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Abstract

Quantum state tomography is an integral part of quantum computation and offers

the starting point for the validation of various quantum devices. One of the central

tasks in the field of state tomography is to reconstruct with high fidelity, the quantum

states of a quantum system. From an experiment on a real quantum device, one can

obtain the mean measurement values of different operators. With such a data as in-

put, in this report we employ the maximal entropy formalism to construct the least

biased mixed quantum state that is consistent with the given set of expectation values.

Even though in principle, the reported formalism is quite general and should work for
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an arbitrary set of observables, in practice we shall demonstrate the efficacy of the

algorithm on an informationally complete (IC) set of Hermitian operators. Such a set

possesses the advantage of uniquely specifying a single quantum state from which the

experimental measurements have been sampled and hence renders the rare opportu-

nity to not only construct a least-biased quantum state but even replicate the exact

state prepared experimentally within a preset tolerance. The primary workhorse of

the algorithm is re-constructing an energy function which we designate as the effective

Hamiltonian of the system, and parameterizing it with Lagrange multipliers, accord-

ing to the formalism of maximal entropy. These parameters are thereafter optimized

variationally so that the reconstructed quantum state of the system converges to the

true quantum state within an error threshold. To this end, we employ a parameterized

quantum circuit and a hybrid quantum-classical variational algorithm to obtain such

a target state making our recipe easily implementable on a near-term quantum device.

1 Introduction

The method of uniquely characterizing the quantum mechanical state of a quantum system

based on a series of measurements of an informationally complete (IC) set of Hermitian op-

erators is called quantum state tomography (QST) [1,2,3,4,5] and forms an important basis

for testing and validating quantum devices. However, the traditional approaches to QST

are being exhausted to its limits [6] because of certain limitations that accompanies those

approaches. Some of these limitations correspond to exponential scaling of the traditional

QST techniques with system size, which in turn require exponential amounts of storage and

processing power to carry out computations. Along with this, since we are in the era of

noisy intermediate-scale quantum (NISQ) [7] devices, the fidelity of measurements is also a

limiting factor for performing state tomography efficiently as noisy measurements can lead

to low fidelity of the reconstructed quantum state [8]. Another challenging task within the

domain of QST is to reconstruct high fidelity quantum states [9] that can be used as a
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starting point while addressing problems in the field of condensed-matter physics and also

in the validation of quantum technologies [10]. Several research approaches have already

been proposed that attempts to address one or the other limitations and it has paved the

way for further advancements in this field. Some of these tomographic techniques include

maximum likelihood estimation (MLE) [11,12], Bayesian mean estimation (BME) [13,14],

quantum overlap tomography [15], shadow tomography [16,17], neural network tomography

[18,19,20,21,22], and others [23,24,25,26]. In our previous work we proposed a method of

QST based on the formalism of maximal entropy from an incomplete set of measurements

[27,28]. With that motivation, this research is an attempt to address the challenge of quan-

tum state preparation in the field of QST based on a variational approach that can be easily

implemented on a near-term quantum device.

The maximal entropy formalism [24,29,30] provides the most unbiased probability distribu-

tion, based on the maximization of the von Neumann entropy of the system, subject to the

constraints of the problem [23,31,32,33]. As a natural consequence, when combined with the

method of Lagrange multipliers it leads to an expression of density operator given by Eq. (1),

that can serve as an optimal candidate for variational Gibbs sampling [9]. Inspired by this,

the current work focuses on reconstructing the quantum state of a system, represented by

the quantum Gibbs state and based on the formalism of maximal entropy, from mean mea-

surement values of IC set of Hermitian operators. Sampling from a probability distribution

corresponding to quantum Gibbs state plays an important role in a variety of diverse fields

within and not limited to many-body physics [34,10], quantum simulations [35], quantum

optimization [36], and quantum machine learning [37,38]. However, preparing Gibbs state

of a given Hamiltonian at arbitrary low temperature is not an easy task [39] and various

approaches have been proposed, both classical and quantum [40,41,42,43], to prepare Gibbs

state under certain specified conditions. Some of these techniques include algorithms based

on quantum rejection sampling [44], dynamics simulation [45,46], dimension reduction [47]

but the overhead quantum resource cost of implementing these approaches is very high and
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not suitable for execution on near-term quantum devices. In order to find applications of

quantum algorithms on NISQ devices the underlying quantum circuit should be shallow with

low circuit depth and low number of qubits. Variational quantum algorithm (VQA) [48] is

one such class of hybrid quantum-classical algorithm that follows a heuristic approach based

on the variational principle and has been quite popular in the recent years [49,50,51,52,53,54]

owing to their implementation on NISQ devices with shallow quantum circuits.

To prepare a quantum Gibbs state on a NISQ device using VQAs, several methods have

been proposed [55,56,57,58,59,60]. In this work, we have employed the approach by Wang

et al. [39] wherein the loss function for preparing the Gibbs state on the quantum circuit

involves the truncation of the Taylor series for the entropy and is shown to prepare Gibbs

state for a given Hamiltonian with fidelity of over 99%. The physical Hamiltonian of the

system is unknown and is in fact unnecessary in this protocol. One only has access to the

expectation values of arbitrary set of Hermitian operators. In principle, using the formal-

ism one can generate a least-biased quantum state consistent with such an arbitrary and

even incomplete set of mean measurements, yet in this report we use an IC set for testing

and validation with the hope of affording a near-exact re-construction of the unknown pure

quantum state used for sampling. This is attained by constructing a Hermitian matrix H,

parameterized by Lagrange multipliers. The latter serves as a proxy Hamiltonian for the

construction of the Gibbs state that represents the tomographic reconstruction of the state

of the quantum system.

The hybrid quantum-classical tomographic protocol presented in this paper involves the

application of shallow parameterized quantum circuits and is experimentally realizable on

current-to-near-term quantum hardware. This in itself is advantageous over certain other

tomographic protocols [11,12,13,14] as upon optimization the state is directly prepared on

the quantum circuit and can further be used for quantum applications as per the require-

ment. Also, certain neural network-based state tomographic models work really well for

real and entangled many-body quantum states but their performance suffers for quantum
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states generated from random unitary operations [18,19]. As opposed to this, our variational

approach to tomography is able to reconstruct, with high fidelity, not just real quantum

states but also complex states with varying levels of entanglement as shown in Figure 6.

The methodology is elaborately discussed in Section 2. To validate the proposed approach,

the formalism is implemented in IBM Qiskit [61] and the results corresponding to the fidelity

and trace distance between the reconstructed quantum state and the true state are shown

in Section 3.

2 Methodology

The reconstruction of an unknown quantum state requires the information of a complete set

of observables that are obtained through experimental measurements of Hermitian operators

usually defined as positive-operator-valued measures (POVMs). The formalism of maximal

entropy provides a unique characterization of the quantum state subject to the expectation

values of a given set of operators that serve as the constraints of the problem. It also ensures

that the Von Neumann entropy of the proposed distribution is maximum under the given

constraints. The maximal entropy formalism when combined with the method of Lagrange

multipliers λk ∈ C2 [24,30], yields the following expression for the density operator of the

unknown quantum state [23,33]:

ρ̂ =
1

Z(λ1, . . . , λk)
exp{−

∑
k

λkf̂k} (1)

where f̂k corresponds to the operators whose expectation values are known and Z(λ1, . . . , λk) =

Tr(exp{−
∑

k λkf̂k}) insures normalization as Tr(ρ̂) = 1. The formalism of maximal entropy

in general outputs a mixed state that is parameterized by the Lagrange multipliers as shown

in Eq. (1). In our approach since the target state is pure, these Lagrange multipliers are op-

timized such that the initial mixed state from the recipe gradually approaches idempotency
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during the training process and hence converges within an ϵ-neighborhood of the pure target

state with ϵ being the error tolerance specified by the user. For example, consider the case

a 2-qubit quantum system that can be uniquely described by the informationally complete

(IC) set of Hermitian operators given by:

{|1⟩ ⟨1| , |2⟩ ⟨2| , |3⟩ ⟨3| , |4⟩ ⟨4| , (|1⟩ ⟨2| ± |2⟩ ⟨1|), (|1⟩ ⟨3| ± |3⟩ ⟨1|), (|1⟩ ⟨4| ± |4⟩ ⟨1|),

(|2⟩ ⟨3| ± |3⟩ ⟨2|), (|2⟩ ⟨4| ± |4⟩ ⟨2|), (|3⟩ ⟨4| ± |4⟩ ⟨3|)} (2)

The expectation values of the initial four of these operators correspond to the probabilities

and the rest are the coherences of the 2-qubit quantum system [32]. The IC set of these

operators can be obtained using the linear combinations of Pauli string operators (σx, σy,

σz, and σi) [62,63,27]:

x11 = ⟨|1⟩ ⟨1|⟩ =
1

4
(σ2

zσ
1
z + σ2

zσ
1
i + σ2

i σ
1
z + σ2

i σ
1
i )

x12 = ⟨|1⟩ ⟨2|+ |2⟩ ⟨1|⟩ =
1

2
(σ2

zσ
1
x + σ2

i σ
1
x)

x22 = ⟨|2⟩ ⟨2|⟩ =
1

4
(σ2

zσ
1
z − σ2

zσ
1
i + σ2

i σ
1
z − σ2

i σ
1
i )

and so on.

Analogous to the maximal entropy formalism, parameterized by a single parameter β =

1/kBT where kB is the Boltzmann’s constant and T is the temperature, the quantum Gibbs

state for a given Hamiltonian H is defined as:

ρ̂ =
exp{−βH}

tr(exp{−βH})
(3)

Constructing the Gibbs state of a given Hamiltonian on a parameterized quantum circuit

requires minimization of the Helmholtz free energy described by the function:

F(ρ) = tr(ρH)− β−1S(ρ) (4)
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where S(ρ) = -tr(ρlnρ) corresponds to the von Neumann entropy of ρ. However, the most

challenging part of constructing the loss function that minimizes the free energy of the

Hamiltonian is estimating the entropy of the parameterized quantum state [64]. In this

work, to address the problem we adopted the method proposed by Wang et al [39] wherein

they used the Taylor series of entropy and truncate it at order K and therefore, the trun-

cated free energy is set as the loss function of the variational quantum algorithm. This

method is practical in its implementation on a near-term quantum device as essentially the

loss function involves estimating higher-order state overlaps, tr(ρk), that corresponds to the

truncated von Neumann entropy and can be carried out on a quantum device using swap

tests [65,66,55,67,68].

The core idea of the current research work stems from the combination of Eq. (1) and (3) as

in Eq. (1) we are interested in maximizing the entropy by optimizing the unknown Lagrange

multipliers λk according to the constraints of the expectation values of the set of Hermi-

tian operators and in Eq. (3) we want to optimize the parameters of the quantum circuit

in order to minimize the free energy that yields the quantum Gibbs state for a particular

Hamiltonian. In our methodology, the exponent term in Eq. (1) is a Hermitian matrix H

that constitutes the Hamiltonian for which the Gibbs state given by Eq. (3) is constructed

on a quantum circuit using a variational algorithm. Thus, the hybrid variational quantum

algorithm that is employed basically involves two levels of optimization and is termed as

inner and outer optimization levels as shown in Figure 1. For a fixed set of Lagrange mul-

tipliers λk, the Hamiltonian H is constructed and passed onto the inner optimization level

where the circuit parameters are variationally optimized using the truncated free energy as

the loss function to yield a quantum Gibbs state corresponding to H. The constructed Gibbs

state is then sent to the outer optimization level where the expectation values of the set of

Hermitian operators are computed using the generated Gibbs state and then the Lagrange

multipliers λk are updated so as to minimize the mean square error between the generated

and true expectation values of the POVMs. The updated Lagrange multipliers yield the
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new proxy Hamiltonian H that is again sent back to the inner optimization level and this

process continues until convergence of the generated expectation values to the true values.

This variational approach to QST based on maximal entropy is theoretically generalizable

to any number of qubits.

The variational quantum circuit comprises of n-qubits that corresponds to the size of the

Figure 1: The hybrid quantum-classical variational algorithm for quantum state tomography
based on the formalism of maximal entropy.

quantum system and also an additional ancilla qubit. The circuit incorporates a series of

parameterized single qubit rotational gates on every qubit and each qubit is entangled to the

next qubit using the controlled-NOT (CNOT) gates. This sequence of rotation and CNOT

gates is repeated depending on the expressivity that is required to obtain high fidelity of

the prepared quantum states. The scaling of the algorithm in terms of quantum resource

allocation is strictly polynomial as to re-construct a generic n-qubit pure quantum state, we

require n+1 qubits and O(Dn) quantum gates wherein D is the depth (number of repeating

layers) of the circuit ansatz used.

Using the aforesaid procedure, in this work, we were able to obtain a high fidelity of 0.99
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by setting D = 2 for two qubits system and D = 6 for the six qubits quantum system. The

choice of the single qubit rotational gates depends on whether the reconstructed state needs

to be real or complex. In case of real quantum states, parameterized Ry gates can be used

else for generalized complex states one can choose Rx gates in the sequence.

3 Results and discussion

In this current work we propose a variational approach based on maximal entropy formalism

to perform quantum state tomography on a near-term quantum device. This procedure

outcomes a reconstructed quantum state that is prepared on a parameterized quantum circuit

by using the expectation values of an IC set of Hermitian operators as input. The approach

is tested and validated through numerical simulations conducted on IBM’s Qiskit [61] using

its prototype quantum simulators for quantum systems consisting of up to 6 qubits. There

are various backends available in Qiskit and we used the noise-free statevector simulator

backend to corroborate the theory.

Different quantum circuits ranging from 2-6 qubits and consisting of one and two qubit

Figure 2: Sample 4-qubit and 6-qubit quantum circuits for which the quantum states are
reconstructed using the proposed approach based on maximal entropy formalism.

quantum gates such as rotational, Hadamard, CNOT gates, etc. are used to prepare the

sample states whose measurement statistics are reproduced using the reconstructed quantum
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state from the proposed maximal entropy based variational approach. Sample 4-qubit and

6-qubit quantum circuits are shown in Figure 2. As discussed in Section 2, at the end

of full execution of inner optimization level a quantum Gibbs state is generated that is

used to calculate the expectation values of the considered Hermitian operators. The mean

square error (MSE) between the generated and the true expectation values serve as the loss

function for updating the Lagrange multipliers in the outer optimization level. The MSE

loss is plotted as a function of the epochs in Figure 3 for one example quantum state in

each case of n-qubits (n=2,3,4,5,6). As can be seen in Figure 3, the MSE loss converges to

zero faster for smaller systems and the convergence becomes more erratic as the size of the

quantum system increases.

Figure 3: For qubits ranging from 2-6, this plot shows the mean square error (MSE) loss as
a function of the number of epochs between the true expectation values and the generated
expectation values, of the IC set of Hermitian operators, obtained using the reconstructed
quantum state upon each step of optimization.

To perform quantum state tomography it is imperative that the reconstructed quantum

state should be in close agreement with the true state. To demonstrate this, in the state

preparation circuit, we also change the parameters of the single-qubit unitaries randomly for

20 different quantum states of n-qubits (n=2,3,4,5) and 5 different quantum states for n=6

qubits keeping the number of CNOT gates fixed in each case. Observables from these states

were subsequently used to train our algorithm and the corresponding fidelity of reconstruc-
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Figure 4: Fidelity of the reconstructed quantum states with respect to the true states gener-
ated by randomly choosing the parameters of the rotational gates of the prototype quantum
circuits for n-qubit (n=2,3,4,5,6) systems.

tion were recorded. The latter is plotted as a function of the number of qubits (n) in Figure

4. The variance associated with the reconstruction is indicated by the error bars of the box

plots. In all cases we see that the lowest fidelity attained is 0.93. To show the convergence

of fidelity with the number of epochs, a plot of fidelity between the reconstructed quantum

state and the true state as a function of the number of epochs is shown in Figure 5 for the

different quantum systems with varying number of qubits for a single quantum state in each

case. The figure shows the convergence of the reconstructed state to the true state as the

Lagrange multipliers are updated with each step and the fidelity approaches 1 near the end

of the optimization cycle. Another measure to test the performance of our approach is the

trace distance between the true state (σ) and the reconstructed quantum state (ρ). Trace

distance given by T(ρ, σ) = 1
2
||ρ − σ||1 is a measure of the closeness between two states.

For the converged set of λ parameters for the same states considered for the fidelity plot,

Figure 5 shows the trace distance between the reconstructed quantum state and the true

state and as can be seen the trace distance is below 0.05 that also validates the successful

reconstruction of the quantum state.

To show the reconstruction accuracy of our model with respect to varying levels of en-

tanglement within the system, we consider a 4-qubit system and vary the parameters of
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the rotational gates as well as the number of CNOT gates (introducing different degree of

correlation among the sub-system qubits) in the state preparation unitary. A prototypical

representative of such a quantum circuit for the validation of our approach is shown in Fig-

ure 2 . We compute the entanglement entropy of 2-qubit reduced density matrix (2-RDM),

defined by S(2ρ) = −Tr(2ρln(2ρ))/2ln2, for each such quantum state. We also use observ-

ables sampled from each such quantum state to variationally train our algorithm and create

a maximal-entropy representation of the target state. A plot for the fidelity of operation vs

the S(2ρ) is displayed in Figure 6. We see that the performance of our algorithm is a non-

monotonic function of S(2ρ). The plot also explicitly shows that our algorithm is capable of

correctly obtaining the target state with high fidelity even when the sub-system entropy on

the abscissa is high indicating higher degree of correlation.

Figure 5: As a measure of convergence, the fidelity between the true state and the final
reconstructed quantum state is plotted as a function of the number of epochs and the trace
distance between the two states obtained using the converged Lagrange multipliers at the
end of the optimization process is plotted against the number of qubits. The fidelity close
to 1 and trace distance close to 0.05 at the end of the optimization cycle shows that the
proposed method based on maximal entropy formalism is able to successfully reconstruct
the quantum state using the experimental mean measurement values of IC set of operators.
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Figure 6: For 4-qubit quantum states with varying levels of entanglement within the system
as demonstrated by 2-qubit RDM entanglement entropy, the fidelity of the reconstructed
quantum state is plotted. High fidelity of reconstruction even in the case of entangled quan-
tum systems validates the proposed tomographic approach for general state reconstruction.

4 Concluding remarks

In this research we have shown the successful reconstruction of the quantum state based on

a variational approach to QST by utilizing the formalism of maximal entropy and can be

easily implemented on a near-term quantum device. The reconstructed state can reproduce

the measurement statistics of the IC set of Hermitian operators that are considered while

formulating the cost function for updating the variational parameters of the Hamiltonian

arising from maximal entropy. High levels of fidelity between the converged state and the

true state for all the considered quantum systems and low values for the trace distance depicts

the validation of the proposed approach for QST. This proposed variational approach can

be applicable to a variety of different directions where QST is essential. For example, we

intend to further study this approach for analyzing, characterizing, and mitigating single

and double qubit quantum gates’ errors while running computations on prototype quantum

devices. Recently, noise fingerprints developed on a prepared stationary state were used to

identify and understand the underlying noise profile of NISQ devices that causes the state to

develop non-stationary character [69]. This characterizes an effective bath generated by the

noise that exhibits both colored noise/non-Markovian behavior and therefore, can be used

for mitigating noise errors in quantum simulations. While our variational approach has not
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been used for denoising yet, a possible extension of the above work in the context of the

protocol presented in the paper can be: given the power-spectral density (PSD) of the noise

(from the analysis of the article cited) can one train our algorithm using noisy estimates

of observables and yet reconstruct the true state with high precision. It is well-known that

variational algorithms are robust against coherent/parametric noises [70] but the PSD can

include fingerprints of both incoherent (depolarizing errors) and coherent noise. Access to

the spectral information as contained in the PSD can characterize the noise and can possibly

allow us to reconstruct observables for the true state by appropriate averaging over the

underlying distribution function from which the noise is sampled. This method can also be

used as an efficient approach for sampling Gibbs state and therefore, can serve as a starting

point for preparing targeted quantum state for quantum simulations.
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