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ABSTRACT

The local structure of Ti based MXene-type electrode materials have been studied by Ti K-edge 

X-ray absorption fine structure measurements as a function of temperature to obtain direct 

information on the local bond lengths and their stiffness. In particular, the parent MAX phases 

Ti2AlC and Ti3AlC2 and its etched MXene systems are characterized and their properties 

compared. We find that selective etching has substantial effect on the local structural properties of 

the Ti based MXene materials. It leads to an increase in the interatomic distances, i.e. decrease in 

the covalency, and corresponding bond stiffness, that is a likely cause of higher achievable 

performances. The obtained results underline the importance of the local atomic correlations as 

limiting factor in the diffusion capacity of ion batteries.

1. INTRODUCTION

Li-ion batteries (LIBs) play a dominant role in today's world of technology, especially for 

transportation1 and renewable energy storage.2,3 However, the development of LIBs has been 

hindered by safety and cost issues,4 and the currently used materials operate close to their 
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theoretical limit. For this reason research efforts have been dedicated to developing new electrode 

materials for LIBs,5 with higher capacities and lifetimes than the currently used ones.

Materials with large specific surface areas and high-rate performances, such as graphene,6 

titanium oxide (TiO2) and lithium titanate (Li4Ti5O12)4,7,8 are considered as viable electrode 

candidates due to their unique morphology, which enables fast ion diffusion and offers more ion 

insertion channels.9

Recently, layered MXene type materials10,11 have given rise to a great deal of interest as electrode 

materials for lithium-ion secondary batteries.12–17 This material class consists 2D hexagonal 

compounds synthesized by the exfoliation of ternary carbides, nitrides, or carbonitrides18,19 with a 

formula of Mn + 1AXn, where M is an early transition metal, A is a III or IV A-group element and 

X is carbon and/or nitrogen (the so called MAX phase). The exfoliation process is carried out by 

selectively wet-chemical etching the A layers ending up with 2D layered MXenes with general 

formula Mn+1XnTx, where T represents surface termination (OH/F groups) and x is the number of 

the surface groups per formula unit.10,20,21 Different etching mechanisms or etchants have been 

proofed to affect structural features and defects, which are of potential critical importance for 

improving the MXene final properties.22
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MXenes have been reported with reversible capacities of 110, 170 and 260 mAh/g for Ti2C-, 

Nb2C- and V2C-based electrodes, respectively, in Li-ion battery cells,13,15 making some suitable 

for anodes and others for cathodes. Mentioned values are not as high as 350 mAh/g23 for the 

dominant anode material, graphite. The capacity thus needs to be improved. However, in contrary 

to graphite, MXenes have shown an excellent capability to handle high cycling rates. For example, 

at a cycling rate of 36C, a reversible capacity of 110 mAh/g was obtained for Ti3C2.12 Additionally, 

MXene materials are very flexible and durable at the same time - a roller made of Ti3C2Tx foil 

with a thickness of 5 μm is able to support a weight of ~ 4000 times its weight.21

Xie et al.24 reported that Li-ion storage capacities are found to depend on the nature of the surface 

functional groups in 2d materials. It was shown as well that the local atomic displacements can 

play key role in diffusion and the reversibility of ions, thus influencing strongly the storage 

capacities.25,26 Moreover, the structural features and composition in Ti3C2Tx MXene negative 

electrode has been shown to concur in modulating the electrochemical properties in sodium ion 

batteries.27 In particular it has been pointed out how the disorder can be a limiting factor for the 

ion diffusion, while the nature of the termination is expected to influences more the average 

electrical potential of the ion intercalation than the specific capacity.28 Therefore, understanding 
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the influence of the local atomic disorder and bond strength on the performances of the batteries 

is paramount to achieving optimized and efficient storage devices on the commercial scale.

In the present work we report x-ray absorption fine structure (XAFS) investigation of the Ti 

based layered MAX phase precursors and MXene electrode materials, where the opened interlayer 

space between individual 2D Tin+1CnTx (n = 1, 2; Tx = OH/F) units leads to high gravimetric and 

volumetric capacitances with reduced Li diffusion limitation.29 The present work is focused on 

understanding the role of structural disorder and lattice stiffness in defining the general electrode 

performances.

2. EXPERIMENTAL METHODS

Two series of samples were prepared: Ti2AlC and Ti3AlC2 MAX precursors as well as their 

Ti2CTx and Ti3C2Tx MXene phases obtained by HF etching process. Additionally, in case of 

Ti3C2Tx sample second way of etching process was performed – by means of LiF/HCl mixture. 

All samples were prepared as reported in the literature.10,11,29–32

Investigated materials were thoroughly characterized by means of powder X-ray diffraction 

(XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), 
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and x-ray photoemission spectroscopy (XPS). The detailed information about the samples’ 

characterization, including their electrochemical properties, was reported by Wang et al.30 and 

Kajiyama et al.29,31 The XRD patterns are provided in the Supporting Information.

X-ray absorption measurements at the Ti K-edges were performed in transmission mode at the 

CLAESS beamline of ALBA Synchrotron Light Facility (Barcelona, Spain).33 The samples used 

in presented study were prepared from the same bunch of powders used in characterization 

process29–31 and were not more than few months old. Prior the experiment the samples were stored 

and handled in protective atmosphere of Ar. The samples were finely powdered, well-dispersed in 

boron nitride (BN) and pressed into 13-mm diameter disks to obtain the Ti K-edge X-ray 

absorption step close to 1. The storage ring was operating at an energy of 3.0 GeV and an average 

current of about 150 mA. The radiation was monochromatized by a double-crystal, fixed exit, 

Si(111) monochromator. Considering the life-time broadening of the Ti K level, the total energy 

resolution of the spectrum is around 1 eV. The monochromator reproducibility allows for energy 

shift sensitivity down to 0.05 eV. Higher harmonics were rejected by means of Si and Rh-coated 

mirrors. Samples were mounted into a liquid nitrogen cryostat and the spectra were recorded in 

vacuum from 80 to 320 K (within accuracy of 1 K). The intensities of incident and transmitted 
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beams were monitored by ionization chambers, with a combination of He, N2 and Kr gases for 

appropriate absorption. Several consecutive scans were acquired at each temperature to ensure the 

reproducibility of the spectra and to improve the signal to noise ratio. Energy calibration of all 

spectra was achieved by simultaneous measurements of absorption near Ti K-edge (4966 eV) of 

3 μm thick Ti foil.

The quantitative experimental data evaluation was performed using the Athena and Artemis34 

graphical interface of FEFF6 code.34,35 It was achieved by background subtraction and 

normalization followed by Fourier filtering and fitting a signal, calculated for a small atomic 

cluster around the absorber species. The coordination numbers Ni were fixed to the average values 

known from diffraction studies.10,36 Prior to refinements, nonstructural parameters (E0 and S0
2), 

that affect EXAFS, were chosen and fixed after a number of fit trials on different scans. The 

structural parameters of each coordination shell were determined by a non-linear least-square 

fitting in k space (3–13 Å-1). The number of fitting parameters (Ri, σi
2 ~ 8) has been kept below 

the maximum allowed (Nind = 10 in the present case) which is defined by the Δk = 10 Å-1 and 

ΔR = 1.6 Å ranges used for the fitting: .37 Further details on the EXAFS data 𝑁𝑖𝑛𝑑~2∆𝑘∆𝑅/𝜋

treatment are reported in the Supplementary Information.
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To take into account the errors coming from normalization and background subtraction, the 

uncertainties were estimated by fitting independently the different scans that were merged to 

achieve the reported statistics.

3. RESULTS AND DISCUSSION

Figure 1. Ti K-edge XANES spectra of a) Ti2AlC, Ti2CTx (LiF/HCl etched) and b) Ti3AlC2, 

Ti3C2Tx (LiF/HCl etched), Ti3C2Tx (HF etched). All spectra were recorded at 80 K.
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Figure 1 shows the Ti K-edge X-ray Absorption Near Edge Structure (XANES) spectra of the 

investigated materials. Generally, in the investigated temperature range (80-320 K) and in the 

absence of transitions, the XANES region is not strongly affected by temperature. Since this is the 

case, only the spectra measured at 80 K are presented. The pre-edge absorption peak around 

4970 eV corresponds primarily to the transition from Ti 1s to Ti 3d hybridized with C 2p orbitals38–

40 and other dipolar excitations, where the overall intensity of the quadrupolar peak components 

depends on the 3d-2p hybridization. In the case of Ti3C2Tx the pre-edge region is almost unaffected 

during the etching process, while for Ti2CTx the split between the low energy peaks positions have 

decreased by ~0.15 eV with respect to the Ti2AlC, indicating a possible electronic bands 

reorganization.41,42 In addition, the Ti3C2Tx spectrum shows lower pre-peak intensity in compare 

to that for Ti2CTx, indicating reduced hybridization in the earlier.41

The main-edge region shows two peaks (denoted as A and B on Figure 1) originate from Ti 1s 

to 4p excitations.41 The positions of those peaks are almost the same in pristine and etched samples, 

which suggests that the interaction between the Al and the Ti2C or Ti3C2 layers are very weak. 

Small shift (~0.4 and 0.6 eV for Ti2CTx and Ti3C2Tx, respectively) is most probably the 

consequence of the replacement of the Al layers during the etching process with the termination 
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species Tx strongly attracting charge from the Ti atoms.27 In addition, in the case of Ti2AlC and 

Ti2CTx samples, peak B reveals a shoulder at 5003.5 eV. This feature shows some similarities to 

the XANES spectrum of TiO2,43 that suggests a stronger Ti-Tx interaction in Ti2CTx compared to 

the Ti3C2Tx.

Although the XANES did not show significant differences in spectral shape, edge shifts can be 

clearly recognized. The edge energies of Ti2CTx (4966.9 eV) and Ti3C2Tx (4967.2 eV) are close 

to that of TiC (4967.1 eV), which is between the energies of Ti foil (4966.4 eV) and TiO2 

(4968.6 eV), indicating its carbide nature.27,41,44,45 The reported energy shifts are consistent with a 

decrease in the average oxidation state of the Ti atoms in the Ti2CTx system respect the Ti3C2Tx 

counterpart.44 However, the shapes of the XANES spectral profiles of Ti2CTx and Ti3C2Tx in 

respect to Ti2AlC and Ti3AlC2, respectively are still quite similar, indicating that the average 

geometry of the material was well preserved after the removal of Al layers.
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Figure 2. a) k2-weighted EXAFS signals of the Ti2AlC, Ti2CTx (LiF/HCl etched), Ti3AlC2, Ti3C2Tx 

(LiF/HCl etched), Ti3C2Tx (HF etched) recorded at 80 K and b) the corresponding to those signals 

Fourier transforms with the best theoretical description.

Figure 2a and 2b show the evolution of the k2-weighted Extended X-ray Absorption Fine 

Structure (EXAFS) oscillations and their relative Fourier Transforms (FT) relative to the spectra 

collected at 80 K. The amplitude of the EXAFS oscillations and the peak intensity in the FT 

increases as the measurement temperature decreases (not shown here), due to a progressive 
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freezing of the thermal fluctuations. The low temperature spectra allow a higher resolution to 

address details in the local structure and have been chosen as representative. The FTs for all show 

two broad single scattering contributions at around 1.5 and 2.6 Å. The first peak corresponds to 

the superimposed Ti-C and Ti-Al (only for MAX phases) scattering, whereas the second peak 

corresponds to the in- and out-of-plane Ti-Ti scattering. The Ti3AlC2 MAX phase shows a 

particular intense FT first contribution, differently to what was reported for the same system in the 

literature.42 It suggests a possible dependence of the synthesis roots on the final local structure. 

Such strong feature could be also associated to a partial degradation of the sample in humid 

atmosphere.46–48 Since the strong hydrophilic properties of the MXenes21 the presence of the water 

could preferably lead to its reaction with the most active flake edges, ending with Ti oxidation,49 

unlikely in the present case since no air/water exposure. The corresponding MXene compound is 

instead showing a weak FT first contribution, similar to what reported into the literature,42,49 and 

comparable to the Ti2AlC and Ti2CTx systems. The second FT feature, at 2.6 Å, is of comparable 

intensity for all the investigated samples. The peaks appearing at longer distances (R > 3 Å) are 

due to single scattering contributions of distant shells and multiple scattering involving different 
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paths. For the quantification of the local structure, the EXAFS oscillations were modeled using the 

general standard equation, assuming the single-scattering approximation:

χ(k) = ∑
i

NiS2
o

kR2
i

fi(k, Ri)e
―2Ri

λ e ―2k2σ2
i sin [2kRi + δi(k)] (1)

where Ni is the number of neighboring atoms at a distance Ri from the absorbing atom, S0
2 is the 

passive electron reduction factor, fi(k, Ri) is the backscattering amplitude, λ is the photoelectron 

mean free path, δi(k) is the phase shift, and σi
2 is the Debye-Waller factor measuring the mean 

square relative displacements (MSRDs) of the photo-absorber backscatter pairs.

The EXAFS signal was fitted starting from the Ti2AlC and Ti3AlC2 MAX phase structures 

having the P63/mmc space group27 and composed of alternative stacking of edge-shared Ti6C 

octahedra and two-dimensional close-packed Al plane.50 Whereas the structures of their MXene 

counterparts were composed of Ti and C atomic layers arranging alternately forming edge-shared 

Ti6C octahedra with OH/F terminations (indistinguishable by means of EXAFS) on nonspecial 

positions.51
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Figure 3. Evolution of the Ti-X bond lengths (X = C, Al/Tx, Ti1 and Ti2) in investigated samples 

(obtained by the EXAFS analysis) shown as a function of temperature. The error bars represent 

standard deviation, determined by analyzing three different EXAFS scans.

Figure 3 shows the temperature dependence of the interatomic distances in all investigated 

samples obtained by the EXAFS analysis (where Ti1 and Ti2 notation refers to first and second Ti 
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neighboring atom). The measured distances at room temperature are consistent with those known 

from the crystallographic studies.10,36,52 As expected, all the investigated interatomic distances tend 

to decrease with the decreasing temperature. However, differences can be identified in between 

the bonds and the samples. Indeed, The Ti-C thermal contraction is more pronounced for the 

Ti2AlC respect the Ti3AlC2 system, while it clearly reverses by etching with LiF/HCl mixture. 

Moreover, the LiF/HCl etching affect differently the Ti-C bonds on the two systems, with Ti2CTx 

showing a more contracted Ti-C bond.

In general, the selective etching (Al layer removal) influences all the bond lengths, with a minor 

effect for the Ti3AlC2 system. The bond lengths tend to expand by etching, except the Ti-C bond 

in Ti2CTx, which shows a significant contraction, probably to compensate the Ti-Ti elongation. 

Instead, in the case of the Ti3AlC2 system, the Ti-Ti bonds shows a small expansion, while the 

Ti-C bond elongates significantly by etching. In this case, the etching with LiF/HCl affects the 

bond lengths more significantly than with that of HF. Differently from the other shells, the Ti-Tx 

bond distance is not affected by temperature. In the case of LiF/HCl etching it looks expanded for 

the Ti3C2Tx respect the T2CTx sample. Moreover, HF etching slightly contracts the Ti-Tx bond on 

Ti3C2Tx system.
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On an average, the thermal contraction is more pronounced for Ti2AlC in comparison to that for 

Ti3AlC2. Interestingly it is the opposite once the latter is etched by LiF/HCl, mainly for the Ti-C 

and Ti-Ti2 bonds. The Ti-Ti1 contraction is negligible on both parent systems, while it increases 

only for Ti3AlC2 after the chemical etching.

A local bond shortening can indicate an increase in the bond covalency and probably a reduced 

reactivity.53,54 The results suggest a stronger covalent nature of the Ti-C and Ti-Ti bonds in Ti3AlC2 

than that in Ti2AlC, and inverted tendency by chemical etching. Indeed, the chemical etching 

seems to strongly distort the local structure of Ti2AlC, probably reducing the conductive carbide 

layer flexibility. Instead, the chemical etching on Ti3AlC2 induces smaller changes, most likely 

permitting a more flexible lattice. By comparing the LiF/HCl and HF etching effects on the Ti-C 

bond distance, the latter seems the most promising, since it reduces the Ti-C covalency, thus 

favoring its reactivity, and the local thermal expansion, probably because smaller interatomic 

distribution, which could favor the ion diffusion.55

Temperature dependence of the EXAFS signal was used to quantify the local lattice rigidity and 

the local structural disorder, parameters potentially affecting the ion diffusion. The obtained σi
2 of 

Page 17 of 37 Physical Chemistry Chemical Physics



18

the Ti–C, Ti-Al, Ti-Ti1 and Ti-Ti2 pairs as a function of temperature for different samples are 

shown in Figure 4.

The σi
2 is a sum of temperature independent term (σ0

2), which describes the static 

configurational disorder, and a temperature-dependent term (σ2), i.e., σi
2(T) = σ0

2 + σ2(T).56 The 

measured temperature dependence can be expressed by the Einstein model:57,58

σ2(T) = σ2
0 +

ℏ2

2kBμθE
coth (θE

2T) (2)

where μ is the reduced mass of the atom pairs, kB is the Boltzmann constant, and θE is the Einstein 

temperature. The θE of different bond lengths can be obtained by the Einstein model fits, thus 

finding the Einstein frequency, ωE = kBθE/ℏ, which is related to the effective bond stretching force 

constant, κ = μωE
2. Figure 4 shows the σi

2(T) of the bond lengths in all of the investigated materials 

together with the corresponding Einstein model fits. All the obtained local structure parameters 

are summarized in Table 1.
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Figure 4. Temperature dependence of the mean-square relative displacements (σ2) for Ti−X bond 

lengths (X = C, Al/Tx, Ti1 and Ti2). The solid lines are the Einstein model fits. The maximum 

uncertainty is within the size of graphical representation of the point.
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Table 1. Local structure parameters of investigated MXene materials determined by Ti K-edge 

EXAFS analysis: Einstein temperatures (θE), effective bond stretching force constants (κ), 

temperature independent MSRDs (σ0
2) and a misfit between data and theory factor, averaged over 

all temperatures (R).

Ti2AlC
Ti2CTx 

(LiF/HCl)
Ti3AlC2

Ti3C2Tx 

(LiF/HCl)

Ti3C2Tx 

(HF)

Ti-C 784(20) 649(22) 899(27) 706(19) 474(26)

Ti-Al 349(25) - 485(20) - -

Ti-Tx - 819(20) - 459(23) 586(16)

Ti-Ti1 429(14) 459(27) 597(23) 358(23) 616(30)

θE [K]

Ti-Ti2 572(10) 538(17) 589(25) 333(27) 462(16)

Ti-C 10.50(54) 7.18(49) 13.80(83) 8.50(46) 3.83(42)

Ti-Al 3.73(54) - 7.21(60) - -

Ti-Tx - 14.29(65) - 4.49(72) 7.32(54)

Ti-Ti1 7.82(51) 8.96(98) 15.15(92) 5.45(70) 16.13(91)

κ [eV·Å−2]

Ti-Ti2 13.91(47) 12.31(78) 14.75(95) 4.72(77) 9.08(63)

Ti-C 0.95(13) 2.61(14) 2.46(12) 1.46(11) 3.05(13)

Ti-Al 3.32(14) - 3.27(12) - -

Ti-Tx - 6.62(15) - 8.11(18) 8.83(21)

Ti-Ti1 6.24(13) 6.36(15) 2.79(14) 2.68(12) 1.03(16)

σ0
2 [10-3 Å2]

Ti-Ti2 3.14(16) 35.34(20) 3.01(16) 4.31(15) 3.31(16)

R 0.023 0.022 0.027 0.026 0.023

While the static disorder, represented by σ0
2, is comparable on the different bonds for the 

Ti3AlC2 sample, it is particularly small (high) for the Ti-C (Ti-Ti1) bond in Ti2AlC. LiF/HCl 
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chemical etching of Ti2AlC strongly increases the static disorder relative for the Ti-C and Ti-Ti2 

bonds, leaving the Ti-Ti1 unaffected. In the case of Ti3AlC2 the static disorder is less affected by 

chemical etching. The Ti-Ti1 shell has smaller disorder than the Ti-Ti2 by etching with, in general, 

a stronger effect for the HF etching. Instead, the Ti-C bond in Ti3C2Tx gets more ordered and 

disordered for LiF/HCl and HF etching, respectively. The Ti-Tx disorder results lower for the 

Ti2CTx than the Ti3C2Tx system, with higher disorder corresponding to longer Ti-Tx bond and lower 

specific capacitance29 (see Figure 5).
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Figure 5. The dependence between Ti-Tx static disorder (σ0
2) and specific capacitance29 for 

investigated MXene materials.

The Einstein temperatures derived from the fits were used to obtain the effective bond-stretching 

force constant κ, i.e., the bond stiffness. In general, the local bonds in Ti2AlC are softer than those 

in Ti3AlC2. The results show an overall tendency of bond softening after the etching process. In 

Ti2CTx only the Ti-C bond gets significantly softer by LiF/HCl etching. Instead, in Ti3C2Tx all the 

bonds are getting significantly softer. Such effect is stronger (weaker) for the Ti-C (Ti-Ti) bonds 

for the HF etching. Instead, for the LiF/HCl etching it is the contrary, the softening is relatively 

stronger on the Ti-Ti shell in compare to that for Ti-C one. The Ti-Tx bond appear to be harder for 

the Ti2CTx respect the Ti3C2Tx system, and for LiF/HCl etching.

The detected bond softening can lead to the increased battery capacity, since more flexible lattice 

helps in ions diffusion and storage in 2D layered structures.25,59 Also, a reduced structural disorder 

is expected to favor the ions diffusion.60–63 Moreover, a softer lattice is expected to favor 

reactivity,64 thus limiting the battery life in case of the studied materials are used as electrodes. 

After the HF etching of Ti3AlC2, the Ti3C2 layers are modified with a strong impact on the Ti-C 

Page 22 of 37Physical Chemistry Chemical Physics



23

bonds, while, after the LiF/HCl etching, the impact is on the Ti-Ti bonds rather than the Ti-C bonds 

strength. This indicates that the local lattice properties can be controlled by the modification of the 

Ti3C2 layers by different selective etchings. More recently, selective modifications of the Ti3C2 

layers have been realized by means of molten salt synthesis.65,66 In future, the local lattice 

properties can be controlled by the selective modifications of the Mn+1Xn layers in a more 

systematic manner in order to explore emerging physical and chemical properties of MXenes.

4. CONCLUSIONS

In summary, by means of Ti K-edge x-ray absorption spectroscopy the MAX phase materials 

Ti3AlC2 and Ti2AlC, and the corresponding MXene materials Ti3C2Tx and Ti2CTx have been 

investigated. While the XANES region provides information about the Ti local electronic 

properties evolution as a function of selective etching (HF and LiF/HCl), temperature dependent 

EXAFS data allow to access the static disorder and bond characteristics of the investigated 

materials. The etching procedure leads to increase of the interatomic distances and softening of the 

bond strengths. While the HF (LiF/HCl) etching of Ti3AlC2 (Ti2AlC), mainly impact on the Ti-C 

bonds, the LiF/HCl etching of Ti3AlC2 mainly affect the Ti-Ti bonds strength, where bond 
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softening can lead to the increased battery capacity. Since the opened interlayer space induced by 

etching leads to high gravimetric and volumetric capacitances with reduced Li diffusion limitation 

and with different electrochemical properties depending by the termination species, the obtained 

results underline the importance of the local atomic correlations as limiting factors in the ion 

diffusion and capacity of MXene based batteries.
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