2 Potential energy of a homonuclear Cu-Cu dimer (squares and red curves) (a) as well as 
heteronuclear Cu-He (triangles and green curves), Cu-Ar (diamonds and blue curves), and Cu-
Xe (circles and magenta curves) dimers (b).  The symbols correspond to the values found in the 
QMC calculations, while the solid and dashed curves are approximations of the QMC values by 
the MLR and LJ potentials, respectively. 

Fig. 3 Potential energy of a homonuclear Si-Si dimer (squares and red curves) (a) as well as 
heteronuclear Si-He (triangles and green curves), Si-Ar (diamonds and blue curves), and Si-Xe 
(circles and magenta curves) dimers (b).  The symbols correspond to the values found in the 
QMC calculations, while the solid and dashed curves are approximations of the QMC values by 
the MLR and LJ potentials, respectively. 
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Fig. 4 Quantity , where  is the deflection angle defined by Eq. (8), versus for two 1 ― cos 𝜒 𝜒 𝑏2

Ar atoms at a relative speed  of 20 ms-1 (a), 102 ms-1 (b), 103 ms-1 (c), and 104 ms-1 (d) 𝐶𝑟
calculated based on the MLR (red solid curves) and LJ (greed dashed curves) potentials as well 
for the PECs in the functional forms suggested in Refs. 50 (blue dashed-dotted curves), 45 
(magenta dashed-double-dotted curves), and 51 (cyan long-dashed curves). 
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Fig. 5 Quantity , where  is the deflection angle defined by Eq. (8), versus for two 1 ― cos 𝜒 𝜒 𝑏2

Cu atoms at a relative speed  of 20 ms-1 (a), 102 ms-1 (b), 103 ms-1 (c), and 104 ms-1 (d) 𝐶𝑟
calculated based on the MLR (red solid curves) and LJ (green dashed curves) potentials.
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Fig. 6. Quantity , where  is the deflection angle defined by Eq. (8), versus for a pair 1 ― cos 𝜒 𝜒 𝑏2

of Cu and He atoms at a relative speed  of 20 ms-1 (a), 102 ms-1 (b), 103 ms-1 (c), and 104 ms-1 𝐶𝑟

(d) calculated based on the MLR (red solid curves) and LJ (green dashed curves) potentials.
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Fig. 7 Reduced integrals  (dashed curves) and  (solid curves) for the Cu-Cu (a), Ω(1.1) ∗ Ω(2.2) ∗

Cu-He (b), Cu-Ar (c), and Cu-Xe (c) atom pairs versus reduced temperature  𝑇 ∗ = 𝑘𝐵𝑇/𝐷𝑒

calculated based on the LJ (red and green curves) and MLR (blue and magenta curves) 
potentials. The scale  is used in Eq. (29).𝜎 = 𝑟𝑒/6 2
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Fig. 8 Viscosity  (a), Schmidt number  (b), and Prandtl number  (c) of copper (red solid 𝜇 Sc Pr
curves) and silicon (green solid curves) vapors obtained based on the MLR potentials.  In panel 
(a), the red and green dashed curves correspond to the viscosity of copper and silicon vapors, 
respectively, calculated based on the LJ potentials; the black dashed-dotted curves are 
obtained based on the VSS model for copper and silicon vapors with the parameterizations 
marked with “*” in Table 6. The solid and dashed-dotted curves for silicon vapor visually 
coincide with each other in panel (a).
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Fig. 9 Contributions to diffusivity  [Eq. (22) at a number density of  cm-3, dashed 𝔇 𝑛 = 1019

curves] and viscosity  [Eq. (23)], solid curves) in gas mixtures provided by collisions in the Cu-𝜇
He (a), Cu-Ar (b), Cu-Xe (c), Si-He (d), Si-Ar (e), and Si-Xe (f) atom pairs versus temperature  𝑇
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calculated based on the LJ (red and green curves) and MLR (blue and magenta curves) 
potentials.

Fig. 10 Binary diffusivity  (a), viscosity  (b), thermal conductivity  (s), and thermal diffusion 𝔇 𝜇 𝜅
factor  (d) of the Cu-He (solid curves), Cu-Ar (dashed curves), and Cu-Xe (dashed-dotted 𝛼𝑇

curves) mixtures versus molar fraction of noble gas  at a temperature of  K (red 𝑥𝑔 𝑇 = 300
curves), 1000 K (green curves), and 5000 K (blue curves).  The diffusivity is calculated at a 
pressure of 1 atm  = 101325 Pa. All calculations are performed based on the MLR potentials 
and ten-term expansions with respect to the Sonine polynomials.
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Fig. 11 Schmidt number  (a) and Prandtl number  (b) of the Cu-He mixture versus Sc Pr
temperature  at a noble gas molar fraction of  (black curves),  (red curves),  𝑇 𝑥𝑔 = 0 0.2 0.4
(green curves),  (blue curves),  (cyan curves), and  (magenta dashed curves).  All 0.6 0.8 1
calculations are performed based on the MLR potentials and ten-term expansions with respect 
to the Sonine polynomials.
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Fig. 12 Binary diffusivity  (a), viscosity  (b), thermal conductivity  (s), and thermal diffusion 𝔇 𝜇 𝜅
factor  (d) of the Si-He (solid curves), Si-Ar (dashed curves), and Si-Xe (dashed-dotted curves) 𝛼𝑇

mixtures versus molar fraction of noble gas  at a temperature of  K (red curves), 𝑥𝑔 𝑇 = 300
1000 K (green curves), and 5000 K (blue curves).  The diffusivity is calculated at a pressure of 1 
atm.  All calculations are performed based on the MLR potentials and ten-term expansions with 
respect to the Sonine polynomials.
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Fig. 13 Ratios of binary diffusivities  (a), viscosities  (b), thermal 𝔇LJ/𝔇MLR 𝜇LJ/𝜇MLR

conductivities  (s), and thermal diffusion factors  (d) calculated based on 𝜅LJ/𝜅MLR 𝛼𝑇,LJ/𝛼𝑇,MLR

the LJ (subscripts “LJ”) and MLR (subscripts “MLR”) potentials for the Cu-He mixture versus gas 
molar fraction  at a temperature of  K (red solid curves), 300 K (green dashed 𝑥𝑔 𝑇 = 100
curves), 1000 K (blue dashed-dotted curves), 3000 K (cyan dashed-double-dotted curves), and 
10000 K (magenta long-dashed curves). 
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Fig. 14 Ratios of binary diffusivities  (a), viscosities  (b), thermal 𝔇VSS/𝔇MLR 𝜇VSS/𝜇MLR

conductivities  (s), and thermal diffusion factors  (d) calculated based 𝜅VSS/𝜅MLR 𝛼𝑇,VSS/𝛼𝑇,MLR

on the VSS molecular models with parameterizations marked with “*” in Table 6 (subscripts 
“VSS”) and potentials MLR (subscripts “MLR”) for the Cu-He mixture versus gas molar fraction 

 at a temperature of  K (red solid curves), 300 K (green dashed curves), 1000 K (blue 𝑥𝑔 𝑇 = 100
dashed-dotted curves), 3000 K (cyan dashed-double-dotted curves), and 10000 K (magenta 
long-dashed curves).  All transport coefficients are calculated based on the one-term 
expansions with respect to the Sonine polynomials.
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